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ABSTRACT As an increasing number of big data processing platforms like Hadoop, Spark, and Storm
appear and normally share the resources in the data center, it has been important and challenging to
schedule various jobs from these platforms onto the underlying data center resources such that the overall
job completion time is minimized. To solve the problem, the existing work either focus on the task-level
scheduling techniques, such as Quincy and delay scheduling, or focus on the network flow scheduling
techniques, such as D3 and preemptive distributed quick. These works deal with the scheduling of tasks and
network flows separately and cannot achieve optimal performance. The reason is that the task scheduling
without regard of the available network bandwidths may generate the task placement that causes serious
network congestions and thus leads to long data transmission time. In this paper, we propose the joint
scheduling technique by coordinating the task placement and the scheduling of network flows arising from
these tasks.We develop a software-defined network (SDN)-based online scheduling frameworkwhich selects
the task placement based on the available bandwidth on the SDN switches and at meanwhile optimally
allocates the bandwidth to each data flow. Comprehensive trace-driven simulations show that the joint
scheduling technique can take full use of the network bandwidth and thus reduce the job completion time by
55% on average compared with the benchmark methods.

INDEX TERMS Task scheduling, flow scheduling, data centers, software defined networks.

I. INTRODUCTION
Big data compute clusters running thousands of servers in the
data center have become increasingly common over the past
years. Many parallel data processing frameworks from the
industry and academic organizations such as Hadoop [20],
Dryad [21], Spark [22], Storm [23] and so on appear and are
deployed on the clusters. The platforms process massive data
and runs tens of thousands of jobs every day. Since the jobs
share and compete for the data center resources, it is impor-
tant to effectively schedule the jobs from the platforms to the
underlying data center resources such that the job completion
time is minimized.

Many job scheduling techniques have been proposed to
solve the problem. Quincy [7] and Delay Scheduling [5]
try to schedule the tasks close to the input data, aiming
to increase the data locality while guaranteeing the basic

fairness between the jobs. Due to the unbalanced distribu-
tion of input data across the server, data locality means
that the tasks could be executed with unbalanced workloads
on the servers which would result in long waiting time
of tasks and low server utilization. To address the issue,
Venkataraman et al. [8] develop the data-aware scheduling
technique. The technique schedules the task to the server
which minimizes the time it takes to transfer the input data.
It reduces the job completion time through achieving optimal
trade-off between the data locality and load balancing among
the servers.

Although existing job scheduling techniques [3], [5],
[7]–[10], [16] make sustainable efforts to improve the job
completion time, they still have limitation. Since the job are
often composed of a large number of tasks which have data
dependence between each other, the job completion time is
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FIGURE 1. Example to motivate the joint scheduling of tasks and data transmission.

decided by the task execution time on the servers and as well
the data transmission time over the data center networks. The
job scheduling technique should guarantee that the servers
can quickly process the tasks and at meanwhile the data flows
arising from these tasks are transferred in the network as fast
as possible [2], [4], [26]. However, the existing techniques
mainly focus on the task level scheduling without regard of
the dynamic network bandwidth, so they may generate the
task placement that causes serious network congestions and
thus leads to long data transmission time.

In this paper, we study the joint scheduling of the tasks
and the network flows arising from these tasks. We design
a Software Defined Network (SDN) based framework that
coordinates the placement of tasks and the scheduling of
flows by using the centralized SDN controller, and the online
scheduling algorithm. The algorithm is triggered by the task
completion events and flow completion events. It acquires the
available bandwidths on the SDN switches and then assign
the task to the server that can execute it at the earliest time.
At meanwhile the algorithm adopts two important principles,
i.e., to transmit As Early As Possible (AEAP) and As Fast As
Possible (AFAP), to take full use of the bandwidth resources
to speed up the job execution.

We conduct comprehensive simulations based on the
realistic Facebook workloads over two weeks in 2009 to
evaluate the online scheduling solution. We compare the joint
scheduling technique with a set of 4 benchmark methods
which separately schedule the tasks and network flows at
different layers. We select the Delay Scheduling [5] and Het-
erogeneous Earliest Finish Time (HEFT) [6] as task schedul-
ing algorithms in the benchmarks, and TCP and Preemptive
Distributed Quick (PDQ) [14] as network flow scheduling
algorithms. The results show that the joint techniques have
near 2X better performance than the benchmark methods in
terms of the average job completion time. We summarize the
contributions in this paper as follows.
• To the best of our knowledge, this work is the first one
to model and formulate the joint scheduling of tasks
and network flows in data centers. We show that the
problem is novel and distinguished from the previous

job scheduling problems that focus on the task-level
scheduling without concerning on the network resources
and congestions.

• We develop a SDN based framework to coordinate the
tasks scheduling and network bandwidth allocation, and
further design the corresponding online scheduling algo-
rithmwhich is triggered by the task completion and flow
completion messages.

• We evaluate the online scheduling algorithm using real-
istic workload traces at Facebook, and compare it with
four benchmark methods through extensive simulations.
The results show the algorithm significantly outper-
forms the benchmark methods in the average job com-
pletion time.

II. MOTIVATION EXAMPLE
Fig.1 shows a simple example to motivate why we need to
jointly consider the scheduling of data transmission in task
scheduling. Suppose we schedule a job onto three identical
machines. The three machines are connected through one
switch, which is shown in Fig.1(b). Fig.1(a) shows the task
graph for the job, where the node represents the task and
the edge represents the data dependence between the tasks.
The label of each node denotes the execution time of the
task on the machines. The label on the edge denotes the data
transmission time in the networks if the two connective tasks
of the edge are not executed on the samemachine.We assume
the data transmission time labeled in the graph is calculated
without network congestions. Now we want to schedule the
tasks onto the machines such that the completion time of the
job is minimized. Assume that the data transmission time of
each edge is static, whichmeans it does not change depending
on the traffic in the networks, then we can easily obtain the
optimal task scheduling shown in Fig.1(c). The completion
time under the optimal scheduling is tc = 7.

From the scheduling policy in Fig.1(c), we found the
data flow a → c and data flow a → d occurs con-
currently in the networks. Both data flows go through the
same switch and compete for the bandwidth resources on the
switch. In this situation, we call network congestion happens.
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TABLE 1. Mathematical notations in this paper.

The transmission time of both flows would not achieve the
ideal value labeled in the task graph. Assuming the fair shar-
ing policy for the bandwidth, which has been used in most
existing networks, the practical transmission time of both
flows are doubled. The completion time under the ‘optimal’
scheduling in practical networks is increased to tc = 8,
which is shown in Fig.1(d). Fig.1(f) shows a better solution
through the scheduling of data transmissions a → c and
a→ d . We begin the data transmission a→ d until the data
transmission a → c is finished. The start time of task ‘c’ is
one time unit earlier, and the job completion time is reduced
to tc = 7.

Can we develop the task scheduling to avoid the conges-
tion, while achieving the original minimum completion time
tc = 7? Unfortunately, this may not always be realized.
Fig.1(e) shows the task scheduling to avoid the congestion,
where tc = 8. In this example, we found that the minimum
completion time of all the task scheduling with no congestion
is tc = 8. Therefore, only by scheduling the tasks in networks
could not achieve the minimum completion time. We need to
jointly consider the scheduling of underlying data transmis-
sions.

III. SYSTEM MODEL AND PROBLEM STATEMENT
At first, we model the jobs to be scheduled. We consider
a slotted time period, which is divided into T slots. Each
time slot is indexed by τ , where 0 ≤ τ < T . At each
time slot, several jobs arrive at the DCN. Assume the total
number of jobs arriving at the system is N during the whole
time period. We use i to index the jobs, where 0 ≤ i < N .
Each job is composed of a set of dependent tasks. Normally
we use a Directed Acyclic Graph (DAG) Gi to represent the
job i, in which the node represents the task, and the directed
edge indicates the precedence among the tasks. Suppose the
number of tasks of job i is ni. We have Gi = {Vi, Ei}, where
Vi = {j|0 ≤ j < ni − 1} denotes the set of tasks of job i,
and Ei = {(u, v)|u, v ∈ Vi} denotes the set of edges. Let Ci,j

denote the workload of j-th task in job i, which is measured
by time units/slots. Di,u,v denotes the weight of edge (u, v) in
job i, which represents the data transmission amount between
the two connective tasks.

Next we describe the structures and resources of Data Cen-
ter Networks (DCNs). We consider a multi-rooted tree topol-
ogy (e.g., Fig.2), which has been widely adopted in today’s
DCNs. In the topology, the servers are interconnected through
three layers of switches, i.e., edge switches, aggregation
switches and core switches, to overcome limitations in port
densities from commercial switches. Meanwhile, the topol-
ogy leverages a large number of parallel paths between any
pair of edge switches to achieve good throughput for data
flows, and as well to avoid single-point-failure of switches.
In the DCNs, the tasks from all the jobs are allocated to
the servers. If two dependent tasks from the same job are
allocated to different servers, data transmission will occur
between the servers and pass by the switches in the network,
which is also named as a flow in our paper. Assume that the
tasks are executed on the servers without allowing preemp-
tion. If one server is allocated to one task, the server will
be occupied by the task until it is finished. Each server has
the same processing capability. Thus, the execution time of
particular task on any server will be the constant Ci,j.

FIGURE 2. A common structure of data center networks.

The problem is to determine when and where (on which
server) each task should be executed, and as well as schedule
the flow of data transmission on the network links, such that
the average completion time of jobs are minimized. Let ti,j
denotes the time that the j-th task in job i starts to execute, and
mi,j denotes the server where the j-th task in job i is executed,
where 0 ≤ ti,j < T and 0 ≤ mi,j < M . The completion time
of j-th task in job i is ti,j+Ci,j. We check every edge (u, v) in
the DAG of each job i, if the two connective tasks u and v are
not assigned to the same server, i.e., mi,u 6= mi,v, then a flow
fi,u,v is to be scheduled in the network. Several properties of
the flow are defined as follows.

• Source. It is defined as the server from which the flow
starts. The source of flow fi,u,v is mi,u.

• Sink. It is defined as the destination server where the
flow arrives. The sink of flow fi,u,v is mi,v.

• Path. It is defined as a sequence of switches the flow
passes by. In the tree-based DNC structure, we use a
set Sfi,u,v of switches to represent the path of flow fi,u,v.
In the following descriptions, we sometimes neglect the
subscripts, and denote it by Sf .
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• Release time. The release time of flow fi,u,v is defined as
time that the data is ready by the precedent task u, which
is represented by ti,u + Ci,u.

• Deadline. It is defined as the latest time that the data
transmission should be completed. The deadline of flow
fi,u,v is represented by ti,v.

• Data amount. The data amount of flow fi,u,v is Di,u,v.
• Rate. The rate of flow is defined as the transmission
speed, which is measured by data amount transmit-
ted per time slot. The rate usually represents the net-
work resources/bandwidth allocated to the flow. In our
model, the rate of flow can vary with time. Let Rfi,u,v (τ )
(or Rf (τ ) in short) denote the rate of flow fi,u,v at
time slot τ . Note that the rate is a non-negative value.
Rf (τ ) = 0 means the flow suspends at time τ . If we
have

∑ti,v
τ=ti,u+Ci,u Rf (τ ) = Di,u,v, we say that the flow

can meet the deadline under the rate allocation Rf (τ ).
Suppose Rf (τ ) = 0 when τ < ti,u + Ci,u or τ > ti,v.

Given the task scheduling decisions ti,j and mi,j, can we
find feasible flow schedule to meet their deadline require-
ment? If we can, we say ti,j andmi,j are feasible solution to our
problem. Whether the flows are schedulable with deadline
guaranteed or not depends on the throughput constraint of
the switches in Fig.2. Assume each switcher has a maximum
throughput. The rate of flows that pass through the switcher
is then constrained by the switch’s maximum throughput.
In practical muti-rooted tree topology, each flow have multi-
ple candidate paths. The flow scheduling is actually to select
the path, and assign the transmission rate to the flow. There
exist many protocols to solve the path selection problem [25].
In our problem, we neglect the path selection by simplifying
the multi-rooted tree topology into a single rooted tree topol-
ogy. In specific, at the core switches layer, we consider all the
switches as one virtual switch whose maximum throughput
is the summation of individual switches. We do the same
simplification at the aggregation switcher layer. Since the
simplification does not change the throughput constraint from
the switches, we can easily approve that if the flows can be
scheduled in the single-rooted tree topology, the flows will be
schedulable in the multi-rooted tree topology.

After the topology simplification, each flow between two
servers have single fixed path. We still use Sf to denote the
dedicated path of flow f in the simplified tree topology. Let
S denote the set of switches, which includes all the non-leaf
nodes in Fig.2. Each individual switch in S is denoted as s.
The maximum throughput of switch s is denoted by Rs.
We formulate the scheduling problem as follows,

min
ti,j,mi,j,Rf (τ )

∑N−1

i=0
max
j∈Vi
{ti,j + Ci,j} (1)

s.t. ∀i ∈ [0,N − 1], ∀(u, v) ∈ Ei, ti,u + Ci,u ≤ ti,v (2)

∀i, i′ ∈ [0,N − 1], ∀j ∈ Vi, ∀j′ ∈ Vi′

|mi,j − mi′,j′ | × IN

+ (ti,j − ti′,j′ − Ci′,j′ )× (ti,j + Ci,j − ti′,j′ ) ≥ 0, (3)

FIGURE 3. SDN based system architecture.

∀i, ∀(u, v) ∈ Ei,
(mi,u − mi,v)(

∑ti,v

τ=ti,u+Ci,u
Rf (τ )− Di,u,v) = 0 (4)

∀τ ∈ [0,T − 1],∀s ∈ S∑
fi,u,v

[Rf (τ )× P(s, Sf )] ≤ Rs (5)

where IN in Equation (3) is a great positive constant which
approaches to infinity, and P is a function of s and Sf . If s ∈
Sf , P(s, Sf ) = 1; otherwise P(s, Sf ) = 0.
Note that Equation (2) indicates that the tasks’ execution

time should satisfy the precedence constraint in the jobs.
Constraint (3) shows that the server executes only one task
at one time. If multiple tasks are scheduled to the same
server, the tasks will be executed sequentially. Equation (4)
represents the rate allocation of flows should guarantee the
transmission of required amount of data before the deadlines.
Equation (5) reflects each switch’s maximum throughput can
not be exceeded by the flows.

IV. SDN BASED FRAMEWORK AND ONLINE SOLUTION
In this section, we develop the online solution to the joint
scheduling problem of tasks and data flows. We first give
an overview of the system architecture, and then present the
details of the solution.

A. SYSTEM ARCHITECTURE
Fig.3 shows the system architecture. It consists of three com-
ponents: job dispatcher, SDN controller, and local schedulers
on the servers. The newly submitted jobs by users are first
added into the job queue. The job dispatcher periodically
fetches the job from the queue, and triggers the SDN con-
troller to schedule the tasks of the selected job. The SDN
controller runs core scheduling algorithms, and takes charge
of assigning the tasks to the servers, andmeanwhile allocating
the bandwidth resources of switches to the associated flows.
The local scheduler on the server simply gets the active task
in the queue to execute. Active means the dependent data of
the task have been transmitted to the server; otherwise the
tasks whose data have not arrived at the server is inactive and
blocked in the task queue.

The SDN controller is triggered by three types ofmessages.
The first is the job start message from the job dispatcher. After
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triggered by the job dispatcher, the SDN first assigns the start
tasks of the job to the idle server or the server with the least
workload. Once the task is finished by the server, the SDN
controller receives a task completion message from the sever
as a trigger signal and schedules the successors of the task.
The scheduling considers both the available bandwidth on
the switches and the workload of the servers’ task queues,
and always assigns the task to the server where it can be
executed at the earliest time. At the same time, the associated
flow is assigned with as much bandwidth as possible that the
switches can provide.

Besides being triggered by the job dispatcher and the task
completion messages from servers, the SDN controller is also
triggered by the flow completion message. Once the flow is
finished, the released bandwidth resources of the switches are
immediately re-allocated to other flows in the network. The
core idea of our method is to let the data transmit As Early As
Possible (AEAP), and As Fast As Possible (AFAP). By fol-
lowing the two principles, we can fully utilize the bandwidth
resources to reduce the job completion time. We describe the
two principles with details in the subsequent parts.

B. JOB DISPATCHER
All the newly submitted jobs are inserted into the job queue.
The job dispatcher selects the job from the queue, and invokes
the SDN controller to execute the selected job, i.e., to further
allocate the tasks to the servers and the flows to the switches.
We use the Highest Response Ratio Next (HRRN) policy
to select the job from the job queue. The priority of each
job is dependent on its estimated execution time, and also
the amount of time it has spent waiting. The job execution
time can be approximated by the summation of all the tasks’
execution time in the job. Suppose the waiting time of job i
is wi. The priority of the job

pi =
wi∑
j Ci,j

. (6)

The job with short execution time has high priority, and
meanwhile the job gains high priority if it waits a long time.
The job dispatcher controls the rate of delivering jobs to the
data center. The rate depends on the number of jobs being
executed, the loads of the servers, and the available bandwidth
of the switches.

C. SCHEDULER ON SDN CONTROLLER
The SDN controller includes two scheduling algorithms
which are respectively triggered by the task completion mes-
sage and flow completion message. It relies on the following
information to schedule the tasks and flows: job execution
list, flow list and the available bandwidth of the switches.
The job execution list contains all the jobs which are being

executed in the data center, which is shown in Fig.4(a).
When the job dispatcher selects one job and delivers it to
the SDN Controller, the SDN Controller adds the job into
its job execution list. Once the job is finished, the SDN con-
troller removes it out of the job execution list. For each job,

FIGURE 4. The two critical data structures maintained by SDN Controller.
(a) Job execution list. (b) Flow list.

the SDN Controller maintains its task graph which indicates
the precedence among the tasks, and the states of the tasks.
There exist 6 types of states in total for each task: unsched-
uled, pre-scheduled, scheduled, in execution, and completed.
Unscheduled represents the task is not scheduled by the SDN
Controller. Pre-scheduled means that the task has been allo-
cated by the SDN Controller to the server, but the allocation
could be changed to other servers in future. Scheduledmeans
the tasks have been allocated to servers, and the allocation can
not be changed in future. In execution represents the task is
being executed by the server. Completed means the task has
been finished by the server. Fig.5 shows the state transition
graph.

FIGURE 5. The state transition graph of the tasks.

The flow list includes all the data flows in the data center
networks. Each flow is allocatedwith certain bandwidthwhen
it is added into the flow list. Once one flow is finished, which
means all the required data has been transmitted from the
source server to the destination server, it is deleted from the
flow list. The released bandwidth by the flow is immediately
allocated to other flows. The flows have different priorities to
obtain the released bandwidth.

We use a two-dimensional priority queue to abstract the
flows’ priorities as shown in Fig.4(b). If two flows are from
different jobs, we then compare the start execution time of the
jobs. The earlier the job starts to execute, the higher priority
the flow from the job has. If the flows are from the same job,
we assign the priorities based on the job’s task graph. Assume
in the task graph, the node is labeled with the execution time,
and the edge is labeled with the data transmission time, which
is normalized using the amount of data transmission divided
by the average bandwidth capacities of all the switches.
For each edge in the task graph, we find the longest path
(including the edge itself) to the end node. The length of
the path represents, if the edge/flow is scheduled to transmit
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now, at least how much time are needed until the whole job
is completed. The longer the path is, the higher priority the
corresponding edge has.

1) TASK COMPLETION MESSAGE TRIGGERED SCHEDULING
Once one task is finished on the server, the SDN controller
obtains the relevant job’s task graph, and schedules the suc-
cessors of the finished task onto the servers. We use the
Earliest Start Time (EST) policy in the scheduling. In EST,
among all the servers, we always assign the task to the server
that can start the execution at the earliest time. After the
allocation of the successor, the SDN controller inserts the
corresponding data flow into the flow list, and assigns as
much bandwidth as possible to the flow, according to the
available bandwidth of the switches on the flow’s path. The
completed task’s state is then updated as scheduled accord-
ingly. Note that if the successor is scheduled on the local
machine, the successor’s state is updated as pre-scheduled.
Meanwhile the corresponding flow is still added into the flow
list, but it does not occupy any bandwidth resources.We name
this kind of flows without bandwidth occupied as virtual
flows. Correspondingly, the other flows are named as real
flows. The case of local execution often happens when the
network does not have much bandwidth at the scheduling
time. The SDN controller tentatively assigns the task to the
local machine. In future, if more bandwidth resources are
released in the network and meanwhile the execution of task
does not start, the task could be changed to the other servers.
The virtual flow changes to be real flow.

2) TRANSMIT AS EARLY AS POSSIBLE (AEAP)
As long as the task is completed, our algorithm immediately
determines the places where the successors are executed and
begins the data transmission if the successors are allocated
to different servers from the completed tasks. The purpose
is to fully utilize the available network bandwidth and start
the data transmission as early as possible. If the completed
task’s successor has single in-coming edge, e.g., as shown
in Fig.6(b), it is easily to schedule the successor task 2 imme-
diately after the task 1 is completed. However, if the com-
pleted task’s successor has multiple in-coming edges, e.g.,
as shown in Fig.6(b), the case becomes complex. Task 2 could
not be scheduled immediately after the task 1 is completed,
because at this moment the other precedent tasks 3 and 4 of
the task 2may not have been scheduled. It is hard to determine
the best server for the task 2 according to the EST.

FIGURE 6. The illustration of AEAP principle.

Algorithm 1 The Task Completion Message Triggered
Scheduling Algorithm

Input : the completed task p which triggers the
scheduler, the task graph, the available
bandwidth of the switches

Output: scheduling decisions of p’s successors
including their states and allocated servers

1 Update the state of p to be completed;
2 for each out-going edge e of the task p do
3 if The state of e’s tail task q is scheduled then
4 if The task q has been scheduled on different

server from the task p then
5 Insert the data flow e into the flow list;

6 continue ;

7 if The task q has single in-coming edge then
8 Decide the server m to execute q by

Equation (7);
9 if m is the server where the task p is executed

then
10 Update the state of q to be pre-scheduled;
11 Insert the virtual flow e into the flow list;

12 else
13 Update the state of q to be scheduled;
14 Insert the real flow e into the flow list;

15 * Allocate q to the task queue of m;

16 else
17 S ← 0;
18 for each in-coming edge e′ of the task q do
19 if The state of the head task of e′ is

unscheduled or pre-scheduled then
20 S ← 1;
21 break ;

22 if S == 1 then
23 continue ;

24 Decide the server m to execute q by
Equation (10);

25 Update the state of q to be scheduled;
26 * Allocate q to the task queue of m;
27 for each in-coming edge e′ of the task q do
28 if the state of the head task of e′ is

completed, and it has been executed on the
different server from task q then

29 Insert the edge e′ into the flow list;

30 return;

In existing online scheduling approaches, the task 2 is
usually scheduled after all the precedent tasks e.g., task 1, 3,
and 4, are completed. That means the data flows (1, 2), (3, 2)
and (4, 2) do not begin to transmit in the network until all the
tasks 1, 3, and 4 are finished. Obviously the existing methods
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delay the data transmissions which could have been started
earlier and thus reduce the task 2’s completion time. In our
algorithm, when the task 1 is completed, we check the state of
the other precedent tasks of the task 2, e.g., task 3 and task 4.
As long as all the tasks’ state are ’scheduled’, or ’in execution’
or ’completed’, we will schedule the task 2 immediately;
otherwise if any of these tasks’ states is ’unscheduled’ or
’pre-scheduled’, we will not schedule the task 2 at the time
when the task 1 is finished. That is to say, the scheduling the
task 2 does not wait for the completion of all the precedent
tasks. Instead our algorithm schedules the task 2 as long
as the precedent tasks’ hosting servers are determined. The
server is selected to execute the task 2 according to the EST
policy which is explained with details in Section IV-C.4. The
associated flows are then inserted to the flow list.

3) TRANSMIT AS FAST AS POSSIBLE (AFAP)
Another important design principle of our algorithm is that,
when the flow is newly added into the flow list, we always
allocate the maximum bandwidth that the switches can pro-
vide at current to the flow, such that it can transmit the data
as fast as possible. We do not specially reserve bandwidths
for the future. The purpose is to increase the bandwidth
utilization of the networks. For each newly flow, the allo-
cated bandwidth equals to the minimum available bandwidth
among all the switches on the flow’s path.

4) SERVER SELECTION–EARLIEST START TIME
In our method, we select the server for the task by using the
Earliest Start Time (EST) policy. For example, In Fig.6(a),
when task 1 is completed, we need to select one from all the
servers to execute the task 2. The server which can start to
execute the task 2 at the earliest time is selected. Let (i, u)
denote the finished task of job i, and (i, v) denote task (i, u)’s
successor in the task graph of job i. The execution server
of the task (i, u) is mi,u. The SDN Controller determines the
servermi,v to execute the task (i, v) by the following equation

mi,v = arg
N
min
m=1

max{tTRAN (mi,u,m), tAVL(m)}, (7)

where tTRAN (mi,u,m) denotes the data transmission time if
the task (i, v) is allocated to the server m; tAVL(m) denotes
the earliest available time of the server m. With the prin-
ciple of transmitting As Fast As Possible(AFAP), the data
transmission time tTRAN (mi,u,m) is estimated according to
the available bandwidth of each switches by Equation (8)

tTRAN (mi,u,m) =
Di,u,v
mins Bs

, s ∈ Path[mi,u→ m], (8)

where Bs represents the free bandwidth that the switch s has.
If the task to be scheduled has multiple precedent tasks,

e.g., the task 2 in Fig.6(b), we select the server for the
task when all the precedent tasks have been scheduled. The
server which can start the task at the earliest time is selected.
For each candidate server, the start time depends on three
factors: the completion time of the precedent tasks, the data

transmission time from the precedent tasks to the server, and
the available time of the server. Suppose T denotes the set
of precedent tasks, e.g., T = {1, 3, 4} in Fig.6(b). For each
precedent task u ∈ T , the estimated completion time is cu.
The start time of the task on each server m can be formulated
by

t(m) = max{max
u∈T
{cu + tTRAN (mu,m)}, tAVL(m)}. (9)

We select the server with the earliest start time

m∗ = arg
N
min
m=1

t(m). (10)

5) FLOW COMPLETION MESSAGE TRIGGERED SCHEDULING
Once one flow is finished, the released bandwidth is immedi-
ately allocated to other flows. As the flows are assigned with
various priorities, the flow with the highest priorities obtains
as much bandwidth as possible at the earliest time, and then
it turns to the flows with lower priorities until all the released
bandwidth are allocated. Note that the real flows have been
assigned with certain bandwidth, it seeks the best effort to
increase the bandwidth when it gets turn to obtain the released
the bandwidth. When it turns to the virtual flow to obtain the
released bandwidth, if the head task of the flow/edge is not
executed, the SDN controller decides the destination server
of the flow again according to the EST policy; otherwise if
the precedent task has been executed, the SDN controller
removes the flow out of the flow list. Algorithm 2 shows the
details of the flow completion message triggered scheduling.

D. LOCAL SCHEDULER ON SERVERS
The local scheduler maintains the task queue of the
server. We define two states for the tasks in the task queue,
i.e., ready and blocked. Ready indicates that the task can
be executed by the server currently. Blocked means that the
task can not be executed currently since the data from the
precedent tasks do not arrive at the server. When the task is
initially allocated by the SDN controller to the task queue,
if the state of the task maintained by SDN controller is pre-
scheduled, the task is then ready to execute in the task queue;
otherwise if the state is scheduled on SDN controller, the task
is then blocked in the task queue and waits for the data
transmissions. The blocked task changes to be ready when
all its dependent data arrives at the server. The local scheduler
adopts the first-come-first-server policy, and always selects to
execute the ready task which is added to the task queue at the
earliest time.

V. EVALUATION
A. ENVIRONMENT SETUP
We evaluate the online solution based on the real world
workloads. As follows we first describe environment settings
including the network topology, the workloads and the simu-
lator, and then present the results. In the evaluation environ-
ment, we use single-rooted tree data center topology which
is shown in Fig.8. The topology contains 96 servers which
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Algorithm 2 The Flow Completion Message Triggered
Scheduling Algorithm

Input : the flow list, the completed flow f ,
the available bandwidth of the switches

Output: re-allocation of released bandwidth to the
flows in flow list

1 Remove the completed flow f from the flow list;
2 Increase the available bandwidth of the switches on
the flow f ’s path;

3 Visit the flow e with the highest priority in the flow list;
4 while one of the switches has available bandwidth do
5 if the visiting flow e is the real flow then
6 if all the switches on e’s path has available

bandwidth then
7 Increase transmission rate of flow e to the

maximum;
8 Update the available bandwidth of

switches;

9 else if the virtual flow e’s tail task is in execution
or completed then

10 Remove e from the flow list;

11 else
12 Determine the server m for e’s tail task by

Equation (7);
13 if m is different from the server where e’s head

task is executed then
14 Change the flow e to be real flow;
15 Assign the maximum bandwidth to e;
16 Update the available bandwidth of

switches;
17 * Allocate e’s tail task to the task queue of

m;

18 Visit the next flow e in the flow list;

19 return;

FIGURE 7. The network topology.

are organized into 16 racks with 6 servers per rack. Each rack
has a top-of-rack (ToR) switch, and the ToR switches are con-
nected through the aggregation switches with 4 ToR switches
per aggregation switches. All the aggregation switches are
connected by the root switch. The capacity of the root switch,
aggregation switches, and the ToR switches are respectively
2 Gbps, 2 Gbps, and 3 Gbps.

FACEBOOK WORKLOADS
We use the realistic MapReduce workloads at Facebook over
two weeks in 2009 [1]. We sampled the job inter-arrival times

at random from the Facebook traces. The inter-arrival time
follows the normal distribution with the mean of 15 sec-
onds. The sampled workloads contain 200 jobs in total and
have 50 minutes long. In the original data-set, each job
includes the properties including the input data size, shuffle
data size, output data size, the Map time and Reduce time.
The Map/Reduce time is the total execution time of all the
Map/Reduce tasks. To generate the detailed task graph for
each MapReduce job, we assume that within one job the
Map/Reduce tasks have the same execution time. For each
job, we first randomly choose the execution time respectively
for each Map task and Reduce task. Then, the number of
Map tasks and Reduce tasks can be calculated accordingly.
The data transmission size on each edge in the task graph
can be computed based on the number of Map/Reduce tasks
and the input/shulf/output data size. We note that the jobs in
the workload trace are quite different in terms of the number
of tasks. Table 2 lists the environment parameters in the
evaluation.

TABLE 2. Parameters of the workloads.

We compare our joint scheduling approach with the bench-
mark methods which deal with the task scheduling and flow
scheduling independently. In particularly, we have developed
our own event-driven simulator written in C++ to model
the benchmark methods (Fig.8). The simulator consists of
two layers: the task scheduling layer and the flow scheduling
layer. At the task scheduling layers, we consider two exist-
ing algorithms: delay scheduling [5] and HEFT [6]. Delay
scheduling is a well-known scheduling technique in big data
clusters that guarantees the data locality by scheduling the
tasks close to their input data. HEFT is a heuristic algorithm
that particularly schedules the DAG structured jobs in the
heterogeneous computing networks. It assigns the task to

FIGURE 8. Diagram of the simulator for benchmark methods.

VOLUME 6, 2018 66607



L. Yang et al.: Joint Scheduling of Tasks and Network Flows in Big Data Clusters

the server where it cloud be finished at the earliest time.
At the network layer, we consider two data flow algorithms.
One is the Fair Scheduling (FS) that allows the data flows
in the network to share the bandwidth resources fairly. Most
commonly used transportation control protocols in data cen-
ters like TCP, RCP and DCTCP [17] all emulates the fair
scheduling. The other one is Shortest Job First (SJF) flow
scheduling, which give priority to the short flow by paus-
ing the contending flows. It is also used in existing trans-
portation control protocol like PDQ [14]. The benchmark
methods are the four different combinations of the selected
task scheduling algorithms and flow scheduling protocols,
which are denoted as follows: 1) Delay Scheduling + FS,
2) HEFT + FS, 3) Delay Scheduling + SJF, 4) HEFT +
SJF.

B. RESULTS
The major performance metric is the job completion time.
Fig.9shows the distribution of the job completion time of our
method and the benchmark methods. Our proposed method
outperforms the other benchmark algorithms significantly.
In particular, the average job completion time of the joint
scheduling is 48 seconds, while the average job completion
time of the benchmark methods are larger than 106 sec-
onds. We declare that our proposed method can decrease the
job completion time by 55% compared with the benchmark
methods. This is because our method jointly considers the
network status, such as the flows in transmission and the
available bandwidth resources, when doing the task schedul-
ing decisions. However, the benchmark algorithms treat the
task scheduling and flow scheduling independently. It first
schedules the tasks onto the servers without considering the
network congestions. Based on the task allocations, it relies
the underlying network protocols to schedule the network
flows. Among the benchmark methods, the ‘HEFT + SJF’
method has the best performance. The reason is that the
HEFT relies on some prior knowledge of the job’s task graph,
i.e., the tasks’ execution time and the amount of data trans-
mission between the dependent tasks, during the online task
scheduling, so it performs better than the delay scheduling.
Meanwhile, SJF is demonstrated to have better performance
than traditional FS in terms of the overall completion time.

FIGURE 9. CDF of the job completion time.

We measure the resource utilization for the five meth-
ods. In particular, we respectively consider the utilization
of two types of resources, i.e., servers and networks. The
server utilization indicates how many percentages of all the
server slots are busy; while the network utilization indicates
the ratio of the occupied bandwidth on the switches and
the total amount of bandwidth. Fig.10 shows that the joint
scheduling has slightly higher server utilization than the
benchmarkmethods. However, in terms of network resources,
the joint scheduling has much higher utilization than the
others. We conclude that the joint scheduling methods can
fully take use of the network resources to improve the perfor-
mance. The reason is that the benchmark methods do not take
into account the network resources during the phase of task
allocation. After the task scheduling, the data transmission
workloads in the networks may fluctuate greatly over the
time. The network sometimes is overloaded with a mass of
flows, while at the other times the network deal with few
data flows and many network resources are idle. The joint
scheduling can avoid this problem, because it is able to adapt
the task scheduling such that the data transmission workloads
onto the network are more uniformly distributed over the
time.

FIGURE 10. The server utilization and network utilization.

1) IMPACT OF THE SUBMISSION RATE OF THE WORKLOADS
In the evaluation setting, the 200 jobs are submitted with
the interval of 15 seconds. To evaluate how the amount
of workloads affect the performance, we change the job
submission interval. Small interval means that the jobs are
submitted to the data centers with high rate. Table 3 presents
the performance results under various job submission rates.
Fig.11a plots the performance of our proposed methods and
the benchmarks methods. All the methods have decreasing
average job completion time when the job submission rate
decreases. It is interesting to find that the joint scheduling
has high performance gain over the benchmark methods
specially when the workloads are intensive. This is because
in task scheduling when the jobs are submitted with high
velocity, the network bandwidth competition among the data
transmissions becomes as important as the competition for
computing resources at the servers. The joint scheduling allo-
cates the task with the regarding of network flow scheduling
and congestion avoidance, and thus has better performance
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TABLE 3. The performance results under different settings for the job submission rate.

FIGURE 11. The joint scheduling approach outperforms the benchmark
methods under various settings of job submission rate, network capacity,
server number. (a) Submission rate of the workloads. (b) Network
capacity. (c) The number of servers.

than benchmark methods that simply schedules the tasks by
assuming static network conditions.

2) IMPACT OF THE NETWORK CAPACITY
Fig.11b shows the job completion time of the five schedul-
ing methods under various network capacities. Note that the
x-axis indicates the multiplies relative to the original capacity
of switches, e.g., 1.5 means the capacity of each switch is
1.5 times of the original value. Corresponding numeric results
are shown in Table 4. We find that our proposed method has
much better performance over the benchmark methods when

TABLE 4. The performance under different settings for the network
capacity.

the bandwidth resources are relatively scarce in data center.
As the capacity of switches increase, the performance gain
over the benchmark methods decrease. Specially when the
network has enough resources, i.e., the capacity of switches
is 3.5 time of the original setting, our methods almost have
the same performance with the benchmark methods. This
is because there exists no network congestions when the
network has enough resources, and the performance is simply
affected by the scheduling algorithm at the task scheduling
layer. In practical data centers, the network resources always
are scarce relative to the computation resources, in which case
our proposed methods have obvious performance gain over
the benchmark methods.

3) IMPACT OF THE NUMBER OF SERVERS
In the initial setting, the number of servers per rack is 6.
Now we still keep the network topology as shown in Fig.7
and change the number of servers in each rack which varies
from 3 to 31. The number of switches and the capacity of
each switch do not change. The total number of servers
varies from 48 to 336. Fig.11c shows how the performance
changes depending on the number of servers. Table 5 presents
the numeric performance results correspondingly. The joint
scheduling approach significantly outperforms the bench-
mark methods under all the number of servers. It is shown
that when the number of servers increase from 240 to 366,
the benchmark methods nearly do not have performance
gain. The reason is that when the number of servers are
large enough, the bottleneck affecting the performance is the
network resources. The benchmark methods that allocates

TABLE 5. The performance under different settings for number of servers.
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the tasks without considering the network congestions in
the meanwhile do not enhance the performance simply by
increasing the server number.

VI. RELATED WORK
In this section, we will describe the state-of-arts on the related
topics including the task scheduling, network flow scheduling
and SDN based scheduling techniques.

A. TASK SCHEDULING IN BIG DATA CLUSTERS
One of the related work is task scheduling in big data clus-
ters. Many technqiues have been proposed to schedule the
tasks for various purposes such as the fairness, data local-
ity, throughput, scalability and so on. Quincy [7] and Delay
scheduling [5] try to improve the data locality by scheduling
the task close to the data, and meanwhile guarantee the fair-
ness. Considering that the data could be distributed acrross
multiple machines and it is not possible to co-locate the
tasks with all its inputs, Venkataraman et al. [8] develop the
data-aware scheduling techniques which aims to schedule the
task at a machine that minimizes the time it takes to transfer
the data.

Unlike these works that focus on the scheduling of tasks
with the fixed data placement, Corral [9] coordinates the
data placement and tasks of jobs for achieving better local-
ity. There exists work that proposes to maximize the data
processing throughput specially for the pipelined application
workflows in big data clusters [12]. More recently a few
techniques [10], [11] have been developed to solve the scal-
ability problem in large-scale clusters, which are named as
distributed scheduling techniques.

These work mentioned above focus on the task scheduling
without regards of the underlying network protocols, while
in our proposed technique the tasks are scheduled with con-
sidering the network workloads and congestions. We jointly
schedule the scheduling of tasks and the flows such that
the network bandwidths are fully utilized to reduce the job
completion time. Chowdhury et al. [24] have the similar idea
to the proposed joint scheduling, but they optimize the replica
placement instead of the task scheduling based on the traffic
on the network links during the writes to the cluster file
systems.

B. NETWORK FLOW SCHEDULING
Another related work is network flow scheduling in data
centers. TCP and DCTCP [17] are the commonly used data
transfer protocols in data center. They emulate the fair sharing
and can achieve satisfactory performance in terms of the
network throughput. D3 [13] has been lately proposed to
meet the deadlines of network flows which could not be
guaranteed in previous TCP based protocols. PDQ [14] tries
to emulate a shortest job first scheduling meachanism in
a distributed way, in order to complete the flows quickly
as well as meeting the deadlines. Varys [15] proposed the
coflow abstraction and addresses the inter-coflow scheduling
to reduce the communication time of data-intensive jobs.

The recent work, Baraat [16], implements a distributed flow
scheduling system that treats the flows generated from the
same application together. However, the benefits from such
network scheduling technique are inherently limited since the
end-points of the network flows are fixed by applications. Our
work jointly optimizes the task scheduling which determines
the endpoints of flows and the flow scheduling. It has been
demonstrated to obtain more performance gain in the data
center applications.

C. SDN BASED TASK SCHEDULING TECHNIQUES
The most related work is the study of task scheduling in
the SDN based big data clusters. Qin et al. [19] proposed
the bandwidth-aware task scheduling technique by using the
SDN. In this work, the tasks are allocated onto server at first
and then the SDN takes charge of the bandwidth allocation
lately. Like the previous method, the scheduling of tasks and
network flows are still done independently. Alkaff et al. [18]
proposed the cross-layer scheduling approach particularly for
the cloud computing engines such as Storm and Hadoop.
It leverages the centralized SDN controller to coordinate the
placement of application tasks in tandemwith the selection of
the network routers arising from these tasks. However, it does
not consider the allocation of bandwidth onto the flows,
which we believe have much impact on the performance of
the job scheduling.

VII. CONCLUSION
In this paper, we studied the joint scheduling problem to
minimize the job completion time in data centers. The prob-
lem jointly optimized the scheduling of tasks and underlying
network flows caused by these tasks. We have designed a
SDN based framework and the online solution. The frame-
work coordinates the task placement and the bandwidth allo-
cations through a SDN controller. We have done extensive
simulations based on the realistic workload traces at Face-
book, and compares the joint scheduling with four bench-
mark methods which separately schedule tasks and net-
work flows.The results show that our proposed method can
decrease the job completion time by 55% on average com-
pared with the benchmark methods. Furthermore, the joint
scheduling has slightly higher server utilization than the
benchmarkmethods. However, in terms of network resources,
the joint scheduling has much higher utilization than the oth-
ers. We conclude that the joint scheduling methods can fully
take use of the network resources to improve the performance.
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