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Abstract: Sensors for data collecting are vital in the development of IoT and intelligent systems.
High power consuming current and voltage monitors are indispensable in conducting maximum
power point tracking (MPPT) in traditional PV energy wireless sensor nodes. This paper presents
a sensor node system based on Neural Network MPPT with cloud method (NNwC) which utilizes
information sharing process that is specific to sensor networks. NNwC uses a few sample sensor
nodes to collect environmental parameter data such as light intensity (L) and temperature (T) to build
the MPPT regression model by Neural Network. Then all other functional sensor nodes implement
the model with their environmental parametervalues to conduct MPPT. As a result, the new sensor
node system reduces energy consumption as well as the size and cost of the harvester. Then, this
paper provides a SPICE simulation to estimate the percentage of power consumption reduced in
the new sensor node system and also estimates the percentage of loss in neural network MPPT
power generation compared with the perfect MPPT. Finally, the study compares the economic and
environmental performance of the proposed system and the traditional ones through a case in a real
building situation.

Keywords: solar energy harvester; maximum power point tracking (MPPT); sensor nodes; neural
network; energy saving

1. Introduction

In developed countries, the building sector (i.e., residential and commercial buildings) consumes
between 20% and 40% of energy [1]. Globally, energy usage for air-conditioning and artificial lighting
accounts for approximately 70% of final energy consumption in buildings [1]. Thus, combining the
built environment design with the internet of things (IoT), big data and artificial intelligence (AI) for
indoor comforts and energy conservation are encouraged. In this pattern, widespread sensors collect
various data such as temperature, illumination intensity, CO2 concentration continuously and send
the data to the storage of Big Data (i.e., databases). AI utilizes the labeled data from the database to
conduct analyzing, processing, training and decision making. Therefore, the key step in this procedure
is the data collected by sensors. There are two types of power supply methods for traditional sensors.
The first one is to utilize energy from the power grid, whose initial cost is enormous due to the
requirement of power transmission line connection for each sensor. In addition, a mass of power
transmission lines could greatly limit the distribution range of sensor nodes, which is against its feature

Energies 2019, 12, 101; doi:10.3390/en12010101 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en12010101
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/12/1/101?type=check_update&version=2


Energies 2019, 12, 101 2 of 20

of pervasive and massive. Another solution employs the self-energized PV wireless sensor nodes [1,2]
for power generation from solar energy. These systems commonly use batteries or supercapacitors for
energy storage to maintain the continuous operation of sensor nodes. However, due to the limited PV
conversion efficiency, this design requires large-size PV panels to generate enough energy for sensor
nodes. These large-size sensor nodes will not only alter original environmental factors but also restrict
their distribution range, and then, reduce the reliability of data collected by the sensors.

Maximum power point tracking (MPPT) algorithms, a technique for increasing the output of
the solar panel in a given size, is a promising solution to the energy storage problem in sensor node
systems. However, MPPT requires voltage and current monitors to acquire the real-time power output
of the harvester. Sensor node is a kind of low energy consumption application. In order to acquire
more precise voltage and current parameters, the monitor components insulated with original output
circuit should be adopted because they can obtain the voltage and current data without affecting
the original values. The Hall Effect-Based Current/Voltage Monitors such as CSM series and VSM
series are suitable for high accuracy current and voltage data collecting. However, the monitors,
especially current monitors, not only have a high initial cost [3] but also require relatively large
power support according to the load [4]. As the result, these sensors are commonly designed with
space-consuming solar panels to avoid the interruption of sensors. To address such problem, there
is a strong demand for a new wireless solar energy harvester for sensor node network systems with
a higher conversion efficiency but lower power consumption. This paper presents a new system
based on Neural Network MPPT with cloud method (NNwC) where most sensor nodes conduct
MPPT without power-consuming monitors by learning the data from a few sample sensor nodes with
I(current)/V(voltage) monitors. Then this paper analyzes the reduction percentage of operation power
consumption in functional sensor nodes by SPICE simulation and estimates the percentage of loss in
neural network MPPT power generation compared with the perfect MPPT. It proves that smaller size
PV panels can satisfy the power requirement of functional sensor nodes in NNwC method. Finally, this
paper analyzes the feasibility of the proposed system by comparing the economic and environmental
performance of the proposed system and the traditional ones employing a case of a typical building in
Southern China.

2. Literature Review

2.1. Maximum Power Point Tracking (MPPT) Technique

MPPT is a kind of techniques aiming at maximizing the power output of PV, wind or other
systems [5]. In the PV situation, the MPPT is implemented by adjusting the Vpv to Vmpp with
a DC-to-DC converter controlled by a microcontroller (MCU). Many effective algorithms implementing
MPPT are commonly used in PV harvesters [6] as Table 1. These MPPT techniques are classified into
four categories. The first category is MPPT based on output control, including Hill-climbing/P&O,
IncCond, Ripple Correlation Control (RCC), Load I or V Maximization, DC Link Capacitor Droop
Control. The second type is based on AI and non-linear controlling, it concludes Fuzzy Logic Control,
Neural Network, One-Cycle Control (OCC) MPPT. The third type is MPPT based on optimization
mathematic model, including Fractional Voc, Fractional Isc, and Current Sweep. Some MPPT techniques
are not true MPPT since their algorithms do not aim at the most optimal MPP point, but only give
a relative reasonable the maximum power point (MPP), such as Fractional Voc and Fractional Isc.
This study only discusses four representative MPPT algorithms commonly used in research and
industry [7–35].



Energies 2019, 12, 101 3 of 20

Table 1. Different maximum power point tracking (MPPT) algorithms comparison.

MPPT Technique PV Array
Dependent

TRUE
MPPT

Analog or
Digital

Periodic
Tuning

Convergence
Speed

Implementation
Complexity

Sensed
Parameters

Hill-climbing/P&O No Yes Both No Varies Low Voltage,
Current

IncCond No Yes Digital No Varies Medium Voltage,
Current

Fractional Voc Yes No Both Yes Medium Low Voltage

Fractional Isc Yes No Both Yes Medium Medium Current

Fuzzy Logic
Control Yes Yes Digital Yes Fast High Varies

Neural Network Yes Yes Digital Yes Fast High Varies

RCC No Yes Analog No Fast Low Voltage,
Current

Current Sweep Yes Yes Digital Yes Slow High Voltage,
Current

DC Link
Capacitor Droop

Control
No No Both No Medium Low Voltage

Load I or V
Maximization No No Analog No Fast Low Voltage,

Current

dP/dV or
Feedback Control No Yes Digital No Fast Medium Voltage,

Current

Array
Reconfiguration Yes No Digital Yes Slow High Voltage,

Current

Linear Current
Control Yes No Digital Yes Fast Medium Irradiance

State-based MPPT Yes Yes Both Yes Fast High Voltage,
Current

OCC MPPT Yes No Both Yes Fast Medium Current

BFV Yes No Both Yes N/A Low None

LRCM Yes No Digital No N/A High Voltage,
Current

Slide Control No Yes Digital No Fast Medium Voltage,
Current

2.1.1. Incremental Conductance

The Incremental Conductance (InC) is one of the traditional and commonly used MPPT
techniques [7–10]. The PV power can be represented as Equation (1). After taking the derivative of P
as Equation (2), it can be further transformed into (3)

P = V × I; (1)

dP
dV

=
d/IV
dV

= I + V
dI
dV

≈ I + V
∆I
∆V

(2)

∆I/∆V = −I/V, at MPP
∆I/∆V = −I/V, left of MPP

∆I/∆V = −I/V, right of MPP,
(3)

In [6], InC is divided in two steps. In the first step, an initial Vpv which is a fraction of open-circuit
voltage will be set as a default value. Then in the second step, an accurate InC algorithm with smaller
increments will be implemented in MPPT. This two-step InC can reduce the complexity of algorithm
and avoid being trapped into local maximum. InC performs accurately and steadily in DSP and
microcontroller control. However, InC requires a current monitor and a voltage monitor to sense the I
and V value for implementing the algorithm [10].
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2.1.2. Perturb and Observe

Perturb and Observe (P&O) is another most frequently discussed MPPT algorithm [13,14]. In this
algorithm, there will be a default Vpv value using a fraction of open-circuit voltage. The P&O algorithm
chart is shown as the Table 2. The three main problems of the P&O are that (1) the oscillations around
the MPP under steady-state conditions; (2) the poor tracking under changing irradiance; and (3) energy
consuming [15–17]. To record the power, a current monitor and voltage monitors are required for
real-time power comparison. In [18–20], an adjustable perturbing increment is adopted to ensure
that P&O MPPT accelerates tracking process at first and minimize the oscillation Ref 15 was wrongly
written, it has been changed to correct one when it is closed to MPP. To avoid the invalid P&O tracking
when the environment condition changes rapidly, in [21], the direction for next perturbing will be
compared with the previous two Ppv. In [22–24], they use one monitor to estimate the other one based
on power converter topology, but still need either I or V to achieve P&O algorithm.

Table 2. Perturb and Observe (P&O) algorithm.

Direction of Perturbing Power Change Direction for Next Perturbing

Positive Positive Positive
Positive Negative Negative

Negative Positive Negative
Negative Negative Positive

2.1.3. Fuzzy Logic

Fuzzy Logic is one of the latest control algorithms used in MPPT [25–27]. It includes three steps:
fuzzification, rule evaluation, and defuzzification. In [28,29], seven fuzzy sets mode is adopted for
higher accuracy. In [29], the membership function and evaluation rules will be changed periodically,
the performance of Fuzzy Logic MPPT will be improved. Fuzzy Logic has a good performance in
solving a non-linear problem with inaccurate inputs [30]. However, in PV MPPT, Fuzzy Logic still
needs voltage and current values as inputs.

2.1.4. Neural Network

Basic structures and input parameter selection:

Artificial Neural Networks (ANN) can also be deployed in the MPPT technique [31–33]. ANNs
usually have three parts of layers as Figure 1: input, hidden and output layers.
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Figure 1. Artificial Neural Networks (ANN) system diagram.

Training ANN for MPPT:

Tagged data is a combination of inputs as well as its corresponding output pairs. A lot of tagged
data need to be acquired as training material in the training process. An ANN training process will
find the optimal combination of weight Wij between the hidden layers [34]. A small group tagged data
will not be used in the training process and will be used to verify the accuracy of this structure. If the
predicting accuracy of output in this structure is below expectation. The structure of the hidden layer
needs to be changed and retrain a new group of Wij until a satisfactory output regression model is
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decided [35]. ANNs in MPPT usually uses derived parameter of Ipv and Vpv as input [36] in ANN
method, MCU does not need to do heavy calculation in MPPT algorithm after the ANN model has
been constructed. ANN saves the computation power consumption. But it still cannot avoid using
high power consuming and expensive I/V monitors.

For all MPPT algorithms discussed above, they require I/V monitors to sense the real-time
power output value. I/V monitors will lead extra energy consuming in each sensor node. Energy
consumption I/V monitors is negligible in high solar power generation of the power station. For low
power application such as sensor nodes, a larger PV panel is needed to ensure the continuous operation
of sensor nodes. Large PV panels have a higher expense, more importantly, will influence the original
environment condition and make the data from the sensors less accurate.

3. Neural Network MPPT with Cloud Method (NNwC) System Design

3.1. Solar Cells Characteristic

The global energy demand is continuously growing due to population explosion and economic
development. Solar energy, among other sources of energy, is a promising and freely available energy
source for managing long-term issues in energy crisis [37]. The industry therefore considers employing
solar energy for supplying energy for sensor nodes [38–40]. The main challenge in the industry is to
improve the power output of solar panels to meet sensor nodes’ demand. To acquire a higher power
output, one methodology is PV material improvement, it needs to develop new type of PV material
which has a higher converting efficiency. Al0.2Ga0.8AS is one of the best indoor PV materials, but its
conversion efficiency is only up to 21.1% [41]. However, the actual energy can be utilized by load is
even lower. To ensure the generated energy can be best deliver to the load under a given PV material,
MPPT technique can be used to extract the maximum power from PV panel. An equivalent circuit
model of the solar array module can be regarded as the following schematic [5]. (Figure 2).

Energies 2018, 11, x FOR PEER REVIEW  5 of 22 

 

find the optimal combination of weight Wij between the hidden layers [34]. A small group tagged 

data will not be used in the training process and will be used to verify the accuracy of this structure. 

If the predicting accuracy of output in this structure is below expectation. The structure of the hidden 

layer needs to be changed and retrain a new group of Wij until a satisfactory output regression model 

is decided [35]. ANNs in MPPT usually uses derived parameter of Ipv and Vpv as input [36] in ANN 

method, MCU does not need to do heavy calculation in MPPT algorithm after the ANN model has 

been constructed. ANN saves the computation power consumption. But it still cannot avoid using 

high power consuming and expensive I/V monitors.  

For all MPPT algorithms discussed above, they require I/V monitors to sense the real-time power 

output value. I/V monitors will lead extra energy consuming in each sensor node. Energy 

consumption I/V monitors is negligible in high solar power generation of the power station. For low 

power application such as sensor nodes, a larger PV panel is needed to ensure the continuous 

operation of sensor nodes. Large PV panels have a higher expense, more importantly, will influence 

the original environment condition and make the data from the sensors less accurate.  

3. Neural Network MPPT with Cloud Method (NNwC) System Design 

3.1. Solar Cells Characteristic  

The global energy demand is continuously growing due to population explosion and economic 

development. Solar energy, among other sources of energy, is a promising and freely available energy 

source for managing long-term issues in energy crisis [37]. The industry therefore considers 

employing solar energy for supplying energy for sensor nodes [38–40]. The main challenge in the 

industry is to improve the power output of solar panels to meet sensor nodes’ demand. To acquire a 

higher power output, one methodology is PV material improvement, it needs to develop new type 

of PV material which has a higher converting efficiency. Al0.2Ga0.8AS is one of the best indoor PV 

materials, but its conversion efficiency is only up to 21.1% [41]. However, the actual energy can be 

utilized by load is even lower. To ensure the generated energy can be best deliver to the load under 

a given PV material, MPPT technique can be used to extract the maximum power from PV panel. An 

equivalent circuit model of the solar array module can be regarded as the following schematic [5]. 

(Figure 2). 

 

Figure 2. Simple photovoltaic cell model  

The relationship shown in Figure 3 of Ppv, Ipv and Vpv can be found in some related researches in 

[42–44]. For the relationship between Ipv and Vpv, the output current Ipv is nearly proportional to the 

light intensity. With Vpv increases from zero, Ipv decreases with a speed from slow to fast. For the 

relationship between Ipv and Ppv. The output power of solar panel Ppv is the product of Ipv and Vpv. 

With Vpv increases from zero, Ppv will continuously increase as Vpv increases. After Vpv surpasses a 

certain voltage value named as Vmpp, Ppv will meet its extremum at this time. Afterwards, Ppv will 

reduce while increasing the value of Vpv. 

Figure 2. Simple photovoltaic cell model

The relationship shown in Figure 3 of Ppv, Ipv and Vpv can be found in some related researches
in [42–44]. For the relationship between Ipv and Vpv, the output current Ipv is nearly proportional to
the light intensity. With Vpv increases from zero, Ipv decreases with a speed from slow to fast. For the
relationship between Ipv and Ppv. The output power of solar panel Ppv is the product of Ipv and Vpv.
With Vpv increases from zero, Ppv will continuously increase as Vpv increases. After Vpv surpasses
a certain voltage value named as Vmpp, Ppv will meet its extremum at this time. Afterwards, Ppv will
reduce while increasing the value of Vpv.

The Vmpp are subject to both light intensity and temperature. In a real environment, however, the
light intensity and temperature are fluctuating in different time of a day. According to researches [45,46]
related to temperature factor of PV power generation, it can be concluded that power density of these
kinds of PV cells will decrease while temperature increases (Figure 4). So, change in temperature will
also cause a change in output current and its Vmpp.
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3.2. NNwC System Overview

To provide a high-efficiency power management solution for wireless sensor node system using
the fewer I/V monitors, a system based on Neural Network MPPT with cloud method (NNwC) is
suggested in this paper. NNwC makes use of light intensity and temperature influence in PV panel,
and predict MPP of PV panel based on light intensity and temperature. This design focuses on the
efficiency of the whole system of sensor nodes, rather than a single sensor node. NNwC system can
be divided into two part: 1. High-efficiency solar energy wireless sensor system including sample
sensor nodes and functional sensor nodes; 2. Processing Center on the cloud: the ANN data processing
platform. The relationship between sensor nodes and cloud in NNwC is shown in Figure 5. Sample
Sensors account for a small number of sensor nodes, they conducted MPPT using InC or simulated
annealing algorithm and send their L0, T0 as well as their result MPPT0 to the cloud. The cloud receive
the data from sample sensors and train a generalized model for all sensor nodes. After Functional
Sensor Node i sends its Li Ti to the cloud, the cloud will return corresbonding Vmppti to each functional
sensor node.
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3.3. Environmental MPPT Model without Real-Time Current and Voltage Monitoring

An MPP (Maximum Power Point) voltage is harvester’s output voltage when it generates the
greatest power output in a given environment situation. Because of the characteristic of PV cells,
the MPP voltage mainly depends on the temperature (T) and light intensity (L). Then T and L values
collected by sensors can be utilized to conduct MPPT directly, it will avoid using of I or V monitors to
do MPPT, which is Environment-MPPT model.

A strength for sensor node to conduct Environment-MPPT is that it originally has the functions of
collecting the environmental data such as T and L, and they send or receive data with the cloud server.
If we assume the sensor nodes in a system are from the same batch produced by the factory, the PV
characteristics and aging condition among each panel are almost the same. Then a small fraction of
sensor nodes (sample sensor nodes) with high-power consuming I/V monitors will work first. They
implement traditional MPPT method such as InC or Simulated Annealing algorithm, and then send
MPPT result, Vmpp, as well as corresponding T and L values back to the cloud. The cloud server trains
a Neural Network regression model by using these T, L and Vmpp data set from these sample sensor
nodes. Finally, this model is able to predict the Vmpp at any combination of T and L condition.

In this way, other majority of sensor nodes in this system only need to send their real time T and
L to the cloud respectively, the Vmpp will be available in the cloud by inputting T and L value to the
neural network model. These Vmpp values will be sent back to each sensor node respectively. These
sensor nodes are named as functional sensors nodes, they avoid the high-power consuming MPPT
process and make it possible to reduce the scale of the solar panel.

3.4. High-Efficiency Solar Energy Wireless Sensor Node System

Sensor nodes in NNwC are divided into two types—sample sensor nodes and functional
sensor nodes.

3.4.1. Sensor Node Harvester and MPPT Controller

Sample sensors (Figure 6) account for 2% of the total number of sensors. Each sample sensor node
has two PV harvesters. One PV harvester with a current and a voltage monitor implements traditional
MPPT technique-Incremental Conductance. Every time when it finishes MPPT by Incremental
Conductance, then it sends T, L and VMPP result as a group of data to the cloud. The other PV
harvesters of the sample sensor will load the parameters sent from the cloud as other functional
sensors do.
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Due to the benefits of the relatively low cost of functional sensors, functional sensor nodes
(Figure 7) are more likely to account for the majority of all the sensor nodes (98%). They are not
equipped with I or V monitor in their PV harvester. An MCU responsible for sending, receiving data
and generating a PWM signal for its MPPT tracking. Functional sensor nodes collect all kinds of
environmental data such as temperature, humidity, atmospheric pressure, sunlight level for specific
application. Each functional sensor sends its real time data to Cloud Process Center and receive the
its VMPP from Cloud. Then this voltage will be proportionally transformed into PWM value which
controls the duty cycle of converter, finally approaches its MPP point without I/V monitors. Since the
power consumption of functional sensors is much lower than sample sensors, smaller PV panels will
fulfill the requirement of functional sensors.

Energies 2018, 11, x FOR PEER REVIEW  8 of 22 

 

Incremental Conductance, then it sends T, L and VMPP result as a group of data to the cloud. The other 

PV harvesters of the sample sensor will load the parameters sent from the cloud as other functional 

sensors do.  

 

Figure 6. Sample sensor node block diagram. 

Due to the benefits of the relatively low cost of functional sensors, functional sensor nodes 

(Figure 7) are more likely to account for the majority of all the sensor nodes (98%). They are not 

equipped with I or V monitor in their PV harvester. An MCU responsible for sending, receiving data 

and generating a PWM signal for its MPPT tracking. Functional sensor nodes collect all kinds of 

environmental data such as temperature, humidity, atmospheric pressure, sunlight level for specific 

application. Each functional sensor sends its real time data to Cloud Process Center and receive the 

its VMPP from Cloud. Then this voltage will be proportionally transformed into PWM value which 

controls the duty cycle of converter, finally approaches its MPP point without I/V monitors. Since the 

power consumption of functional sensors is much lower than sample sensors, smaller PV panels will 

fulfill the requirement of functional sensors. 

 

Figure 7. Functional sensor node block diagram. 

3.4.2. Cloud Process Center 

Figure 7. Functional sensor node block diagram.

3.4.2. Cloud Process Center

Cloud Process Center receives data array including T, L, Vmpp and other valuable data sent from
the sensor nodes, then uses neural network regression to train a 2-variable function, the T and L are
independent variables (input layer), the Vmpp is the result (output layer).

Users can initialize the structure of the neural network, including the number of layers and the
number of neural cells, learning rate. Cloud will train the data to find the most suitable Wij parameter.
The structure can be adjusted and trained until a structure with satisfactory accuracy. The final
structure will be used for all other PV harvesters to conduct MPPT. The ANN structure should also be
updated every month to guarantee the ANN is conform to aging condition of PV panels.
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3.5. Partial Shading Condition

Partial Shading Condition (PSC) of solar panels is caused by nonuniform sunlight distribution on
a serial of solar cells. The shaded solar cells will consume the energy generated by unshaded solar
cells and produce heat which will damage the solar panel which is called Hot Spot Heating effect.
Hot Spot Heating effect can be greatly reduced by adding a shunt diode paralleled with solar panel
output. However, adding a shunt diode will cause the multiple local maximum. In this low power
consumption NNwC design, the area of solar panel is small, partial shading will not significant affect
the MPPT performance. However, if high accuracy MPPT for each sensor node is required and PSC
need to be considered, multiple local maximums problem should be solved by changing Incremental
Conductance algorithm to Simulated Annealing algorithm. Simulated Annealing algorithm in sensor
nodes can avoid that the MPPT be stuck into a local maximums cause by shunt diode. Below is
a flowchart (Figure 8.) of a suggested Simulated Annealing algorithm for MPPT in NNwC.Energies 2018, 11, x FOR PEER REVIEW  10 of 22 
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4. Simulation and Estimation

The field experiment of thousands of sensor nodes in the NNwC system is unpractical at the
design stage. Therefore, this section presents a simulation in the power consumption of the proposed
system and compares it with that of the traditional wireless sensor node system. The simulation is
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conducted in two parts: (1) the power consumption simulation and (2) the ANN-based MPPT accuracy
simulation in power generation.

4.1. Power Consumption in Sensor Node

The circuit simulation discusses the operation power consumption for of one sample sensor node
and one functional sensor node by LTSpice. Operation power consumption is the power consumption
in internal circuit including regulator, monitors and loads. Figure 9 is a schematic for sample sensor
node power consumption measuring. Since the internal power consumption has little change in
different environment situations. A general PV supply situation which is closed to the general
operation will be assumed in this simulation.Energies 2018, 11, x FOR PEER REVIEW  11 of 22 
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A DC to DC boost converter is constructed afterwards. The PWM signal generated by the MCU is
sent to the gate pin of the MOSFET in the boost converter. The relationship between the duty cycle and
the times of voltage expend is represented in Equation (4), where A is the times in voltage of the boost
converter, D is the switching duty cycle of the MOSFET. A supercapacitor is connected after the boost
converter. This supercapacitors in real design should be more than 3F. However, in order to simulate
the steady-state power consumption fast in this circuit in SPICE, a C2 with only 2 mF will be set in this
simulation. Then a voltage regulator is used to provide load with a constant voltage supply. L1 is the
sensor node load, L3 is the MCU load. A current and a voltage monitor with peripheral circuits are
considered in the simulation.

A =
1

1 − D
(4)

Figure 10 is the simulation result of power consumption after supercapacitor for a sample
sensor node. The power peak is caused by startup of the circuit. Since it is a very short period,
we consider the steady-state power consumption is operation power consumption. The steady-state
power consumption after 56 ms is 285.53 mW. Figure 11 is power consumption measuring circuit
schematic of a functional sensor node. Compared with a sample sensor node, a functional sensor



Energies 2019, 12, 101 11 of 20

node cuts down the high power consuming I/V monitor components. Figure 12 is the simulation
result of power consumption after supercapacitor for a functional sensor node: The steady-state power
consumption after 0.5 s is 7.811 mW. From this simulation, the functional sensor node greatly reduces
power consumption by more than 90%. Therefore, it is feasible to use a solar panel with no more than
100 mW output in all functional sensor nodes.Energies 2018, 11, x FOR PEER REVIEW  12 of 22 
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4.2. Power Generation in Sensor Node

This is an MPP simulation case to find out the predicted accuracy of Neural Network MPPT based
on temperature (T) and light intensity (L), as well as the loss in power generation caused by error.
Based on some researches in modeling and circuit simulation of PV arrays [47,48], some equations
are used to find the relationship among T, L, and current. With T and L collected, the photocurrent
generated is related by Equation (5): A simplified circuit is shown as Figure 13. And the current-voltage
characteristic of a PV array can be described as Equation (6):

IPh =
L

1000
(Isc + ki(T − Tr)) (5)

I0 = NpIph − NpIrs

(
e

q(V+RsI0)
AkTNs − 1

)
− Np

q(V + RsI0)

NsRsh
(6)
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Figure 13. Simplified PV cell circuit model.

Based on Equations (5) and (6), a Matlab program is employed to simulate the current-voltage
curve and to find out the MPP value. The simulation conditions are listed as Table 3.
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Table 3. PV characteristic simulation conditions.

Parameter Value Explanation

Isc 7.84 (A) Short-circuit current of the PV module (A)
Voc 15 (V) Open-circuit voltage of the PV module (V)
Ns 30 (Unit) Number of cells connected in series in the PV module
Kv −0.361 (%/C) Temperature coefficient of voltage
Ki 0.102 (%/C) Temperature coefficient of current
A 0.981 Diode ideality constant
Rs 0.393 (Ohm) Series resistors
Rsh 313.4 (Ohm) Shunt resistors
Np 1 (Unit) Number of parallel connections of cells in the PV module

The current-voltage curves can be obtained by given different T and L combinations. For variables
temperature (T) ranging from −20 ◦C to 50 ◦C, at an interval of 0.7 ◦C, and L ranging from 50 W/m2

to 1050 W/m2, at an interval of 1 W/m2, 105 ideal MPP values are calculated. These calculated data
will be used utilized as real MPP and tagged data for ANN training. T and L are taken as input while
the voltage at Vmpp and the maximum power (MP) are the result output.

These T, L and corresponding Vmpp values are taken as training data for the Neural Network.
To better simulate the performance of cloud ANN regression, the machine learning process is conducted
in the Microsoft Azure Machine Learning Studio. Azure is a cloud service provided by Microsoft and
suitable for sensor nodes application, it is easy to deploy and compatible with other IoT application
related with sensor nodes. The parameters used in Machine Learning Studio is shown in Table 4.

Table 4. ANN training parameters in machine learning studio.

Parameters Option

Create Trainer Mode Single Parameter
Hidden Layer Specification Fully-Connected Case
Number of Hidden Nodes 100
Learning Rate 0.005
Number of Learning Iterations 1000
The Initial Learning Weights Diameter 0.1
The Momentum 0
The Type of Normalizer Min-Max Normalizer
Training Samples:Testing Samples 7:3

In MPPT loss evaluation, the difference of power in predicted Vmpp and simulated real Vmpp will
be calculated. The average power loss for each environment condition in ANN MPPT prediction will
further be transformed into percentage. After simulation, the loss percentage for each environment
condition ranges from −0.31% to −0.02% and presents an average of −0.15%. Therefore, the power
generation equivalent value in ANN MPPT is approximate 99.85% in NNwC.

5. Feasibility Analysis

This study uses the operation data from a typical multi-functional building in Southern China
containing two parts: a high-rise zone (a 9-story hotel) and a low-rise zone (a 4-story office and
a single-storey multifunctional ground floor). An overview of the target building is shown in Figure 14.
The high-rise zone includes 150 guest rooms and 15 en-suites (i.e., 180 rooms totally). The case combines
the proposed system with a windows-shading system for a building passive energy saving system.

This section compares the capital expenditure (CAPEX), operating expenditure (OPEX) and
present value of life cycle cost (LCC) of traditional grid power sensor node system (as Figure 15a),
traditional wireless sensor node system (as Figure 15b) and the proposed system (as Figure 15c). The
study then demonstrates the proposed system’s economic and environmental feasibility by analyzing
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its operation saving and payback period (PP) in building applications. The Equation (7) is employed,
where we assume the interest rate is 1.75% p.a. based on market expectations in the short-term and
the system’s lifespan is 10 years [49,50]. The assumption about the interest rate is derived from the
one-year deposit rate provided by the largest commercial bank in mainland China (Industrial and
Commercial Bank of China, ICBC) [51].

LCC = CAPEX + OPEX

[
1 − (1 + i)life span

i

]
− Scrap Value

(1 + i)life span (7)
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Figure 15. (a) Traditional grid power sensor node system; (b) Traditional wireless sensor node system;
(c) The proposed NNwC system.

The target building contains 180 rooms for the hotel and 10,078.54 m2 office. The traditional
grid power design requires 308 WZP-PT100 temperature sensors and 308 TSL2561T photo-sensors for
the case, whose unit cost are $1.46 and $2.92 respectively. Therefore, the initial cost of sensors in the
traditional grid power node system is $1349.04. TI CC2500 wireless sensor nodes and LTC1877 voltage
regulators are also equipped in each room with the unit price at $2.93 and $2.9 respectively. 308 MCUs
cost $868.56. In addition, the initial cost of PCB and other electronic components is $985.6. The demand
of wire in the high-rise zone and low-rise zones are 20,480 m and 43,440 m directly. The normal price
of conducting wire is $0.29 per meter and therefore, the total price of the wire is $18,536.8. The CAPEX
of the traditional grid power node system is $23,535.64. Considering the cost of a cloud platform is
$302.22 and a 1% operation and maintenance (O&M) cost (i.e., $235.36), the annual OPEX of the system
is $537.58. Considering an 8% scrap value, the LCC of the system is system is $26,845.28.
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The traditional wireless power node system has a similar design with the traditional gird one:
they share the same requirements in sensors, TI CC2500 wireless sensor nodes, LTC1877 voltage
regulator, MCUs and JLC PCB. However, 308 EOGM-M5 gallium arsenide (GaAs) based solar panels
cost $31,600.8 accounting for 86.71% of the total initial cost. The system also requires 616 5.5V
supercapacitors whose unit price is $0.48. Wherefore, considering the annual rent of Ali cloud platform
(i.e., $302.22) and the annual O&M cost (i.e., $364.46), the CAPEX of the traditional wireless power
design is $36,445.64 and OPEX is $666.68 per year. Considering a 10% scrap value, the LCC of the
traditional wireless system is $39,449.12.

The proposed system combines a sampling section and a functional section. 5% sensors (i.e., 30)
are for sampling costing $65.7 and the others (i.e., 586) are functional sensors costing $1283.34. Similar
with the traditional wireless system, the sampling part employs 15 TI CC250 wireless sensor nodes,
MCUs, PCBs and supercapacitors. However, the part also adopts 15 EOGM-M1 miniature GaAs-based
solar panels and 15 extra EOGM-M5 miniature GaAs-based solar panels. The initial cost of the
sampling section is $2212.35. In addition to those basic electronic components, the functional section
only requires 293 EOGM-M1 solar panels. Therefore, the initial cost of this section is $13,125.77.
The CAPEX of the proposed system is $15,365.12 and the annual OPEX is $455.87. Considering
a 10% scrap value, the LCC of the proposed system is $18,222.30. Compared with traditional systems
(as Table 5—A & B), the proposed system (as Table 5—C) has a satisfactory performance in CAPEX,
OPEX and LCC for building applications.

Table 5. The economic performance of the three systems.

Element A B C (The Proposed System)

Life Span (years) 10 10 10
CAPEX $23,535.64 $36,445.64 $15,365.12

OPEX (annual) $537.58 $666.68 $455.87
Scrap Value $1883 (8%) $3645 (10%) $1537 (10%)

LCC $26,845.28 $39,449.12 $18,222.30

The target building has 40% windows (i.e., 494 m2) facing South, where the case combines the
proposed system with a smart shading system. Traditional solar shadings can only save energy for the
cooling system and even may have negative impacts on energy consumption for both lighting and
heating systems [52–54], where the reason is the fixed shading facilities may reduce solar radiation for
daylighting and heating [54]. Therefore, a smart shading system can help occupants to keep a balance
between indoor illumination and temperature. The local monthly means of sunshine duration and daily
solar radiation are presented in Table 4. The local average daily global solar radiation is 12.85 MJ/sqm,
the annual bright sunshine duration is 1835.6 hours and the average available percentage is 42% during
1981 to 2010 [55]. The annual energy receiving from sunshine is 270,314 kWh and the annual saving
of the proposed system is approximately 94,610.2 kWh, assuming the energy saving performance is
35%. Therefore, the annual saving of the proposed system is $44,331.6. Hondo (2005) noted that the
lifecycle Greenhouse Gas(GHG) emission caused by a unit power generation is 26.9 gCO2/kWh in
Japan [56] and this value may be slightly higher in China (i.e., 27.5 gCO2/kWh in est.). Considering
above parameters, the payback period of the combined system is approximately 3.64 years and the
total saving in the GHG emission is 12,192.015 kg CO2.

Although this study discusses the system’s comprehensive feasibility, there is still a lack of
information for the actual performance and the lifespan of sensors remain to be demonstrated.
Since there are only a few companies employ the proposed system in real cases, the reliability of
the product requires further investigation. Without actual operational records, the manufacturer’s
specification is less convincing. Especially, considering unpredictable factors, such as occupants’
behaviors, the application scenarios could be more complicated in real cases. For example, more than
one local maximum point may occur in the PPV curve, where other algorithms considering more
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parameters, such as Annealing Algorithm, are required. In addition, to further measure the working
performance of NNwC, the system may require a subsystem with more than 1000 sensor nodes.
Further improvement, therefore, in algorithms and electronics components is necessary. Engineers
can also combine the proposed system with Building Information Modelling (BIM) tools for a more
systematic built environment design [57,58].

In addition to the immature technology, considerations should also be given to the operational
strategy under dynamic application scenarios. In addition to the case of building applications, the
system can also be used in forest fire prevention, industrial heating recycling and other scenarios
with advanced materials or equipment. Those combinations should follow the economic principle.
It is believed that a short payback period (i.e., within 3–5 years) seems to be a necessity for the
adoption for building developers and other users [48]. In addition, supports from local governments
are indispensable [59]. To satisfy the increasing energy demand and control environmental
pollution, decision-makers have made a significant effort to boost sustainable power systems [60].
The governments can offer an additional incentive to decision-makers to adopt green technologies like
the proposed systems by intensive or enforceable policies.

6. Conclusions

In considering the high energy cost and expense on traditional sense node system, this paper
discusses a refinement sensor node system, wherein NNwC helps to orchestrate its function. This
system can be described as a combination of sample and functional part. 2% of sense node in this
system are used to perform in the traditional MPPT way, in order to collect the environment data,
L and T. Here we propose that environment information including L and T suffice for the attainment
of a MPPT regression model. In the cloud operation platform, these sample data are taken for training
procedure. A 2-variable function, as the result of cloud algorithm, can be used to estimate the MPP
voltage for the rest functional parts to get their maximum power. This idea shows a provable advantage
that it requires fewer sample sensor nodes to collect data as L and T to guarantee the optimality of
power consumption. The reduced size and cost of harvester based on our model enable more prevalent
application of sensor node system compared with traditional grid power sensor node system. A SPICE
simulation is conducted to explore the significant reduction of power consumption and the margin
between the performance of our system and the ideal MPPT. Our experiments show that the cloud
calculation can ensure an accuracy of 99.85% of the ideal MPP, with cutting down more than 90%
power consumption.

Apart from the system design, this study also discusses the economic feasibility and environmental
robustness of the proposed system in buildings with a case study. The proposed system showed
a satisfactory economic performance: the CAPEX is $15,365.12 and the OPEX is $455.87. The life
cycle cost of the system (i.e., $18,222.30) is also lower than that of two traditional systems (i.e.,
$26,845.28 and $39,449.12 respectively). Combining with a smart shadowing system, the payback of the
integration system is approximately 3.6 years without any government subsidy. Also, this low-carbon
integration technique can also reduce the equivalent emission of 12,192.02 kg CO2 over its 10-year
lifespan. However, further study on the proposed system is also necessary to discuss more complex
situations, and discussion with on-site testing data is also required before its commercialization.
Besides, governments should encourage the heuristic application of green building techniques by
this energy harvesting method. The study leaves incorporating the theoretical model into systematic
attempts open for future works.

Author Contributions: Conceptualization, S.C. and H.H.; Methodology, Q.W. and S.C.; Simulation, H.H., Z.D. and
H.G.; Original Draft Preparation, H.H. and H.G.; Writing-Review & Editing, Q.W. and Z.D.; Project Administration,
S.C. and Q.W.

Funding: This research received no external funding.



Energies 2019, 12, 101 18 of 20

Acknowledgments: The authors would like to also thank Ka Hong Loo (The Hong Kong Polytechnic University),
Minghang Qu (University of Cambridge) and Qian Xu (National University of Singapore), who contributed to
search and compilation of the existing publications or provided valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build.
2008, 40, 394–398. [CrossRef]

2. Paradiso, A.J.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput.
2005, 1, 18–27. [CrossRef]

3. Kim, J.; Kim, J.; Kim, C. A regulated charge pump with a low-power integrated optimum power point
tracking algorithm for indoor solar energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58,
802–806. [CrossRef]

4. Tan, Y.K.; Panda, S.K. Energy harvesting from hybrid indoor ambient light and thermal energy sources for
enhanced performance of wireless sensor nodes. IEEE Trans. Ind. Electron. 2011, 58, 4424–4435. [CrossRef]

5. Seyedmahmoudian, M.; Horan, B.; Soon, T.K.; Rahmani, R.; Oo, A.M.T.; Mekhilef, S.; Stojcevski, A. State of
the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems—A
review. Renew. Sustain. Energy Rev. 2016, 64, 435–455. [CrossRef]

6. Esram, T.; Chapman, P.L. Comparison of photovoltaic array maximum power point tracking techniques.
IEEE Trans. Energy Convers. 2007, 22, 439–449. [CrossRef]

7. Hussein, K.H.; Muta, I.; Hoshino, T.; Osakada, M. Maximum photovoltaic power tracking: An algorithm for
rapidly changing atmospheric conditions. IEEE Proc. Gener. Transm. Distrib. 1995, 142, 59–64. [CrossRef]

8. Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S.V.; Teodorescu, R. On the perturb-and-observe and incremental
conductance MPPT methods for PV systems. IEEE J. Photovolt. 2013, 3, 1070–1078. [CrossRef]

9. Kuo, Y.-C.; Liang, T.-J.; Chen, J.-F. Novel maximum-power-point-tracking controller for photovoltaic energy
conversion system. IEEE Trans. Ind. Electron. 2001, 48, 594–601.

10. Wu, W.; Pongratananukul, N.; Qiu, W.; Rustom, K.; Kasparis, T.; Batarseh, I. DSP-based multiple peak power
tracking for expandable power system. In Proceedings of the Applied Power Electronics Conference and
Exposition, Miami Beach, FL, USA, 9–13 February 2003; Volume 1, pp. 525–530.

11. Irisawa, K.; Saito, T.; Takano, I.; Sawada, Y. Maximum power point tracking control of photovoltaic generation
system under non-uniform insolation by means of monitoring cells. In Proceedings of the Conference Record
of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA, 15–22 September 2000;
pp. 1707–1710.

12. Abdelsalam, A.K.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N. High-performance adaptive perturb and observe
MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 2011, 26, 1010–1021.
[CrossRef]

13. Nedumgatt, J.; Jayakrishnan, K.B.; Umashankar, S.; Vijayakumar, D.; Kothari, D.P. Perturb and observe
MPPT algorithm for solar PV systems-modeling and simulation. In Proceedings of the India Conference
(INDICON), Hyderabad, India, 16–18 December 2011.

14. Elgendy, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of perturb and observe MPPT algorithm
implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 2012, 3, 21–33.
[CrossRef]

15. Wasynczuk, O. Dynamic behavior of a class of photovoltaic power systems. IEEE Trans. Power App. Syst.
1983, 102, 3031–3037. [CrossRef]

16. Salas, V.; Olías, E.; Barrado, A.; Lázaro, A. Review of the maximum power point tracking algorithms for
stand-alone photovoltaic systems. Sol. Energy Mater. Sol. Cells 2006, 90, 1555–1578. [CrossRef]

17. Femia, N.; Granozio, D.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Predictive & Adaptive MPPT Perturb and
Observe Method. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 934–950.

18. Al-Amoudi, A.; Zhang, L. Optimal control of a grid-connected PV system for maximum power point tracking
and unity power factor. In Proceedings of the Seventh International Conference on Power Electronics and
Variable Speed Drives, London, UK, 21–23 September 1998; pp. 80–85.

http://dx.doi.org/10.1016/j.enbuild.2007.03.007
http://dx.doi.org/10.1109/MPRV.2005.9
http://dx.doi.org/10.1109/TCSII.2011.2173971
http://dx.doi.org/10.1109/TIE.2010.2102321
http://dx.doi.org/10.1016/j.rser.2016.06.053
http://dx.doi.org/10.1109/TEC.2006.874230
http://dx.doi.org/10.1049/ip-gtd:19951577
http://dx.doi.org/10.1109/JPHOTOV.2013.2261118
http://dx.doi.org/10.1109/TPEL.2011.2106221
http://dx.doi.org/10.1109/TSTE.2011.2168245
http://dx.doi.org/10.1109/TPAS.1983.318109
http://dx.doi.org/10.1016/j.solmat.2005.10.023


Energies 2019, 12, 101 19 of 20

19. Xiao, W.; Dunford, W.G. A modified adaptive hill climbing MPPT method for photovoltaic power systems.
In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany,
20–25 June 2004; Volume 3, pp. 1957–1963.

20. Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Optimization of perturb and observe maximum power
point tracking method. IEEE Trans. Power Electron. 2005, 20, 963–973. [CrossRef]

21. D’Souza, N.S.; Lopes, L.A.; Liu, X. An intelligent maximum power point tracker using peak current control.
In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005;
p. 172.

22. Wolfs, P.J.; Tang, L. A single cell maximum power point tracking converter without a current sensor for
high performance vehicle solar arrays. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists
Conference, Recife, Brazil, 16 June 2005; pp. 165–171.

23. Veerachary, M.; Senjyu, T.; Uezato, K. Maximum power point tracking control of IDB converter supplied PV
system. IEEE Proc. Electr. Power Appl. 2001, 148, 494–502. [CrossRef]

24. Kasa, N.; Iida, T.; Chen, L. Flyback inverter controlled by sensorless current MPPT for photovoltaic power
system. IEEE Trans. Ind. Electron. 2005, 52, 1145–1152. [CrossRef]

25. Won, C.-Y.; Kim, D.; Kim, S.; Kim, W.; Kim, H. A new maximum power point tracker of photovoltaic arrays
using fuzzy controller. In Proceedings of the 1994 Power Electronics Specialist Conference, Taipei, Taiwan,
20–25 June 1994; Volume 1, pp. 396–403.

26. Simoes, M.G.; Franceschetti, N.N.; Friedhofer, M. A fuzzy logic based photovoltaic peak power tracking
control. In Proceedings of the IEEE International Symposium on Industrial Electronics, Pretoria, South
Africa, 7–10 July 1998; Volume 1, pp. 300–305.

27. Hilloowala, R.M.; Sharaf, A.M. A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic
energy conversion scheme. In Proceedings of the Conference Record of the 1992 IEEE Industry Applications
Society Annual Meeting, Houston, TX, USA, 4–9 October 1992; pp. 762–769.

28. Mahmoud, A.M.A.; Mashaly, H.M.; Kandil, S.A.; El Khashab, H.; Nashed, M.N.F. Fuzzy logic implementation
for photovoltaic maximum power tracking. In Proceedings of the 9th IEEE International Workshop on Robot
and Human Interactive Communication, Osaka, Japan, 27–29 September 2000; pp. 155–160.

29. Patcharaprakiti, N.; Premrudeepreechacharn, S.; Sriuthaisiriwong, Y. Maximum power point tracking using
adaptive fuzzy logic control for grid-connected photovoltaic system. Renew. Energy 2005, 30, 1771–1788.
[CrossRef]

30. Veerachary, M.; Senjyu, T.; Uezato, K. Neural-network-based maximum-power-point tracking of
coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans.
Ind. Electron. 2003, 50, 749–758. [CrossRef]

31. Hussein, A.; Hirasawa, K.; Hu, J.; Murata, J. The dynamic performance of photovoltaic supplied dc motor
fed from DC-DC converter and controlled by neural networks. In Proceedings of the 2002 International Joint
Conference on Neural Networks, Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 607–612.

32. Sun, X.; Wu, W.; Li, X.; Zhao, Q. A research on photovoltaic energy controlling system with maximum power
point tracking. In Proceedings of the Power Conversion Conference, Osaka, Japan, 2–5 April 2002; Volume 2,
pp. 822–826.

33. Lin, W.M.; Hong, C.M.; Chen, C.H. Neural-network-based MPPT control of a stand-alone hybrid power
generation system. IEEE Trans. Power Electron. 2011, 26, 3571–3581. [CrossRef]

34. Elobaid, L.M.; Abdelsalam, A.K.; Zakzouk, E.E. Artificial neural network-based photovoltaic maximum
power point tracking techniques: A survey. IET Renew. Power Gener. 2015, 9, 1043–1063. [CrossRef]

35. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef]
[PubMed]

36. Hiyama, T.; Kouzuma, S.; Imakubo, T. Identification of optimal operating point of PV modules using neural
network for real time maximum power tracking control. IEEE Trans. Energy Convers. 1995, 10, 360–367.
[CrossRef]

37. Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62,
1092–1105. [CrossRef]

38. Lin, K.; Yu, J.; Hsu, J.; Zahedi, S.; Lee, D.; Friedman, J.; Kansal, A.; Raghunathan, V.; Srivastava, M. Heliomote:
Enabling long-lived sensor networks through solar energy harvesting. In Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems, San Diego, CA, USA, 2–4 November 2005; p. 309.

http://dx.doi.org/10.1109/TPEL.2005.850975
http://dx.doi.org/10.1049/ip-epa:20010656
http://dx.doi.org/10.1109/TIE.2005.851602
http://dx.doi.org/10.1016/j.renene.2004.11.018
http://dx.doi.org/10.1109/TIE.2003.814762
http://dx.doi.org/10.1109/TPEL.2011.2161775
http://dx.doi.org/10.1049/iet-rpg.2014.0359
http://dx.doi.org/10.1109/72.97934
http://www.ncbi.nlm.nih.gov/pubmed/18282872
http://dx.doi.org/10.1109/60.391904
http://dx.doi.org/10.1016/j.rser.2016.05.022


Energies 2019, 12, 101 20 of 20

39. Brunelli, D.; Benini, L.; Moser, C.; Thiele, L. An efficient solar energy harvester for wireless sensor nodes.
In Proceedings of the 2008 Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008;
pp. 104–109.

40. Hande, A.; Polk, T.; Walker, W.; Bhatia, D. Indoor solar energy harvesting for sensor network router nodes.
Microprocess. Microsyst. 2007, 31, 420–432. [CrossRef]

41. Bourgoine, N. Harvest energy from a single photovoltaic cell. J. Analog Innov. 2011, 21, 1–6.
42. Ciulla, G.; Brano, V.L.; di Dio, V.; Cipriani, G. A comparison of different one-diode models for the

representation of I–V characteristic of a PV cell. Renew. Sustain. Energy Rev. 2014, 32, 684–696. [CrossRef]
43. Celani, J. Solar battery charger maintains high efficiency in low light. LT J. Analog. Innov. 2013, 10, 24–27.
44. Badescu, V. Simple optimization procedure for silicon-based solar cell interconnection in a series—Parallel

PV module. Energy Convers. Manag. 2006, 47, 1146–1158. [CrossRef]
45. Mathews, I.; King, P.J.; Stafford, F.; Frizzell, R. Performance of III–V solar cells as indoor light energy

harvesters. IEEE J. Photovolt. 2016, 6, 230–235. [CrossRef]
46. Whitaker, C.M.; Townsend, T.U.; Wenger, H.J.; Iliceto, A.; Chimento, G.; Paletta, F. Effects of irradiance

and other factors on PV temperature coefficients. In Proceedings of the The Conference Record of
the Twenty-Second IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 7–11 October 1991;
pp. 608–613.

47. Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive approach to modeling and simulation of photovoltaic
arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [CrossRef]

48. Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Modeling and circuit-based simulation of photovoltaic arrays.
In Proceedings of the Power Electronics Conference, Bonito-Mato Grosso do Sul, Brazil, 27 September–1
October 2009; pp. 1244–1254.

49. Wang, Q.; Wei, H.; Xu, Q. A Solid Oxide Fuel Cell (SOFC)-Based Biogas-from-Waste Generation System for
Residential Buildings in China: A Feasibility Study. Sustainability 2018, 10, 2395. [CrossRef]

50. Chen, J.M.P.; Ni, M. Economic analysis of a solid oxide fuel cell cogeneration/trigeneration system for hotels
in Hong Kong. Energy Build. 2014, 75, 160–169. [CrossRef]

51. Industrial and Commercial Bank of China Limited. RMB Deposit Interest Rate Table. Available online: http:
//www.icbc.com.cn/ICBC/EN/FinancialInformation/RMBDepositLoanRate/RMBDepositRate/ (accessed
on 13 November 2018).

52. Freewan, A.A.Y. Impact of external shading devices on thermal and daylighting performance of offices in
hot climate regions. Sol. Energy 2014, 102, 14–30. [CrossRef]

53. Al-Tamimi, N.A.; Fadzil, S.F.S. The potential of shading devices for temperature reduction in high-rise
residential buildings in the tropics. Procedia Eng. 2011, 21, 273–282. [CrossRef]

54. Franzetti, C.; Fraisse, G.; Achard, G. Influence of the coupling between daylight and artificial lighting on
thermal loads in office buildings. Energy Build. 2004, 36, 117–126. [CrossRef]

55. Hong Kong Observatory. Solar Energy Resources in Hong Kong from a Climatological Point of
View. Available online: https://www.hko.gov.hk/education/article_e.htm?title=ele_00443 (accessed on
13 November 2018).

56. Hondo, H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 2005, 30,
2042–2056. [CrossRef]

57. Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review
and future directions. Autom. Constr. 2017, 83, 134–148. [CrossRef]

58. Chi, H.-L.; Wang, X.; Jiao, Y. BIM-Enabled Structural Design: Impacts and Future Developments in Structural
Modelling, Analysis and Optimisation Processes. Arch. Comput. Methods Eng. 2014, 22, 135–151. [CrossRef]

59. Xu, Z.; Li, M.; Lim, J.; Weng, Y.; Tay, Y.; Pham, H.; Pham, Q.-C. Large-scale 3D printing by a team of mobile
robots. Autom. Constr. 2018, 95, 98–106.

60. Zhao, Z.Y.; Chang, R.D. How to implement a wind power project in China?—Management procedure and
model study. Renew. Energy 2013, 50, 950–958. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.micpro.2007.02.006
http://dx.doi.org/10.1016/j.rser.2014.01.027
http://dx.doi.org/10.1016/j.enconman.2005.06.018
http://dx.doi.org/10.1109/JPHOTOV.2015.2487825
http://dx.doi.org/10.1109/TPEL.2009.2013862
http://dx.doi.org/10.3390/su10072395
http://dx.doi.org/10.1016/j.enbuild.2014.01.053
http://www.icbc.com.cn/ICBC/EN/FinancialInformation/RMBDepositLoanRate/RMBDepositRate/
http://www.icbc.com.cn/ICBC/EN/FinancialInformation/RMBDepositLoanRate/RMBDepositRate/
http://dx.doi.org/10.1016/j.solener.2014.01.009
http://dx.doi.org/10.1016/j.proeng.2011.11.2015
http://dx.doi.org/10.1016/j.enbuild.2003.10.005
https://www.hko.gov.hk/education/article_e.htm?title=ele_00443
http://dx.doi.org/10.1016/j.energy.2004.07.020
http://dx.doi.org/10.1016/j.autcon.2017.08.024
http://dx.doi.org/10.1007/s11831-014-9127-7
http://dx.doi.org/10.1016/j.renene.2012.08.075
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Maximum Power Point Tracking (MPPT) Technique 
	Incremental Conductance 
	Perturb and Observe 
	Fuzzy Logic 
	Neural Network 


	Neural Network MPPT with Cloud Method (NNwC) System Design 
	Solar Cells Characteristic 
	NNwC System Overview 
	Environmental MPPT Model without Real-Time Current and Voltage Monitoring 
	High-Efficiency Solar Energy Wireless Sensor Node System 
	Sensor Node Harvester and MPPT Controller 
	Cloud Process Center 

	Partial Shading Condition 

	Simulation and Estimation 
	Power Consumption in Sensor Node 
	Power Generation in Sensor Node 

	Feasibility Analysis 
	Conclusions 
	References

