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ABSTRACT
Accurate prediction of the remaining service life (RSL) of pavement is essential for the design and
construction of roads, mobility planning, transportation modeling as well as road management sys-
tems. However, the expensivemeasurement equipment and interferencewith the traffic flowduring
the tests are reported as the challenges of the assessment of RSL of pavement. This paper presents
a novel predictionmodel for RSL of road pavement using support vector regression (SVR) optimized
by particle filter to overcome the challenges. In the proposed model, temperature of the asphalt
surface and the pavement thickness (including asphalt, base and sub-base layers) are considered as
inputs. For validation of themodel, results of heavy fallingweight deflectometer (HWD) and ground-
penetrating radar (GPR) tests in a 42-km section of the Semnan–Firuzkuh road including 147 data
points were used. The results are compared with support vector machine (SVM), artificial neural
network (ANN) and multi-layered perceptron (MLP) models. The results show the superiority of the
proposed model with a correlation coefficient index equal to 95%.
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1. Introduction

Estimation of the prerequisites for the maintenance,
repair, rehabilitation and reconstruction of pavement is
one of the requirements for the design and maintenance
of the structure of pavement. The pavement designmeth-
ods are based on providing a proper prediction of the
structure of pavement to keep it in permissible condition.
The term ‘remaining service life’ (RSL) refers to the time
it takes for the pavement to reach an unacceptable sta-
tus and need to be rehabilitated or reconstructed (Elkins,
Thompson, Groerger, Visintine, & Rada, 2013).

Prediction of the RSL is a basic concept of pavement
maintenance planning. Awareness of the future condi-
tions of pavement is a key point in making decisions
in the planning of pavement maintenance. On the other
hand, we know that pavement optimization methods are
urgently needed to predict changes in pavement con-
ditions over a defined period of time. These methods

CONTACT Shahaboddin Shamshirband shahaboddin.shamshirband@tdtu.edu.vn

determine essential actions during themaintenance cycle
(Elkins et al., 2013).

In the available study, a novel method is applied to
predicting the RSL. The basic information for mak-
ing the RSL prediction model is derived from GPR
(ground-Penetrating radar) and HWD (heavy falling
weight deflectometer) tests. In road improvement plans,
the HWD is a proper tool for evaluating the structural
capacity of pavement in service. Because of an efficient
simulation of traffic loads, many research institutes use
this non-destructive test to assess the condition of pave-
ment (Park & Kim, 2003). HWD applies a tension equiv-
alent to an 80-KN wheel axle. This tension is applied to
the pavement surface in a 10–35-second period. Finally,
HWDmeasures the deflection of the pavement surface by
means of geophones (Technical and Soil Mechanics Lab-
oratory [TSML], 2012). Deflection data are transferred to
Evaluation of LayerModuli andOverlayDesign software.
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Table 1. HWD non-destructive test specifications (TSML, 2012).

Order Parameter Value

1 Tensions (kpa) 600–900
2 Plate Radius (mm) 150
3 Frequency of falls of weights 4 times
4 Number of geophones 9
5 Geophone sequence (cm) 0–20–30–45–60–90–120–150–180
6 Sampling distance (m) 200
7 Sampling line Semnan–Firuzkuh

This software, with the help of back-calculation, calcu-
lates parameters such as: the modulus of the pavement
layers, the RSL and the thickness of the required over-
lay, measured through the pavement deterioration mod-
els (Karballaeezadeh, Ghasemzadeh Tehrani, & Moham-
madzadeh, 2017). The temperature of the asphalt surface
is recorded automatically by the HWD device. Table 1
includes the characteristics of the HWD test.

The GPR device is another non-destructive device to
assess pavement layers. This device is able to measure
the thickness of the layers in the form of a continuous
profile along the road by sending electromagnetic waves
in the range of the radio spectrum and receiving recur-
sive signals (TSML, 2012). Other uses of the GPR device
include identifying the location of the underground util-
ities and checking the moisture and deep damage in the
pavement layers (TSML, 2012). Table 2 includes the out-
comes of HWD and GPR tests for the Semnan–Firuzkuh
road.

In Iran, one of the most common methods to deter-
mine the RSL of the pavement is to carry out the HWD
test. In spite of numerous benefits, this test has twomajor
disadvantages. The first disadvantage is the high price of
equipment and the impossibility of equipping all road
and transportation departments. The second disadvan-
tage is interference in traffic flow during the test.

The method proposed by the authors has the neces-
sary accuracy and overcomes the challenges listed for
the HWD. Therefore, this method can be used as an
alternative to RSL estimation.

2. An overview of the RSLmodels of pavement

RSL has been defined as the predicted time that a pave-
ment will behave permissibly in terms of function and
structure with routine maintenance (Gedafa, 2008). RSL
is useful for rehabilitation programs, funds allocation and
predicting long-term requirements. RSL assessment is
essential to optimum usage of the structural capacity of
existing pavements. Determination of the RSL helps in
the decision-making of maintenance strategies and opti-
mal usage of budgets (Vepa, George, & Shekharan, 1996).
Precise RSL models facilitate better budget allocation for

pavement maintenance programs (Romanoschi & Met-
calf, 2000). Determination of the RSL pavement requires
the actual characteristics, a description of unacceptable
condition and a mechanism to anticipate deterioration.
The information required to determine RSL is depicted
by Figure 1 (Gedafa, 2008).

There are severalmethods to estimate the RSL of pave-
ment. Thesemethods are divided into two general groups
(Hall, Correa, Carpenter, & Elliot, 2001; Yu, Chou, &
Yau, 2008): mechanical and empirical (semi-empirical)
methods.

Mechanical methods may use either destructive or
non-destructive tests to determine the strength char-
acteristics of the existing pavements through empirical
equations or physical laws. Finally, the RSL is calcu-
lated using the predicted traffic and determined strength.
In the destructive tests the pavement should be sam-
pled. This sampling will cause damage to the pave-
ment. In non-destructive tests, the approach is based
on measured deflection from the pavement surface
(Yu, 2005).

In the empirical method, the RSL is taken from
observed historical data and further conditions and
project characteristics. Also, effects of the major param-
eters may be predicted either directly or indirectly (Yu,
2005).

Table 3 compares empirical andmechanical approaches
and shows their advantages and disadvantages.

The methods discussed below were developed by
pavement engineering associations.

For calculating the RSL, a graphical procedure was
developed using the effective thickness of pavement
through the non-destructive deflection testing (George,
1989).

The RSLwas calculated using a fatiguemodel, through
evaluation of the rate of crack progression, by Mam-
louk et al. in Arizona (Mamlouk, Zaniewski, Houston, &
Houston, 1990).

Some models for RSL were developed based on falling
weight deflectometer (FWD) results from Werkmeister
and Alabaster (2007). Santha et al. advanced a mecha-
nistic prediction model to compute RSL (Santha, Yang,
& Lytton, 1990). Furthermore, artificial neural networks
(ANN) were applied by Ferregut et al. to develop algo-
rithms that combine the pavement functional condition
(i.e. percentage of cracking or depth of rut) with sim-
ple remaining life algorithms to estimate the RSL (Fer-
regut, Abdallah, Melchor, & Nazarian, 1999). Zaghloul
and Elfino utilized expected traffic and back-calculated
layer moduli to predict the RSL (Zaghloul & Elfino,
2000). Gedafa suggested sigmoidal models for estimat-
ing RSL based on the central deflection from a rolling
wheel reflectometer (RWD) or FWD (Gedafa, 2008). On
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Table 2. Outcomes of HWD and GPR test.

Station
(km)

Asphalt surface
temperature (°C) AC (mm) BS (mm) RSL (year) Station (km)

Asphalt surface
temperature (°C) AC(mm) BS (mm) RSL(years)

0 19 115 167 2 2.4 20.2 107 167 4
0.2 19.2 134 139 40 2.6 20.5 88 179 4
0.4 19.1 143 147 40 3 21.3 52 196 1
0.6 19.2 135 149 13 3.6 20.9 56 150 1
0.8 19.3 138 144 22 4 21 68 155 4
1 19.3 129 142 3 4.2 21.2 68 150 12
1.22 19.4 137 143 4 4.4 21.6 73 147 3
1.4 19.5 115 167 4 4.8 22.2 114 132 8
1.6 19.6 142 138 6 5 22.2 104 144 0
1.8 19.4 142 149 40 5.2 22.5 98 150 13
2 19.3 143 145 40 5.4 22.6 123 135 11
2.2 19.6 170 132 40 5.6 22.7 116 144 9
5.8 22.7 117 126 10 23 34.4 127 196 1
6 22.8 129 131 10 23.4 34.1 123 162 17
6.21 23 131 145 14 23.6 33.4 119 161 16
6.6 23.3 140 127 38 23.8 34.1 123 184 2
7 23.5 141 124 16 24.075 33.2 125 180 7
7.2 23.3 137 149 29 24.2 34 119 188 1
7.4 23.5 137 134 0 25 34 145 160 4
7.6 23.4 130 125 4 25.215 34.6 138 154 1
7.8 23.7 135 141 1 25.4 35 143 135 1
8 23.6 124 126 2 25.6 35.3 150 148 1
8.2 24 135 145 25 25.8 35.4 184 96 40
8.4 24 135 150 9 26 35 173 131 2
8.6 24.1 133 139 8 26.2 34.9 165 131 3
8.8 24.1 143 125 15 26.4 35 184 106 1
9 24.6 133 141 11 26.6 35.3 152 138 4
9.2 25 152 119 40 26.8 35.7 174 123 40
9.945 25.5 125 138 7 27 34.7 152 141 33
10.2 26 125 132 7 27.8 34.7 157 133 3
11.338 28.3 134 126.8 21 28 34.4 160 121 0
11.6 28.4 146 108 40 28.2 34.8 153 132 0
11.8 28.5 134 138 38 28.6 35.3 175 115 0
12 28.7 136 139 40 28.8 35.6 158 139 0
12.205 28.9 148 136 40 29 35.9 174 143 2
12.8 29.2 135 156 6 29.2 34.9 197 124 0
13.05 29.2 159 150 29 29.4 35.1 185 134 2
13.4 29.2 141 153 30 29.6 34.7 211 123 4
13.6 29.6 156 142 40 29.8 34.8 251 110 4
13.8 29.8 140 148 30 30.4 34.2 236 162 1
14 29.6 149 136 31 30.6 35.4 235 164 3
14.6 30 134 134 40 30.8 34.1 225 171 6
15 30.4 152 121 40 31 34.4 238 135 18
15.2 30.8 147 124 22 31.2 34 240 150 2
15.4 30.7 122 144 4 31.8 33 260 133 40
15.61 30.7 117 151 14 32.2 32.9 255 157 11
15.8 30.6 124 144 4 32.4 33.7 241 162 4
16.015 30.7 145 135 40 32.6 32.9 247 139 4
16.4 31.3 136 146 4 33 35.1 236 154 15
16.6 31.5 124 181 20 33.2 35.4 259 148 3
16.8 30.7 131 173 40 33.4 35.2 260 146 31
17 31.5 140 139 3 33.8 33.3 270 139 3
17.2 31.8 127 155 40 34 33.1 270 129 40
18.4 32.2 127 148 7 34.2 33.9 255 137 40
18.8 31.9 132 150 1 34.4 32.9 248 144 40
19.6 32.5 131 138 9 35 32.2 263 142 23
19.8 32.5 123 149 4 35.2 32.8 265 146 9
20 33 116 162 12 35.4 34.3 270 131 9
20.2 33.3 133 142 23 35.6 33.8 235 142 18
20.4 32.7 142 134 40 35.8 34.2 232 151 2
20.8 32.7 130 164 29 36 32.9 240 164 4
21 32.6 119 161 4 36.2 32.8 260 148 7
21.2 32 125 156 9 36.6 34 248 155 18
21.465 32.4 122 158 11 36.8 32.8 257 141 21
21.6 33.5 134 148 40 37 33.1 238 143 13
21.8 34 129 154 2 37.2 33.2 265 157 40
22.4 34.1 122 180 4 37.4 33.1 255 174 40

(continued).
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Table 2. Continued.

Station
(km)

Asphalt surface
temperature (°C) AC (mm) BS (mm) RSL (year) Station (km)

Asphalt surface
temperature (°C) AC(mm) BS (mm) RSL(years)

22.81 33.5 133 161 9 37.6 33.7 280 153 40
37.8 33.9 261 163 38 39.4 33.5 252 152 33
38 33.7 276 167 40 39.6 34.9 232 177 18
38.2 33.4 257 169 40 40 32.3 253 136 22
38.4 33.7 247 146 15 40.6 35.5 240 155 40
38.8 33.3 235 164 20 41.47 33.4 251 142 40
39 33.8 242 183 40

Notes: AC, asphalt concrete; BS, base and subbase.

Figure 1. Calculating the RSL for an individual condition index (Federal Highway Administration [FHWA], 1998).

the other hand, approaches to predicting pavement con-
dition can be normally categorized into various classes
(Balla, 2010), e.g. deterministic, probabilistic and other
approaches. Deterministic regression is likely the most
famous estimation method for the estimation of pave-
ment condition. It is normally represented as a regression
equation with the dependent variable as the condition
index and the age and type of pavement as independent
variables (Balla, 2010).

According to Lytton (1987), the probabilistic methods
estimate pavement condition with a certain probability.
Probabilistic methods normally result in a Probabilistic
methods often result in a probability distribution. The
most famous model for predicting RSL is survival time
analysis, which is considered a probabilistic model. In
fact Winfrey and Farrell (1941) used this model to cal-
culate the RSL of pavements in the early 1940s. From
1903 to 1937, survival curves were developed in 46 states

Table 3. Approaches to measuring RSL (Yu, 2005).

Class Common approaches Benefits Drawbacks

Mechanical • Fatigue test
• Punch-out

failures
• FWD

• No traffic data or historical conditions
are needed.

• Suitable for project-level management.
• Simple to assess the mechanical status

of various pavements.
• The operation is done in a standard

manner.

• Pavement is damaged by destructive test.
• Pricy equipment.
• Non-destructive test with back-calculation

has low accuracy.
• Location and traffic effect on accuracy of

estimation.
• The influences of the effective parameters

cannot be easily forecasted.
• Low suitability for management at network

level.

Empirical • Life table
• Cox proportional hazards
• Neural network
• Nomograph
• Regression
• Kaplan–Meier
• Failure time theory

• If historical data are available, this
approach is cheaper than another
approach.

• The effects of the effective parameters
can be predicted.

• It is fairly simple to do and merge with
pavement management systems.

• Need enough historical data.
• Accuracy of estimation is very much a func-

tion of data quality andmodel format. Com-
prehensive experience and field knowledge
are needed for specification of the format.
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with the help of the life table procedure. The distribu-
tion of survival times was divided into a certain number
of equal intervals, e.g. 1 year or half a year. During each
respective interval, three mileages were enumerated: the
mileage of pavement sections that were in service (begin-
ning of the respective interval), the mileage of pavement
sections that were out of service (end of the respective
interval) and the mileage of pavement sections that were
lost. The probability of survival for an interval is com-
puted by dividing the remaining mileage by the total
mileage entered for the respective interval. The survival
curve is drawn by depicting the probability versus the
time interval in chronological order (Winfrey & Farrell,
1941). The RSL can be predicted by extrapolating the
survival curve to zero percent survival. The life table
approach is common for the analysis of RSL (Winfrey,
1967).

2.1. Huang’s comprehensivemodels

The most prominent deterministic models to determine
the RSL of flexible pavement are equations offered by
Huang. He offered two equations to calculate the RSL
of pavement based on the fatigue and rutting criterion
(Huang, 2004):

Nf = f1(εt)−f2(E1)−f3 (1)

where Nf is the maximum number of repetitions of
cracks due to fatigue does not occur in thepavement, Et
is the tensile strain at the bottom of the asphalt layer, E1 is
the elastic modulus of the asphalt layer and f 1, f 2 and f 3
are fixed coefficients that are obtained from fatigue tests
in the lab or in the location of the road;

Nd = f4(εc)−f 5 (2)

where Nd is the maximum number of loading repeti-
tions that limit the rutting, Ec is the compressive strain
at the top of the subgrade and f 4 and f 5 are coefficients
that are obtained from the loading experiments. Coeffi-
cients of Equations (1) and (2) were computed by various
institutions (Table 4).

Das and Pandey reported amechanistic designmodel.
This model was developed by correlating the perfor-
mance data from bituminous pavements of various roads
in India with the critical stress–strain factors leading
to pavement failure. The model was developed by axle
loading as given below (Das & Pandey, 1999):

Nf = 1.001 ∗ 10−1(εt) − 3.565(MR)−1.4747 (3)

where Nf is the cumulative standard axle repetitions to
producing 25% surface crack due to fatigue on existing

Table 4. Fatigue cracking and rutting model parameters (Huang,
1993).

Nf = f1(εt)−f2 (E1)−f3 Nd = f4(εc)−f5

Institution f 1 f 2 f 3 f 4 f 5

Asphalt Institute &
Kansas Department
of Transportation

0.0796 3.291 0.854 1.365E-9 4.477

Shell 0.0685 5.671 2.363 NA NA
Shell (50% reliability) NA NA NA 6.15E-7 4
Shell (85% reliability) NA NA NA 1.94E-7 4
Shell (95% reliability) NA NA NA 1.05E-7 4
Illinois Department of

Transportation
5E-6 3 NA 3 NA

Transport and Road
Research Laboratory

1.66E-10 4.32 NA 4.32 NA

UK research and Road
Research Laboratory
(85% reliability)

NA NA NA 6.18E-8 3.95

University of
Nottingham

NA NA NA 1.13E-6 3.571

Belgian Road Research
Center

4.92E-14 4.76 NA 3.05E-9 4.35

Note: 1.365E-9 means 1.365 is multiplied by 10 to the power −9.
(1.365× 10−9).

pavement and MR is the resilient modulus. This model
is similar to Huang’s model except that E1 is replaced
byMR.

Mostaque Hossain and ZhongWu presented a regres-
sion equation for all types of pavement sections at 20°C in
the report ‘Estimation of asphalt pavement life’ (Hossain
&Wu, 2002):

Ln(Nf ) = a–bLn (εr)–cLn(EAC) (4)

where Nf is the RSL of the pavement, Er is the hori-
zontal tensile strain under the asphalt layer, EAC is the
asphalt layer modulus and a, b and c are constant coeffi-
cients of regression. The basis of Equation (4) is similar to
Equation (1) (the inputs of the models are the same). The
difference between Equations (4) and (10 is their math-
ematical form. Equation (1) uses a power function and
Equation (4) uses a natural logarithm function.

Park and Kim presented a model by assessing the
FWD test data in accordance with Equation (5) (Park &
Kim, 2003):

Nf = K(εt)
−C (5)

where Nf is the number of repetitions of the standard
axle to create fatigue failure, Et is the tensile strain at the
bottom of the asphalt layer and K and C are regression
coefficients. This model is similar to Huang’s compre-
hensive model except that E1 has been removed from
model.

2.2. Othermodels

Some researcher-presented models for determining RSL
differed fromHuang’s comprehensive models (Equations
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(1) and (2)). They used other indices as inputs of their
models. The mathematical form of their models also
differs from Huang’s models.

In 1986, Smith used the S-shaped curve technique and
the PCI (pavement condition index) to model the RSL of
the pavement in his PhD thesis (Smith, 1986):

PCI = 100 − (ρ ÷ (β × (Ln(α)–Ln(age)))) (6)

where the ‘age’ is the RSL of pavement and α, β and ρ are
fixed coefficients that relate to the curve and pavement
conditions.

Turki and Adnan presented a model based on the
international roughness index (IRI) as well as the ‘current
age’ of the pavement. This model can be seen in Equation
(7) (Turki & Adnan, 2003):

RSL =
ln

(
IRIterminal

a

)
b

− Current age (7)

where IRIterminal is terminal IRI of the pavement (mm/m
orm/km), ‘current age’ is the age of the pavement section
since original construction or last overlay (annually), a is
the initial IRI (where age is zero) and b is the curvature
of the performance line.

Mofreh Saleh presented a model for determining the
RSL based on pavement surface curvature (δ) and AUPP
(area under pavement profile) parameters as shown by
Equations (8) and (9) (Saleh, 2016):

Nf = α

(
1

2.3 × 10−3 × δ + 2 × 10−5

)β

(8)

Nf = α

(
1

2.3 × 10−6 × AUPP0.912

)β

(9)

whereNf is the number of axle load repetitions to fatigue
failure,α andβ coefficients arematerial constants, δ is the
pavement surface curvature coefficient obtained from the
FWD’s deflection (D0 –D200). The basis of Equations (8)
and (9) and Equation (5) is the same except that in Equa-
tions (8) and (9) Et is replaced by the results of Mofreh’s
research.

3. Support vector regression (SVR) and particle
filter

An unsupervised learning method like the SVM may be
used for classification and regression problems. The SVM
model uses SRMP (structural risk minimization princi-
ple) and shows a perfect generalization ability to over-
come the deficiencies of the traditional ANN algorithm.
It uses empirical risk minimization in modelling a given
variable (Faizollahzadeh Ardabili et al., 2018). The SVM

is considered as a linear classification and tries to select
the best reliable line from the dataset. To use this method
for real outputs (non-binary) we can use SVR (support
vector regression), which is generalized as binary. In this
study we have tried to solve the difficulty of parameter
setting in SVR.

The basic function of SVR is minimizing Equation
(10) (Smola & Schölkopf, 2004):

min
1
2
wTw + C

N∑
i=1

(δ+ + δ−) (10)

whose δ and C parameters will be explained in the SVM
parameters section; the value w is the weight vector.

The particle filter is a random-based state estimator
operating through noises. It affects xk and yk, and the val-
ues of the noise and equations are shown in Equation
(11). Furthermore, the measurement noise is defined
as the dimensions and weights (Carpenter, Clifford, &
Fearnhead, 1999):{

xk = fk(xk−1,uk,wk)

yk = hk(xk,uk,vk)
(11)

where xk represents the sluice state, yk is the output, fk
is the process function, hk is the measurement functions,
uk is the input and wk and vk are noises that affect the
equations.

4. The proposedmethod

The method proposed in this paper produced a model
to estimate ‘remaining service life of pavement.’ There-
fore, the output of the model is ‘remaining service life
of pavement’ (years). Inputs of the model are ‘pavement
thickness’ (mm), including asphalt, bases and sub-base
layers, and also ‘temperature of asphalt surface’ (°C).

After the analysis of its strengths andweaknessesmen-
tioned earlier, it was optimized to estimate the SVR
parameter and a particle filter method was used for this
purpose, in order to select the best parameters, instead of
manually selecting them, based on the error test.

The performance of SVR is related to its parame-
ters; the most important ones with concise explanations
are given below. These parameters are the main rea-
sons for increasing the efficiency of the method and in
this method will be estimated by means of the particle
filter.

• C parameter (trade-off between the training error and
the complexity of the model [Insom et al., 2015]);

• epsilon parameter (accuracy of approximation also
known as ‘loss function’);
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Figure 2. The flow of the proposed method.

• kernel function and kernel scale parameter (mapping
the nonlinear dataset to a linear one)

Figure 2 illustrates the data cycle of the proposed
method.

The proposed method selects SVR parameters based
on the weight of the particles in the particle filtermethod.
By using the correct values or true values as a state
observer for each particle, a repeat sequence is formed.
The data are initially normalized between 0 and 1 and
80% of the data are randomly used to teach the model
while the rest are used for the test. After initializing the
particles that are zero, the outputs are predicted, in a
repeat sequencewith the same values, and then compared
with the previous results to update the particle weight.
Through providing a set of examples of a probabilistic
distribution (estimatedweights) the target parameters are
updated. The SVMmodel is trained by these parameters
and an appropriate parameter is selected by examining
the minimum error (compared with the previous result).
For each particle, this sequencewill continue (predict and
update) until the best result is obtained. Finally, themod-
elling of the SVM regression is done with the parameters
of the final training and test.

The numerical values obtained in the proposed
method, which are introduced as the best weights in the
algorithm, are kernel scale = 0.1543, epsilon = 0.1067,
box constraint (C) = 0.5706.

5. Pavement RSLmodelling results

This research focuses on optimizing the performance of
SVR using a particle filter method known as SVR-PF.
After normalization of data, 80% of the data are used for
training and 20% are used for testing. Figure 3 shows the
results of the total data, training data and test data, indi-
cating the degree of coherence between the estimated and
actual values. The predicted output comparison with the
actual values of the test data indicates that the method
has 95% accuracy. It is clear that an optimized SVM
performed well in estimation.

The graph of the R index in Figure 4, which repre-
sents the coincidence of the output of the method and
the actual values, represents 95% accuracy on the test
data. The index shown in Figure 4 is known as the ‘cor-
relation coefficient’ and is represented by R. The corre-
lation coefficient is a standard for the quality of linear
relationships.

This criterion will represent four states of solidarity:

(a) R = 1 (relevance is complete and positive)
(b) 0 < R < 1 (relevance is incomplete and positive)
(c) R = −1 (significance is complete and negative)
(d) −1 < R < 0 (relative is incomplete and negative)

The sign represents the relevant direction. A suitable
value of R cannot be specified but it is stated that ‘the
higher value of R represents a better correlation.’ This



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 195

Figure 3. Correlation coefficient estimated and actual values: (a) total data; (b) training data; (c) test data.

index can be defined in accordance with Equation (12)
(Mohammadzadeh, Bolouri, & Alavi, 2014):

R =
∑n

i=1(hi − hi)(ti − ti)√∑n
i=1 (hi − hi)

2 ∑n
i=1 (ti − ti)

2
(12)

Root mean square error (RMSE) and mean squared

error (MSE) are other indexes to illustrate the difference
between the real value and the predicted value (Equation
(13)) (Mohammadzadeh et al., 2014):

MSE = 1
n

n∑
i=1

(hi − ti)2 (13)
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Figure 4. Coincidenceof theoutputof themethodand theactual
values.

where hi and ti are, respectively, the experimental and
calculated output values for the ith output, hi is the aver-
age of the experimental outputs and n is the number

of samples (Mohammadzadeh et al., 2014). RMSE is in
fact the root of the MSE index and can be calculated
according to Equation (14):

RMSE =
√
MSE (14)

The evaluation metric called Nash–Sutcliffe model effi-
ciency (NSE) is obtained by dividingMSE using the vari-
ance of the observations and subtracting that ratio from
1.0 (Gupta, Kling, Yilmaz, &Martinez, 2009). NSE can be
calculated by Equation (15):

NSE = 1 − MSE
σ 2 (15)

where σ is the standard deviation of the observed values
(Gupta et al., 2009).

Figure 5. Collation of real and predicted value:. (a) total data; (b) training data; (c) test data.
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Table 5. The comparison of the results of the models.

Model RMSE MSE R (%) NSE

Proposed method 0.14 0.02 95 0.85
SVM 0.33 0.11 46 0.22
MLP 0.33 0.11 57 0.22

The collation of predicted and real values is shown
in Figure 5 to indicate the difference between these
values.

Figure 5 is based on the values in the vertical axis
and the sample number on the horizontal axis. It should
be noted that the values are normalized in the range
of 0–1 and can be retrieved and converted to real val-
ues for application purposes. The same data are available
for other data-mining methods such as MLP neural net-
works and SVM and the results of the regression correla-
tion coefficient andmean square error, which indicate the
accuracy of the research estimate, are visible in Table 5. It
should be noted that these values relate to the results of
the evaluation.

6. Conclusion

According to the mentioned weaknesses of the HWD
test, the authors of this study sought an alternative
method for this experiment. Their proposed method has
been able to optimize one of the most widely used meth-
ods of artificial intelligence – the SVM – by means of
the particle filter method to overcome its weaknesses.
Then, using the characteristics of ‘pavement layers thick-
ness’ (asphalt, base and sub-base), and also ‘temperature
of asphalt surface,’ it predicted the RSL of the pavement
per year. After the RSL predicted by the proposedmethod
and the actual RSL values from the non-destructive
HWD test had been examined and compared, a preci-
sion of over 95% was found to confirm the validity of this
method. Now, with the availability of weather informa-
tion for each area, as well as information about the thick-
ness of the pavement layers which is obtained in a variety
of ways (for example with the help of the GPR device) it is
possible to estimate the service life of existing and operat-
ing pavements. Regarding the high accuracy of the pro-
posed method, the authors suggest that the administra-
tion and organizations through thismethod, compared to
HWD, significantly reduce the costsand eliminate traffic
disturbances and decide as soon as possible to determine
the RSL.
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