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Abstract: We report the demonstration of a novel in-fiber spatially integrated Michelson 
interferometer based on weakly coupled multicore fiber (MCF) for vibration sensing. The 
compact interferometer is constructed by using two separate cores of the MCF, where the 
fiber end is cleaved in order to generate strong Fresnel reflection, and independent light 
coupling between the cores of MCF and the single mode fibers (SMFs) is enabled by the fan-
in coupler. Vibration gives rise to differential strain variation between cores which results in 
the modification of phase difference of the interferometer. A narrow linewidth laser is 
employed, in order to interrogate the phase change induced reflection power variation. 
Vibration event can be identified and the vibration frequency can be retrieved by processing 
the measured reflection power with fast Fourier transform (FFT). Broad vibration frequency 
response range up to 12 kHz (limited by the cut-off frequency of the voltage driver of the 
vibration source) has been achieved. Performance of the sensor has been shown to be 
independent of the selection of different core pairs, where the MCF is wound to a 
piezoelectric transducer (PZT). The proposed in-fiber integrated spatial interferometer does 
not require any special processing of the fiber (e.g., tapering, splicing, and so forth). The 
unique sensor structure provides some extraordinary merits, including ultra-compact size, 
high mechanical strength, high sensitivity and temperature insensitivity. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Vibration detection is a widely used diagnosis and/or assessment method in many application 
fields, such as structure health monitoring, seismic monitoring and security monitoring. It 
helps to predict the potential threat of structural failure through real-time monitoring the 
characteristic frequency of vibration of the structure. By monitoring the underground 
vibration, the in-field seismic wave measurement provides useful information for oil and gas 
exploration, as well as for early prediction of earthquakes. In addition, it has also been used 
for security monitoring by extracting the vibration information on the ground or walls. The 
traditional piezoelectric vibration sensors suffer from a number of drawbacks, including 
sensitive to electromagnetic fields, not adaptable for harsh environments (e.g. high 
temperature, corrosive environment, etc.), difficult to carry out multiplexing. Optical fiber 
vibration sensor (OFVS) has shown great potential in these application fields, and it has 
undergone a rapid development in the past two decades, owning to its unique advantages, 
including intrinsic electrical passivity, immunity to electromagnetic interference, chemical 
resistance, light weight, small size and remote access ability. So far, various configurations of 
OFVS have been developed. One of the most widely used schemes is the tapered fiber based 
vibration sensors [1–4], where either the tapered fiber is used as the sensing arm of the Mach–
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Zehnder interferometers or the microbending loss of the tapered fiber is utilized to detect 
vibration. However, the tapered fibers are fragile, which results in poor mechanical strength 
of the sensor head. Fiber Bragg gratings have also been extensively used for vibration sensing 
[5–8]. It normally requires a wavelength scanning light source to demodulate the Bragg 
reflection wavelength, so the detectable frequency range is usually quite limited. In addition, 
modal interferometers which are fabricated by splicing different kinds of fibers have also 
been demonstrated [9–12]. However, the concern is that this kind of sensors has bad 
mechanical strength due to splicing. 

In this work, we propose and experimentally demonstrate a novel in-fiber spatially 
integrated Michelson interferometer (MI) by employing weakly coupled multicore fiber and a 
fan-in coupler, where the fiber end is cleaved to generate sufficient Fresnel reflection, and 
two separate spatial cores of the MCF is employed to construct the single fiber embedded MI 
configuration. The proposed compact MI has been used for vibration sensing, and broad 
vibration frequency response range up to 12 kHz (limited by the cut-off frequency of the 
voltage driver of the PZT) has been achieved. The vibration responses of MIs constructed 
using different core pairs have been experimentally compared. The results show that the 
selection of fiber core pairs has no effect on the determination of vibration frequency. Thanks 
to the unique in-fiber integrated spatial interferometer configuration with independent light 
coupling enabled by the fan-in coupler, the proposed sensor does not require any special 
processing of the fiber (e.g. tapering, splicing, etc.). This gives it the advantages of compact 
size, high mechanical strength, high sensitivity and temperature-insensitivity. 

2. Working principle of in-fiber spatially integrated MI vibration sensor using 
MCF 

Figure 1 shows the cross sectional view of the MCF (YOFC, China) used in our experiments. 
It contains seven cores with the outer six cores arranged hexagonally. The cladding diameter 
of the MCF is 150 μm and the core-core pitch is 42 μm. The cores are surrounded by deep 
trench in order to suppress crosstalk, where −45dB/100km crosstalk between adjacent cores 
has been achieved [13]. 

 

Fig. 1. Cross sectional view of the multi-core fiber used in the experiment. 

In the proposed MCF based spatially integrated Michelson interferometer, sufficient 
Fresnel reflection is enabled by cleaving the fiber end, and two independent cores of the MCF 
constitute the arms of the MI. The output electric fields of light from the two cores are given 
by 1 1( ) exp[ ( ( ))]E t j t tω ϕ+  and 2 2( ) exp[ ( ( ))]E t j t tω ϕ+ , then the output reflection power 

( )I t  of the MI is governed by [14]: 

 
2 2

1 2 1 2( ) ( ) ( ) 2 ( ) ( ) cos( ( ))I t E t E t E t E t tϕ= + +   (1) 

where 1( )E t  and 2 ( )E t  are the amplitudes of electric fields of light in the two cores, ω  is the 

optical angular frequency, 1( )tϕ  and 2 ( )tϕ  are the optical phases of light, and ( )tϕ  is the 

optical phase difference that is given by: 
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where n  is the effective refractive index of the fiber core, l  is the length difference between 
the two arms, and λ  is the wavelength of the input light. 

Vibration induced displacement will lead to the change of curvature of the MCF. When 
the MCF is bent, the cores at off-center positions (i.e. the six outer cores) will be either 
stretched or compressed, as shown in Fig. 2. This will cause local tangential strain at the 
bending point, and the generated strain iε  in a specific core i  is angular position dependent, 

as given by [15]: 

 cos( )i b i

d

R
ε θ θ= − −  (3) 

where d  is the distance of core i  to the fiber center, R  is the bending radius, bθ  is the 

bending angle and iθ  is the angular position of core i  [15]. Specifically, as shown in Fig. 2, 

the cores on the outer side of the neutral plane will be elongated [e.g. core A in Fig. 2], while 
the cores on the inner side of the neutral plane will be compressed [e.g. core B in Fig. 2]. So if 
the curvature of the MCF changes, the length difference l  between the two cores of the MI 
will vary as well. Meanwhile the effective refractive index n  of the fiber cores will also 
change due to the bending induced tangential strain. As a result, the optical phase difference 

( )tϕ  between the two cores of the MI will be changed, and the interfered output of the MI 

will vary with vibration. Therefore, by monitoring the variation of output power of the MI 
over time, the vibration frequency can be obtained. 

 

Fig. 2. Schematic diagram of the bent MCF with a bending radius of R. Core A and Core B 
represent the elongated outer side core and the compressed inner side core, respectively. 

It must be pointed out that the other reported interferometric vibrations sensors that are 
fabricated by either splicing or tapering are essentially based on the principle of light 
interference between different optical modes (including super-modes) within a single optical 
path in the fiber [3,9–12]. However, different from previously reported interferometric 
vibrations sensors, the proposed MCF based in-fiber spatially integrated MI is fabricated by 
using two independent cores of a single fiber, where two completely separate optical paths are 
employed to construct the interferometer, and independent light coupling between the cores 
of MCF and the SMFs is enabled by the fan-in coupler. The vibration-sensitivity is essentially 
caused by the differential strains between the cores that result from the vibration induced 
structural deformation of the MCF. So the fundamental working principle of the proposed MI 
sensor is different from the other reported interferometric sensors, and the work presented in 
this paper reveals a novel approach to fabricate optical fiber interferometers based on 
spatially integrated configuration within a single fiber, which will find various applications in 
bending measurement, and many other parameters that are related to bending, such as 
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line in light blue is the sinusoidal fitting of the sampled waveform. The time-domain power 
signal is then processed by fast Fourier transform, and the retrieved frequency spectrum is 
presented in Fig. 4(c). The dominant peak in the figure appears at 7 kHz, which agrees well 
with the applied frequency value. In addition, 37 dB signal-to-noise ratio (SNR) has been 
achieved, which indicates that the proposed sensor possesses enough SNR budget to enable 
the measurement of higher vibration frequency. 

 

Fig. 4. (a) The measured time-domain power signal of the MI within 1 second when 7 kHz 
vibration is applied on the MCF; (b) zoom-in view of the optical power spectrum; (c) the 
retrieved frequency spectrum obtained by FFT. 

In order to further evaluate the performance of the proposed MI sensor for vibration 
sensing, experiments have been carried out by applying different vibration frequency to the 
PZT from 1 kHz to 12 kHz at 1 kHz interval. The load voltage of PZT is fixed at the same 
value when different vibration frequency is applied. The output time-domain power signals of 
the MI at different vibration frequencies are sampled and processed by FFT, respectively. The 
retrieved FFT spectra are shown in Fig. 5. The result verifies the excellent measurement 
accuracy of the proposed MI sensor in terms of the determination of vibration frequency. It 
also indicates that high SNR can be obtained by the sensor, even when the vibration 
frequency is very high (e.g. 12 kHz in the figure). In addition, it should be pointed out that the 
electric cut-off frequency of the high voltage driver of the PZT is less than 13 kHz, which 
determines the maximum available vibration frequency in the lab. Due to sufficient SNR 
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offered by the MCF spatially integrated MI configuration, it is believed that the proposed 
sensor is able to measure vibrations at much higher frequencies. 

 

Fig. 5. FFT spectra of the power signal measured by the MI vibration sensor when vibration is 
applied to the sensing fiber with vibration frequency from 1 kHz to 12 kHz at 1 kHz interval. 

In order to investigate the vibration response characteristics of the spatially integrated MI 
configurations using different core pairs, experiments have been conducted by selecting 
distinct combinations of two cores to construct the MIs, and then use them to measure 
vibration respectively. Due to the symmetrical distribution of cores of the MCF, we choose 
the core pairs with 60° angular offset (i.e. core 2 and core 7), 120° angular offset (i.e. core 2 
and core 6), 180° angular offset (i.e. core 2 and core 5), as well as the combination of one 
outer core and the center core (i.e. core 2 and core 1) in the experiment to investigate the 
dependence of performance on core pairs. The MIs that consist of different core pairs have 
been used to measure a 2 kHz vibration, respectively. In the experiment, the output signals of 
the MIs are recorded and processed by FFT, respectively. The obtained FFT spectra are 
presented in Fig. 6. The SNRs of the FFT spectra are 23.1 dB, 23.49 dB, 22.75 dB and 20.4 
dB for core2-core1, core2-core5, core2-core6 and core2-core7, respectively. It is founded that 
all MIs using different core pairs are able to retrieve the correct vibration frequency, thus it 
indicates that the determination of vibration frequency of the MI sensor is independent of the 
selection of different core pairs. It is worth noting that the vibration amplitude is small here, 
since the amount of diameter change caused by PZT is actually very small in the experiments. 
However, owing to the fact that the strong Fresnel reflection brings in sufficient optical power 
to the photodetector, which ensures high SNR for the measured time-domain waveforms of 
the interferometer. Additionally, since about seven rings of MCF have been wound to the 
PZT, the vibration induced accumulated phase change is actually large for all the cores, and 
this has resulted in high fringe contrast of the measured interference waveforms. That’s why 
high SNRs have been obtained for all the measurements using different core pairs. 

 

Fig. 6. FFT spectra obtained by the MI sensors using different core pairs when 2 kHz vibration 
is applied to the MCF. The inset shows the zoom-in view of frequency spectrum around 2 kHz. 
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Since the MI structure is very sensitive to optical phase change, the wavelength drift 
induced phase fluctuation of the laser source might be a factor that degrades the performance 
of the proposed vibration sensor. In order to investigate the impact of laser phase noise on the 
reliability of system, experiment has been carried out for comparison by monitoring the 
output signal of the sensor when there is no vibration applied to the sensing fiber. Figure 7(a) 
shows the measured output power of the MI without vibration applied, where two separate 
measurements have been presented. It is found that due to random wavelength drift of the 
laser, the output power of the MI shows slight change over time when there is no vibration 
applied to the MCF. The frequency spectra of the two measurements are then obtained by 
calculating the FFT, as shown in Fig. 7(b). The result indicates that the laser phase fluctuation 
induced frequency noise of the sensor has very weak power spectrum amplitude, and the 
noise floor is less than −40 dB in the frequency region that is higher than 200 Hz. Therefore, 
the laser wavelength drift induced phase noise will not cause severely detrimental impact on 
the measurement. 

 

Fig. 7. (a) The measured time-domain power signals of the MI when there is no vibration 
applied to the sensing fiber; (b) the retrieved frequency spectra obtained by FFT. 

It is worth mentioning that the in-fiber spatially integrated MI configuration also provides 
another advantage of temperature insensitivity. Because the MCF used here is a homogeneous 
MCF, whose fiber cores are made from the same preform. So they have the same thermal 
expansion coefficients and thermo-optic coefficients. Since the two arms of the proposed MI 
are embedded in the same fiber cladding. So they will undergo the same environmental 
temperature change, and this will lead to identical phase change of light in the two arms. As a 
result, the sensor response is immune to the temperature variation, and this will help to 
enhance the reliability of the sensing system. In addition, it should be mentioned that linear 
response of the output power of MI on the vibration amplitude will be ensured if vibration 
induced phase change locates in the linear region of a monotonic interval of the cosine 
transmission spectrum of MI, as indicated by Eq. (1), then it is able to measure the vibration 
amplitude quantitatively by monitoring the output power of MI. Finally it should be pointed 
out that it is possible to achieve multiple-point detection by using the MCF. In the case of 
long sensing range, distributed fiber sensing technique such as phase-sensitive optical time-
domain reflectometer (φ-OTDR) can be implemented in one core of the MCF, so that φ-
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OTDR can be used to locate different vibration points along the entire fiber, meanwhile the 
vibration frequencies can be measured by the interferometer. 

4. Conclusions 

In conclusion, we have proposed and demonstrated a simple and efficient optical fiber 
vibration sensor based on in-fiber spatially integrated Michelson interferometer using weakly 
coupled MCF. Vibration sensing with high sensitivity, high SNR and large frequency 
response range up to 12 kHz has been achieved, which is much higher than the values that are 
measured by the sensors that are made of strongly coupled MCF [10,11]. The dependence of 
MI performance on the selection of core pairs has been experimentally compared, and it turns 
out that MIs constructed using any two cores are able to retrieve the correct vibration 
frequency in the case of small vibration amplitude. Thanks to the unique structure of multiple 
separate cores embedded in the MCF, the proposed in-fiber integrated MI configuration 
possesses the advantages of temperature-insensitivity. Moreover, it does not need any special 
processing of the sensing fiber (e.g., tapering, splicing, etc.), therefore it possesses the 
advantages of compact and high mechanical strength. These advantages make the proposed 
fiber sensor more applicable in field installation than other alternative proposals. So it is 
believed that it will find many applications in vibration measurement. 
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