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Abstract

Background: Current knowledge and data on miRNA-lncRNA interactions is still limited and little effort has been
made to predict target lncRNAs of miRNAs. Accumulating evidences suggest that the interaction patterns between
lncRNAs and miRNAs are closely related to relative expression level, forming a titration mechanism. It could provide
an effective approach for characteristic feature extraction. In addition, using the coding non-coding co-expression
network and sequence data could also help to measure the similarities among miRNAs and lncRNAs. By
mathematically analyzing these types of similarities, we come up with two findings that (i) lncRNAs/miRNAs tend to
collaboratively interact with miRNAs/lncRNAs of similar expression profiles, and vice versa, and (ii) those miRNAs
interacting with a cluster of common target genes tend to jointly target at the common lncRNAs.

Methods: In this work, we developed a novel group preference Bayesian collaborative filtering model called GBCF
for picking up a top-k probability ranking list for an individual miRNA or lncRNA based on the known miRNA-
lncRNA interaction network.

Results: To evaluate the effectiveness of GBCF, leave-one-out and k-fold cross validations as well as a series of
comparison experiments were carried out. GBCF achieved the values of area under ROC curve of 0.9193, 0.8354+/−
0.0079, 0.8615+/− 0.0078, and 0.8928+/− 0.0082 based on leave-one-out, 2-fold, 5-fold, and 10-fold cross validations
respectively, demonstrating its reliability and robustness.

Conclusions: GBCF could be used to select potential lncRNA targets of specific miRNAs and offer great insights for
further researches on ceRNA regulation network.

Keywords: miRNA-lncRNA interaction, ceRNA network, Expression profile, Collaborative filtering, Computational
prediction

Background
The advent of next-generation sequencing has opened up
new avenues to understand specific biomechanism from
genome wide biomolecular interactions. The essential role
of non-coding RNAs (ncRNAs) in biological process reveals
that the transcriptional landscape of humans and other or-
ganisms is far more complicated than previously thought
[1]. As the majority of transcripts expressed in mammals,

ncRNAs can measure from around 22 nucleotides up to
hundreds of kb. Specially, long non-coding RNA (lncRNA)
is a loosely classified group of RNA transcripts (> 200 nu-
cleotide bases) without apparent protein-coding function
and can be discovered in any branch of life [2]. Increasing
evidence has shown that lncRNAs can participate in various
cellular processes including mRNA splicing, protein trans-
lation, cell growth/death through influencing chromatin
modification, and cell differentiation and transcriptional
complex targeting. Even though more than 58,000 human
lncRNA genes have been identified, apart from few
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well-studied lncRNAs like XIST and HOTAIR, most of
them are still poorly characterized due to the dynamic and
complicated molecular mechanisms [3].
LncRNAs are involved in the pattern regulations of

expressed proteins by a specific mechanism comprising a
variety of biological interactions such as lncRNA-ncRNA,
lncRNA-mRNA and lncRNA-protein interactions [4]. There-
fore, the construction of inferred biological interaction net-
work mediated by lncRNAs should be desirable to uncover
the potential mechanisms and biological functions of
lncRNAs. LncRNA, as a main type of competing endogen-
ous RNAs (ceRNAs), can function as miRNA sponges hav-
ing a lower regulatory effect of miRNA on mRNAs, i.e.,
miRNAs have an important influence in the molecular
mechanisms of lncRNAs [1]. Previous works of human
lncRNA function annotation were mainly based on the ex-
pression level between lncRNAs and protein-coding genes in
diverse tissues [5, 6], but few functional annotations were ex-
plained according to the ceRNA network. Along with the
knowledge accumulation on miRNA function for the past
decade, miRNA-lncRNA interactions can provide new in-
sights into understanding the complex functions of lncRNA.
The important influence of miRNA on lncRNA func-

tion, and the converse, is now gaining widespread atten-
tion [3, 7]. Numerous of studies have demonstrated that
both miRNA and lncRNA get involved in pathological
processes including diverse human disorders and diseases,
and the regulation role of miRNA-lncRNA interactions in
some human complex diseases have been systematically
investigated [8]. For example, the miRNA-lncRNA regula-
tory networks in vascular diseases and cancers (e.g. gastric
cancer and prostate cancer) have been well constructed
and studied in [9–11]. The detailed understanding of the
effects of miRNA-lncRNA-mediated interactions in patho-
physiology could pave the way for drug toxicology, bio-
marker discovery and therapeutic approaches. However,
the current knowledge of miRNA-lncRNA interactions
identified by biological experiments is still limited.
In recent years, computational models have been exten-

sively used for predicting bi-partite relationships (e.g.
drug-target interactions [12–15], lncRNA-disease associa-
tions [16] and microbe-disease associations [17–19]). As an
indispensable step to identify miRNA-target interactions, it
is a common practice to develop computational prediction
for refining the candidate list before further experimental
validation [20, 21]. However, most existing miRNA-target
inference algorithms were initially proposed for mRNA tar-
gets, and the inferences are therefore based on the statis-
tical rules and nature of miRNA-mRNA interactions [22].
The common rules on which most existing miRNA-target
prediction tools are based mainly come from four aspects
conservation, seed match, free energy, and site accessibility,
but some of them could even contradict with the nature of
miRNA-lncRNA interactions [3]. For example, based on

the observation that the miRNA seed regions of mRNA
tend to have apparently higher conservation than the
non-seed ones. A few previously proposed prediction ap-
proaches for miRNA-target interactions conduct the con-
servation analysis primarily concentrating on the regions in
the 3’ UTR and the 5’ UTR of mRNA. However, lncRNAs
have been found to demonstrate distinctly lower sequence
conservation and faster evolution than mRNAs [3]. More-
over, the statistic rules on which the strategy of seed match
is based are firstly arising from miRNA-mRNA interactions,
and therefore not suitable for miRNA-lncRNA interaction
prediction. There have been a number of computational
prediction models proposed for lncRNA-RNA interaction
via the simple calculation of the free energy of the potential
binding sites [3]. For instance, LncTar was proposed to cal-
culate the free energy served as the measurement of the
stability of complementarity between lncRNAs and target
RNAs [22]. Such sequence-based inference methods
achieve successes in various applications, however they
could be easily plagued by the high false positive rates [20].
In addition, there exist a few inherent characteristics distin-
guishing between lncRNAs and mRNAs. For example, un-
like mRNAs, lncRNAs are more enriched and lowlier
expressed in the nucleus. They are also shorter with fewer
exons and have higher specificity of tissue distribution as
well as reduced stability [3]. Most previously proposed
miRNA-target inference tools fail to incorporate recent
achievements of the understanding of miRNA-lncRNA
interaction and could therefore not be effective for
miRNA-lncRNA interaction inference.
Recent studies have provided insights into modeling the

crosstalk among diverse types of ceRNAs including miR-
NAs and lncRNAs within the cell [23]. On top of the
well-known factors such as miRNA response element
(MRE) accessibility related to RNA-binding protein or sec-
ondary structure as well as subcellular localization, the ex-
pression profiling of lncRNA and miRNA is an important
way to decipher the principles of ceRNA regulation net-
works [24]. Previous researches including small RNA
(sRNA) regulation [25], protein-protein interactions [26–
28], and miRNA-target threshold effects [29] suggest that
miRNAs and lncRNAs serve as two key components of
ceRNA network, and a titration mechanism helps to or-
chestrate their interaction with each other by forming
threshold levels of effect. This titration mechanism is based
on the basic postulate that limited number of available
miRNA could contribute to the inactiveness of lncRNA,
conversely the abundant miRNA molecules could result in
the completely repressed lncRNA, so the optimal
miRNA-lncRNA cross-regulation emerges and sustains at a
near-equimolar equilibrium [24]. In other words, RNA dos-
age for cross-regulation in ceRNA network is particularly
critical. It is worth to note that a kinetic mathematical
model [24] under such considerations was proposed for the
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inference of ceRNA interactions mediated via phosphatase
and tensin homolog (PTEN). However, all the factors used
by this model, such as degradation and transcription rates
for association and dissociation of miRNA/ceRNAs com-
plexes [24], are too difficult to be surveyed for most of miR-
NAs and lncRNAs. Therefore, it is not feasible to
extensively use this kinetic model for the inference of
miRNA-lncRNA interactions. Increasing evidences [30, 31]
demonstrated that lncRNAs are also presumably
co-regulated in expression networks, and multiple lncRNAs
could involve in the biological regulation processes by syn-
ergistically interacting particular miRNA clusters. Accord-
ingly, the expression pattern of lncRNA-lncRNA synergistic
network has recently attracted increasing attention.
In this work, we develop a group-preference Bayesian

collaborative filtering model called GBCF to pick up a
top-k probability ranking list for an individual miRNA or
lncRNA based on the known miRNA-lncRNA interaction
network derived from lncRNASNP database. Since the
known miRNA-lncRNA interactions in the lncRNASNP
database are all positive, the negative samples are relatively
hard to be collected. This prediction task is actually a
semi-supervised one only treating the known interactions
as positive samples. The semi-supervised prediction task
can properly utilize enough side information beneficial for
the prediction performance. Particularly, we first propose
the local scoring scheme to alleviate the prediction prefer-
ence caused by the disproportion of the known
miRNA-lncRNA interaction network. In this scoring sys-
tem, we implemented both leave-one-out cross validation
(LOOCV) and k-fold cross validation to evaluate the pre-
diction performance of the proposed model. The experi-
mental result demonstrated that GBCF obtain the reliable
prediction performance and achieve the higher AUC (area
under ROC curve) of 0.9193 compared with a few repre-
sentative classical classifiers and the state-of-the-art model
EPLMI [32]. GBCF obtained the average AUCs of 0.8354
+/− 0.0079, 0.8615+/− 0.0078 and 0.8928+/− 0.0082 in the
frameworks of 2-fold, 5-fold and 10-fold cross validations,
respectively. To better describe the similarities among
miRNAs and lncRNAs, we leveraged three diverse types
of biological information, i.e., expression profile,
coding-non-coding co-expression networks and sequence
data. Using a series of 5-fold cross validations and correl-
ation analysis of RNA clusters, the experimental compari-
son demonstrated that the miRNA and lncRNA similarity
should be measured by the biological function-based and
expression profile-based correlations, respectively.

Results
The experiment result in cross validations
Using LOOCV, we compared GBCF with a few classical
classifiers including [33–36] as well as the state-of-the-art
model EPLMI [30] as baseline. Note that, all the compared

models were built on the same information source as
GBCF. EPLMI is a two-way diffusion model first proposed
for the prediction of large-scale miRNA-lncRNA interac-
tions. Unlike GBCF, EPLMI adopts a global scoring
scheme to rank the most potential novel miRNA-lncRNA
interactions among all unobserved samples. We also tried
to explore the potential of these classical classifiers from
different perspectives. For example, Katz can be catego-
rized as the network-based measurement method by cal-
culating the nodes’ similarity in a bipartite graph.
Singular-value decomposition (SVD) is used to decompose
the known interaction network into three relatively smaller
matrices for construction of probability matrix. Latent fac-
tor model (LFM) aims to explain observed associations in
terms of two latent factors (also called hidden variables),
which are iteratively optimized for matrix product as prob-
ability matrix. Since GBCF model adopts a specific
group-preference Bayesian collaborative filtering (CF)
technique, we also compared it with typical lncRNA-based
and miRNA-based CF models, respectively.
The performance comparison via LOOCV is shown in

Fig. 1. Among these models, GBCF achieves the best pre-
diction performance with the highest AUC value of
0.9193. The miRNA-based CF, lncRNA-based CF, EPLMI,
SVD-based model and basic LFM obtain the AUC values
of 0.9089, 0.8880, 0,8847, 0.8402 and 0.8680 respectively.
It is noteworthy that the CF-based models seems to per-
form better than others do. This phenomenon could be at-
tributed to their capability of automatic collecting
extrinsic preferences from other RNAs. Although EPLMI
model still maintain reasonable prediction accuracy, the
local ranking scheme limit its performance to a certain ex-
tent. GBCF is developed from the previous approach of
the recommended system, it is more efficient to deal with
the sparse dataset than EPLMI. In a word, the LOOCV re-
sults demonstrate the reliability of GBCF.
Insufficient training samples would greatly affect the

prediction accuracy (sparsity = 2.49%). To evaluate the
performance of GBCF in terms of diverse sparsity,
2-fold, 5-fold and 10-fold cross validations were con-
ducted, respectively. As shown in Table 1, GBCF model
achieves the average AUCs of 0.8354+/− 0.0079 when
the number of training samples drops to a half. In
addition, the result suggests that GBCF model shows a
strong robustness to different level of training data spar-
sities. We also used 5-fold cross validation to assess the
performance of GBCF with lncRNA-based group prefer-
ence instead. The average AUCs of 0.8612+/− 0.0080 ob-
tained suggest that miRNA- and lncRNA- based group
preferences contribute equally to the prediction per-
formance of GBCF. Considering the complex competi-
tion mechanisms in ceRNA network and the lack of
investigation into the competition patterns for sequester-
ing miRNAs, we provided the top-50 ranking lists of
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candidate target lncRNAs for each type of miRNA with
the corresponding prediction scores by using
miRNA-based group preference, respectively (publicly
available in Additional file 1). It is anticipated that these
prediction results could shed light on deciphering the
clues of ceRNA regulation networks.

The performance evaluation with different types of RNA
similarity
In this subsection, we explore the effective measurement of
different RNA similarities, i.e. sequence-based similarity,
expression profile-based similarity and biological
function-based similarity derived from RNA-target gene in-
teractions. To evaluate the prediction performance with dif-
ferent types of RNA similarity, 5-fold cross validation was
used in this comparison experiments (see Table 2). When
fairly evaluating the usefulness of similarity for one type of
RNA, another type of RNA was assigned the best similarity,
i.e., the expression profile-based similarity for lncRNA and
biological function-based similarity for miRNA.
With regard to lncRNA, GBCF model yields the highest

average AUCs 0.8615+/− 0.0078 using the expression
profile-based similarity. In addition, GBCF obtains lower
average AUCs of 0.8084+/− 0.0080 and 0.8219+/− 0.0081
based on the sequence- and biological function-based
similarities, respectively. Since there is a large difference in
the lengths of the lncRNAs, we concentrated the investi-
gation in the range 73 to 59,462 bp. Pairwise global align-
ment tends to fail the measurement of sequence

similarities among lncRNAs via their nucleotide bases.
Moreover, unlike miRNAs, lncRNAs could play different
biological roles in ceRNA network. For example, miRNAs
tend to sequestered via small-binding sites in lncRNAs.
The known annotations based on the coding-non-coding
co-expression network could not comprehensively de-
scribe how biologically similar the regulation mechanisms
of two lncRNAs could be. In a word, this result demon-
strates that expression profiling could be a promising
marker to characterize lncRNA similarity.
As for miRNA similarities, the comparison results dem-

onstrate that they make different contribution to the per-
formance of GBCF. The result in Table 2 shows that
miRNA sequence-, expression profile- and biological
function-based similarities yield average AUCs of 0.7729
+/− 0.0078, 0.8382+/− 0.0081 and 0.8615+/− 0.0078, re-
spectively. The AA index as a local similarity-based method
could better explore the implicit topological information
among miRNAs from the network of miRNA-target gene

Fig. 1 - The comparison results between GBCF and four classical classifiers as well as the competitor EPLMI model in terms of LOOCV

Table 1 The experiment result of k-fold cross validation

K-fold 2 5 10

Average AUCs 0.8354+/−0.0079 0.8615+/−0.0078 0.8928+/− 0.0082

Table 2 To evaluate the usefulness of diverse types of RNA
similarity, 5-fold cross validation was implemented on GBCF
model

Types of similarity Average AUCs

lncRNA

Sequence-based 0.8084+/−0.0080

Expression profile-based 0.8615+/−0.0078

Biological function-based 0.8219+/−0.0081

miRNA

Sequence-based 0.7729+/−0.0078

Expression profile-based 0.8382+/−0.0081

Biological function-based 0.8615+/−0.0078
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interactions. Therefore, the biological function-based simi-
larity with the best average AUCs was chosen as the
miRNA similarity measurement. We also investigated the
prediction performance of GBCF without any similarity but
known miRNA-lncRNA interactions as a baseline test. In
this case, GBCF achieves average AUCs of 0.6840+/−
0.0116 also in 5-fold cross validation.

Similarity analysis of miRNA and lncRNA clusters between
observed and unobserved miRNA-lncRNA interactions
To further analyze the correlation of utilized RNA similar-
ities between observed and unobserved miRNA-lncRNA
interactions and evaluate the effectiveness of GBCF, we
compared the differences in miRNA/lncRNA clusters
interacting with single lncRNA/miRNA based on the
known miRNA-lncRNA interaction network. For example,
given the miRNA clusters interacting more than two
lncRNAs, lncRNAs were divided into two groups: (i) the
observed miRNA group and (ii) the unobserved miRNA
group depending on whether they were found to interact
with the miRNA. Then we used the average Pearson

correlation coefficient (PCC) to measure the difference for
each of those two lncRNA group. The average PCC of the
unobserved group for each lncRNA served as the baseline
of the comparison. LncRNA clusters also undertook the
same procedure. To give a clear description, the
function-based similarity of miRNA and expression
profile-based similarity of both miRNA and lncRNA are
representatively illustrated in Fig. 2. The comparison re-
sult is shown in Table 3. The remarkable samples with
average PCC significantly higher or lower than the base-
line (i.e., 0.3 times of the standard deviations of the ob-
served RNA groups) are highlighted. There were 42.3%
of lncRNA expression profiles unavailable in our data-
set, and the investigated miRNAs had more opportun-
ity to interact with lncRNAs (approximately 19 types
of lncRNA for a miRNA). Under this condition, we
analyzed the correlation of lncRNA clusters interact-
ing with single miRNA based on expression profile
and focused on the 206 well-studied miRNAs that
have been identified to interact with more than 5
lncRNAs for more reliable conclusions.

Fig. 2 - Similarity correlation analysis
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With respect to miRNA, we found that most miRNA
clusters sharing more similarity (average PCC higher than
baselines) tend to interact with single lncRNA except for
the sequence-based similarity, which is easily plagued by
the relatively high false positive rates. Those RNAs which
cannot be mapped into corresponding datasets could be
considered as invalid. After excluding the invalid miRNA
IDs, 72.29% (407/563) of miRNA clusters were found to
be higher than the baselines based on the biological
function-based similarity derived from the miRNA-target
gene interaction network. For those 563 types of lncRNAs,
the observed miRNA groups yield an average PCC of
0.2787, which is significantly higher than the average base-
line PCC of 0.0994. This result suggests that the miRNAs
interacting with a cluster of common target genes could
jointly target common biological processes and therefore
share more functional similarity. Apart from the miRNA
biological function-based similarity, it is interesting to
note that most correlations of expression profile-based
similarity tend to approach the baseline. In a word, those
miRNA clusters interacting with lncRNAs are likely to
have similar expression patterns. Based on the miRNA ex-
pression profile-based similarity, the average PCC of
83.50% (435/521) of the miRNA clusters are higher than
the baselines (0.4551) achieving the value of 0.4947. This
result demonstrates that, although containing a number of
invalid miRNA IDs (16.4%), miRNA expression
profile-based similarity indeed can reflect the regulation
mechanisms in miRNA-lncRNA interaction network and
therefore deserves more future investigation. We can see
that the predictive power of GBCF is not be affected for
RNA with low similarity to known miRNAs/lncRNAs. As
shown in Fig. 2a, the average PCCs of the baselines are
0.4551 and 0.0994 based on the miRNA expression
profile-based similarity and miRNA biological
function-based similarity, respectively. Obviously, the
value of the expression profile-based similarity is signifi-
cantly higher than the biological function-based. However,
GBCF achieves better prediction performance using the
miRNA biological function-based similarity. Therefore,
the low RNA similarity to known miRNAs/lncRNAs dose
not interfere with the predictive power of GBCF.

As for lncRNA expression profile-based similarities,
after excluding the invalid lncRNA IDs, 59.22% (122/
206) of lncRNA clusters were shown to share more simi-
larity on the observed miRNA-lncRNA network. For
those 206 well-studied miRNAs, the average PCC of the
observed lncRNA clusters is 0.5476, which is slightly
higher than the average baseline PCC of 0.5378. Note
that approximately 71.3% (87/122) remarkable samples
obtain the average PCC higher than the baselines and
above the threshold range. The result also reflects the
fact that expression profiling could be a promising fea-
ture to measure the correlation of lncRNA clusters with
their miRNA-mediated principles of regulation. 22 types
of lncRNA expression level we collected could not be
sufficient to effectively detect the expression patterns of
an individual lncRNA. Certainly, there is a huge poten-
tial for lncRNA expression profile-based similarity.
Finally, we evaluated the other two types of lncRNA

similarities in the same way. As a result, 56.13 and
89.36% of the lncRNAs have the average PCC higher
than the baselines. Sequence-based lncRNA similarity
cannot be used to differentiate the types of lncRNA.
Moreover, the common parts shared among lncRNAs
are only a small portion of their total lengths, so the
baselines of lncRNA sequence similarity are relatively
low. The pairwise global alignment fails to precisely
measure the sequence similarities among lncRNAs via
their nucleotide bases.

Discussions
The study leads to the following findings. First, the simi-
larities among miRNAs/lncRNAs derived from expression
profile and coding-non-coding co-expression networks
are effective to be representative measurements. Second,
group preference Bayesian collaborative filtering tech-
nique shows a strong capability to synergistically incorpor-
ate extrinsically implicit topological information in ceRNA
regulation network. Finally, the local scoring system pro-
posed in this domain is useful to alleviate the prediction
preference brought by the disproportionate learning sam-
ples in the known miRNA-lncRNA interaction network.
However, we also noticed that a few limitations indeed af-
fected the prediction performance of GBCF. For example,
it is insufficient to collect the lncRNA expression levels in
16 different human tissues and 8 cell lines. More remark-
able features should be gathered to improve the reliability
of lncRNA expression profile-based similarity measure-
ment. There are many parameters to tune, which means
that it is difficult to optimize the prediction performance
in short term.
Based on GBCF, we can carry out the further research

from two viewpoints. First, the indirect lncRNA-lncRNA
interactions in ceRNA network could be inferred. It has
been found that indirect lncRNA-lncRNA interactions in

Table 3 The data statistics of comparison results

miRNA

Similarity Function Expression Sequence

Invalid RNA 1.1% 16.4% 0

Higher than baselines 72.29% 83.50% 51.78%

lncRNA

Similarity Function Expression Sequence

Invalid RNA 66.2% 42.3% 1.3%

Higher than baselines 56.13% 59.22% 89.36%
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ceRNA network could be considered as the third tran-
scripts supporting the crosstalk between two ceRNAs.
As in the correlation analysis of lncRNA similarity be-
tween observed and unobserved miRNA-lncRNA inter-
actions, the lncRNA clusters interacting with single
miRNA with high scores tend to have frequently an in-
direct interaction. Second, GBCF can be used to meas-
ure different competitive status of how the lncRNAs are
competitive to sequester a certain type of miRNA. As
competing ceRNAs, target lncRNAs could coexist in
ceRNA network where the quantity and effect of their
MREs may not be consistent. In LOOCV and k-fold
cross validation, the known miRNA-lncRNA interactions
ranked in top list could play a more biologically signifi-
cant role in ceRNA interaction network than others. The
lncRNAs in such kind of interactions would have a pri-
ority to interact with miRNAs for maintenance of bio-
logical stability in ceRNA network. In other words, for
the known miRNA-lncRNA interactions ranked in top
list, the lncRNAs assigned with higher scores by GBCF
are likely to interact with miRNAs more competitively.

Conclusions
Enormous evidences focus on the miRNA-lncRNA inter-
actions to explore the potential regulation mechanisms in
ceRNA network. It is still insufficient to promote the de-
velopment of this domain given current knowledge and
data regarding to the observed miRNA-lncRNA interac-
tions. Little effort has been devoted to the large-scale pre-
diction of miRNA-lncRNA interactions except some
sequence-based prediction methods mainly focusing on
predicting target genes/mRNA for a miRNA. We came up
with three different measurements for RNA similarity
from three diverse types of biological information, namely
expression profile, coding-non-coding co-expression net-
works and sequence data, respectively. Through a series of
5-fold cross validation and correlation analysis of RNA
clusters in observed samples, the experimental results sug-
gest that (i) lncRNAs/miRNAs tend to collaboratively
interact with miRNAs/lncRNAs of similar expression pro-
files, and vice versa, and (ii) miRNAs interacting with a
cluster of common target genes tend to jointly target com-
mon lncRNAs. We utilized group preference Bayesian
collaborative filtering technique for a large-scale predic-
tion of miRNA-lncRNA interactions. LOOCV and 5-fold
cross validation were used to demonstrate the usefulness
of the proposed model through the comparison with a few
classical classifiers and the state-of-the-art model EPLMI.

Methods
Materials
Data used for construction of the known miRNA-lncRNA
interaction network were taken from the lncRNASNP data-
base (the February 2017 version), which is publicly available

at http://bioinfo.life.hust.edu.cn/lncRNASNP [37]. All cu-
rated records were confirmed via laboratory examination
with research literatures. Based on 108 CLIP-Seq datasets,
lncRNASNP provides 8091 pairwise interactions. After ex-
cluding the repetitive entries, we collected totally 5348 pairs
of interactions (denoted as Pml). These interactions involve
275 (denoted as nm) diverse types of miRNAs and 780 (de-
noted as nl) diverse types of lncRNAs.
To calculate the similarities among lncRNAs from dif-

ferent perspectives, three types of biological information
were gathered from various databases. First, the expres-
sion profile data and inferred functional annotations of
lncRNAs were accessible from the NONCODE database
(http://www.noncode.org/) [38],. We obtained the ex-
pression profiles for 450 of the lncRNAs and the func-
tional annotations for 264 of the lncRNAs after mapping
the NONCODE IDs into the names of the investigated
lncRNA. Second, the gathered expression profiles for
each type of lncRNAs with 22 attributes, respectively
representing the expression level of 16 different human
tissues and 8 cell lines. The putative functional annota-
tions for each lncRNA genes refer to the top-10 most
possible biological functions, which are inferred by
lnc-GFP method [39] based on a coding-non-coding
co-expression network. Finally, the sequence data of
each lncRNA were downloaded from LNCipedia data-
base (https://lncipedia.org/) [2].
Similarly, the three same types of biological informa-

tion were collected for measuring the similarities among
miRNAs. miRTarBase (http://miRTarBase.mbc.nctu.e-
du.tw) [40] curates a large number of miRNA and
multi-gene interactions. We successfully converted the
miRTarBase IDs into the names of 272 investigated miR-
NAs. microRNA.org database [41] provides the expres-
sion profile data of miRNAs, 230 of which were found
to be matched. The expression profile of each miRNA
has 172 attributes describing the expression levels of 172
various tissues and cell lines in human body. miRBase
database (http://www.mirbase.org/index.shtml) [42, 43]
offers us the sequence data of mature miRNAs.

The sequence-based similarity of RNAs
Based on the obtained lncRNA/miRNA sequence data,
the Needleman-Wunsch pairwise sequence alignment
was implemented to measure the sequence similarity of
lncRNAs and miRNAs by leveraging the package of pair-
wise2 in Biopython [44]. In this work, the identification
score, gap-open penalty and gap-open extending penalty
were set to 2, − 0.5 and less 0.1, respectively. It need to
note that, it is unnecessary to compare miRNA
sequence-based similarity and lncRNA sequence-based
similarity, since the sequence-based similarity is calcu-
lated among the same type of RNA and then normalized
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as a weight from 0 to 1. In this regard, it has no influ-
ence to the final prediction score.

The expression profile-based similarity of RNAs
The expression pattern could be an important ingredient for
RNA similarity measurement. Namely, the more biologically
possible lncRNAs/miRNAs could have the more consistent
expression levels in human tissues and cell lines. Therefore
we simply used PCC to calculate such kind of RNA similar-
ity based on the collected expression profiles as follow:

ES i; jð Þ ¼
PN

k¼1 eik−�eið Þ ejk−�e j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 eik−�eið Þ2PN

k¼1 ejk−�e j
� �2

q ð1Þ

where i and j refer to two same-type RNAs. eik repre-
sents the kth attribute of the expression profile of RNA
i. Parameter N is the number of attributes of the expres-
sion profiles (i.e. N = 22 for lncRNAs, and N = 172 for
miRNAs). The higher ES(i,j) is, RNAs i and j are more
similarly expressed in general.

The biological function-based similarity of RNAs
Based on the hypothesis that lncRNAs/miRNAs sharing
more similar regulation mechanisms and features tend to
have interactions with a cluster of target genes, we compute
such the correlation of how a pair of RNAs is functionally
similar based on the data of RNA-target gene interactions.
According to Cubero’s work [45], local similarity-based
methods have been extensively applied and shown a very
competitive prediction accuracy against more complex
approahces. To better exploit the implicit information from
the topological network structure, four typical methods
were chosen for the functional similarity measurement, i.e.
Common Neighbors (CN), the Adamic-Adar (AA) Index,
the Jaccard (JA) Index and the Salton (SA) Index [45].
Given two RNAs i and j within the same type, these four
methods can be described as follows:

CN i; jð Þ ¼ Γi∩Γ j

�
�

�
� ð2Þ

AA i; jð Þ ¼
X

z∈Γi∩Γ j

1
log Γzj j ð3Þ

JA i; jð Þ ¼ Γi∩Γ j

�
�

�
�

Γi∪Γ j

�
�

�
� ð4Þ

SA i; jð Þ ¼ Γi∩Γ j

�
�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γij j Γij jp ð5Þ

here the set of nodes (target genes) connected through an
edge to a RNA i is called the neighborhood of i and is de-
noted as Γi. After 5-fold cross validation, the AA Index
and the SA Index achieved the best prediction accuracy
for miRNAs and lncRNAs, respectively, and therefore
were respectively used as their functional similarity.

Group-based Bayesian collaborative filtering
computational model
Inspired by Pan’s work [46], especially the injection of
richer interactions via group preference, we explored a
novel computational model called GBCF for ceRNA inter-
action inference based on the lncRNA-lncRNA similarity
(denoted as Sl), miRNA-miRNA similarity (denoted as Sm)
and known miRNA-lncRNA interaction network (see
Fig. 3). Due to the absence of the negative miRNA-lncRNA
interactions, i.e., pairs of miRNA and lncRNA have been
experimentally confirmed having no interactions, the
prioritization for potential candidates is in the basis of
Bayesian inference by treating that the unobserved interac-
tions (i, j) are less likely to exist than the observed ones (i,
k). Here we use (i, k) ≻ (i, j) to denote that miRNA i is more
likely to have interactions with lncRNA k than lncRNA j.
The result of 5-fold cross validation suggests that Sl should
be expression profile-based while Sm should be replaced by
the biological function-based.
At the beginning of the prediction process of GBCF, Sl and

Sm are fed to the information source for the construction of
the latent feature vector U(lncRNA) and V(miRNA) as
initialization parameters, respectively, i.e. U ∈ℝ1 ∗nm,V ∈ℝ1 ∗

nl. To describe the method more clearly, in this case, we im-
pose the group preference on miRNA uniformly. In this way,
the group preference can be considered as an overall prefer-
ence score of a group of miRNAs on a lncRNA. For ex-
ample, given a group of miRNAs G and a lncRNA j, the
overall group preference score of G on j can be calculated
from individual preferences as ScoreG j ¼ 1

jGj
P

i∈GScoreij .

Mtr ¼ fmgnmm¼1 and Ltr ¼ flgnll¼1 denote the training sets of
miRNAs and lncRNAs, respectively. j∈Ltr

i means the
miRNA-lncRNA pair (i, j) is observed while k∈LtrnLtr

i

means (i, k) is not observed. Empirically, if j∈Ltr
i and k∈Ltrn

Ltr
i , the group pairwise preference can be estimated concep-

tually, ðG; jÞ≻ðG; kÞ where i∈G and G⊆Mtr
j . To precisely

learn the unified effect of individual preference and group
preference, we linearly combined them as follows:

G; jð Þ þ i; jð Þ≻ i; kð Þ or ScoreGij > Scoreik ð6Þ
where ScoreGij ¼ ρScoreG j þ ð1−ρÞScoreij , and ρ is a tra-
deoff parameter fusing such two kinds of preferences,
ranging from 0 to 1 (ρ=0.5 in this study). In this way, a
novel index called group Bayesian collaborative filtering
(GBCF) ranking for miRNA i is denoted as follows:

GBCF ið Þ ¼
Y

j∈Ltr
i

Y

k∈LtrLtr
i
Pr ScoreGij > Scoreik
� �

1− PrðScoreik > ScoreGij
� �

ð7Þ
Given two miRNAs i and t, the joint likelihood could

be simply approximated by the multiplication operation
like GBCF(i, t) ≈GBCF(i)GBCF(t). As such, the correl-
ation between i and t is introduced via the miRNA
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group G . Specifically, these two miRNA groups Gði; jÞ⊆
Mtr

j and Gðt; jÞ⊆Mtr
j may be overlapped, namely Gði; jÞ∩

Gðt; jÞ≠∅. The overall likelihood is estimated for all miR-
NAs and all lncRNAs as follows:

GBCF ¼
Y

i∈Mtr

Y

j∈Ltr
i

Y

k∈LtrLtr
i
Pr ScoreGij > Scoreik
� �

1− Pr Scoreik > ScoreGij
� �� �

ð8Þ

where G⊆Mtr
j . Based on the previous work [47], σð

ScoreGij−ScoreikÞ ¼ 1
1þ expð−ScoreGijþScoreik Þis used to approxi-

mate the probability PrðScoreGij > ScoreikÞ , and finally
have PrðScoreGij > ScoreikÞ½1− PrðScoreik > ScoreGijÞ�
¼ σ2ðScoreGij−ScoreikÞ . The objective function of GBCF
could be reached as follows:

min
Θ

−
1
2

lnGBCF þ 1
2
R Θð Þ ð9Þ

whereΘ = {U,V, bjϵℝ} is a set of model parameters to

be learned. RðΘÞ ¼ Q
i∈Mtr

Q
j∈Ltr

i

Q
k∈LtrLtr

i
½αm

P
t∈GkUtk2

þαlkV jk2 þ αlkVkk2 þ βlkbjk2 þ βlkbkk2� is the
regularization term to avoid overfitting, where αm, αl
and βl are regulation weights ranging from 0.001 to 0.1.
The objective function in Eq. (9) can be rewritten as:

f G; i; j; kð Þ ¼ − ln ScoreGij−Scoreik
� �

þ αm
2

X

t∈G Utk k2 þ αl
2

V j

�
�

�
�2 þ αl

2
Vkk k2

þ βl
2

bj

�
�

�
�2 þ βl

2
bkk k2

¼ ln 1þ exp −ScoreGij;ik
� �� �

þ αm
2

X

t∈G Utk k2 þ αl
2

V j

�
�

�
�2 þ αl

2
Vkk k2

þ βl
2

bj

�
�

�
�2 þ βl

2
bkk k2

ð10Þ

We also use the stochastic gradient descent (SGD) al-
gorithm to solve this optimization problem. The model
parameters Θ can be updated as follows:

Θ ¼ Θ−γ
∂ f G; i; j; kð Þ

∂Θ
ð11Þ

where γ denotes the learning rate and is set to 0.1 in this
study. The prediction score of miRNA i on lncRNA j is
computed as Scoreij ¼ Ui∙VT

j þ bj each time until the
model reaches the maximum number of iterations (de-
fault: 500). Using the 5-fold CV, we have tested the per-
formance difference of GBCF with increasing maximum
iteration (100, 300, 500 and 700). The result is tabulated
in Table 4. We can see that GBCF achieved the highest
average AUC of 0.8615+/− 0.0078 with 500 iterations.
Running 700 iterations, the proposed model suffers from
over-fitting and performance degradation. As such, the

Fig. 3 - The flowchart of GBCF
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maximum iteration is empirically set to 500 by default.
Note that a subset of miRNAs is randomly sampled as a
miRNA group G before carrying out the SGD algorithm.
To further enhance the prediction accuracy, for an unob-
served pair miRNA i and lncRNA j, we aggregate Scoreij
with the mean weight of Sm(i

′) and Sl(j
′), where i0∈Mtr

j

and j0∈Ltr
i as follows.

Scoreijþ ¼ δm
i0j j

X
i0∈Mtr

j
Sm i; i0ð Þ þ δl

j0j j
X

j0∈Ltr
i
Sl j; j0ð Þ

ð12Þ
where parameters δm and δl regulate the tradeoff of Sm
and Sl respectively (δm=δl=1). The final Scoreij represents
the existence probability of the unobserved miRNA-
lncRNA pair. The pseudo-code of the proposed model is
described in Algorithm 1. The model of GBCF is com-
putationally efficient. The complexity of updating the
objective function is OðjGjdÞ , and the total time com-
plexity of GBCF is OðTnjGjdÞ, where T is the maximum
iteration, n is the number of miRNAs, jGj is the size of
miRNA group and d is the total dimension number of
latent feature vectors U and V.

Additional file

Additional file 1: The top-50 ranking lists of candidate target lncRNAs
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