Taylor & Francis
Taylor & Francis Group

Ee} NG 5 NS OF ] ] . . . )
bt Engineering Applications of Computational Fluid

Mechanics

ISSN: 1994-2060 (Print) 1997-003X (Online) Journal homepage: https://www.tandfonline.com/loi/tcfm20

Ensemble models with uncertainty analysis for
multi-day ahead forecasting of chlorophyll a
concentration in coastal waters

Shahaboddin Shamshirband, Ehsan Jafari Nodoushan, Jason E. Adolf, Azizah
Abdul Manaf, Amir Mosavi & Kwok-wing Chau

To cite this article: Shahaboddin Shamshirband, Ehsan Jafari Nodoushan, Jason E.

Adolf, Azizah Abdul Manaf, Amir Mosavi & Kwok-wing Chau (2019) Ensemble models with
uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal
waters, Engineering Applications of Computational Fluid Mechanics, 13:1, 91-101, DOI:
10.1080/19942060.2018.1553742

To link to this article: https://doi.org/10.1080/19942060.2018.1553742

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

ﬂ Published online: 14 Dec 2018.

N\
CJ/ Submit your article to this journal &

||I| Article views: 250

P

(!) View Crossmark data (&'

CrossMark

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tcfm20


https://www.tandfonline.com/action/journalInformation?journalCode=tcfm20
https://www.tandfonline.com/loi/tcfm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19942060.2018.1553742
https://doi.org/10.1080/19942060.2018.1553742
https://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2018.1553742&domain=pdf&date_stamp=2018-12-14
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2018.1553742&domain=pdf&date_stamp=2018-12-14
https://www.tandfonline.com/doi/citedby/10.1080/19942060.2018.1553742#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/19942060.2018.1553742#tabModule

ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS
2018,VOL. 13,NO. 1,91-101
https://doi.org/10.1080/19942060.2018.1553742

Taylor & Francis
Taylor &Francis Group

8 OPEN ACCESS W) Check for updates

Ensemble models with uncertainty analysis for multi-day ahead forecasting of

chlorophyll a concentration in coastal waters

Shahaboddin Shamshirband
Amir Mosavif9'" and Kwok-wing Chau'

b Ehsan Jafari Nodoushan€, Jason E. Adolfd, Azizah Abdul Manaf®,

aDepartment for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of
Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam; “Department of Civil Engineering, Bijar Branch, Islamic Azad
University, Bijar, Iran; 9Department of Biology, Monmouth University, West Long Branch, NJ, USA; ¢Faculty of Computing and Information
Technology, University of Jeddah, Jeddah, Saudi Arabia; fInstitute of Structural Mechanics, Bauhaus University Weimar, Weimar, Germany;
9Institute of Automation,Obuda University, Budapest, Hungary; Mnstitute of Advanced Studies Koszeg, Koszeg, Hungary; 'Department of Civil

and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, People’s Republic of China

ABSTRACT

In this study, ensemble models using the Bates—Granger approach and least square method are
developed to combine forecasts of multi-wavelet artificial neural network (ANN) models. Originally,
this study is aimed to investigate the proposed models for forecasting of chlorophyll a concentra-
tion. However, the modeling procedure was repeated for water salinity forecasting to evaluate the
generality of the approach. The ensemble models are employed for forecasting purposes in Hilo
Bay, Hawaii. Moreover, the efficacy of the forecasting models for up to three days in advance is
investigated. To predict chlorophyll a and salinity with different lead, the previous daily time series
up to three lags are decomposed via different wavelet functions to be applied as input parameters
of the models. Further, outputs of the different wavelet-ANN models are combined using the least
square boosting ensemble and Bates—Granger techniques to achieve more accurate and more reli-
able forecasts. To examine the efficiency and reliability of the proposed models for different lead
times, uncertainty analysis is conducted for the best single wavelet-ANN and ensemble models as
well. The results indicate that accurate forecasts of water temperature and salinity up to three days
ahead can be achieved using the ensemble models. Increasing the time horizon, the reliability and
accuracy of the models decrease. Ensemble models are found to be superior to the best single
models for both forecasting variables and for all the three lead times. The results of this study are
promising with respect to multi-step forecasting of water quality parameters such as chlorophyll a
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and salinity, important indicators of ecosystem status in coastal and ocean regions.

1. Introduction

The development of suitable predictive models for
chlorophyll concentration and salinity as water qual-
ity indicators in aquatic environments is a subject of
ongoing concern due to its importance in aquatic life,
environmental and ecological management (Liangliang
& Daoliang, 2015). Chlorophyll concentration indicates
the amount of phytoplankton, which plays an important
role for fish and other marine life. It takes solar energy
and provides a food supply for many different marine
birds and animals. Chlorophyll a is a form of chlorophyll
that is commonly used for water quality and ecological
modeling. In addition to chlorophyll, water salinity and
temperature, dissolved oxygen and turbidity are among
the key water quality parameters. In estuaries and bays,
water quality is a critical issue due to the high potential for

anthropogenic pollution in runoff. Therefore, long-term
and reliable forecasting models for these variables can be
considered a key element in the sustainable use and man-
agement of marine food resources. Moreover, forecasts
can serve as an early warning for environmental activities
or events that may significantly degrade water quality.
Different variables can be named as water quality vari-
ables such as dissolved oxygen (DO), chlorophyll concen-
tration, temperature, surface water temperature, salinity,
turbidity, etc. Depending on the purpose of studies, these
parameters can be modeled and simulated as individ-
ual water quality parameters or as a combined index
of water quality (Mohammed & Abdulrazzaq, 2018) as
well. Water quality modeling and forecasting are complex
procedures due to nonlinear relationships among vari-
ables. In oceans and estuaries where tidal and wind waves
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impact on surface waters, the complexity of the problem
is further exacerbated. The water quality models can be
categorized as conceptual, physical or empirical models
(Tsakiris & Alexakis, 2012). In conceptually/physically
based models, it is necessary to introduce mathematical
relationships among variables. This approach requires an
accurate knowledge of a large number of variables and
their complex relationships. The traditional empirical
models may suffer from insufficient accuracy for model-
ing and forecasting purposes. Over the two past decades,
artificial intelligence (AI) based models have attracted the
attention of many researchers due to their strong capa-
bility to recognize complex and nonlinear relationships
among variables.

They have the advantage of employing only a few
input variables to model or predict the target variable.
Moreover, in artificial neural network (ANN) models,
the mathematical relationship between input and tar-
get parameters is not defined by the user. A review of
the application of different intelligence-based techniques
such as ANN to model water quality can be found in
Chau (2006). Ye and Cai (2009) used recurrent ANN
to predict chlorophyll a concentration for seven days
ahead in Three-Gorges Reservoir. They applied differ-
ent types of datasets including hydrological, limnolog-
ical and meteorological data to feed the model inputs.
The results showed that the forecasting models are sensi-
tive to different environmental input variables. Al-based
models, especially ANN techniques, were frequently
applied for forecasting purposes with streamflow and
environmental processes thanks to easy implementation,
low computational cost and suitable performance (Foto-
vatikhah et al., 2018; Motahari & Mazandaranizadeh,
2017; Olyaie, Banejad, Chau, & Melesse, 2015; Wang, Xu,
Chau, & Lei, 2014; Zamanisabzi, King, Dilekli, Shoghli,
& Abudu, 2018). They have been developed to predict
a water quality index (Gazzaz, Yusoff, Aris, Juahir, &
Ramli, 2012), monthly chemical oxygen demand con-
centration (Khalil, Awadallah, Karaman, & El-Sayed,
2012), daily water temperature, salinity and dissolved
oxygen (Alizadeh & Kavianpour, 2015), etc. Nodoushan
(2018) presented successful applications of ANN and
Bayesian networks (BN) to forecast chlorophyll concen-
tration on a monthly scale. The outputs showed that the
BN models outperform ANN models. Regarding time
series forecasting, ANN models have a flexible structure
that can be combined with a wavelet transform. This
feature increased their popularity because the wavelet-
ANN model can predict the target variable with higher
accuracy (Alizadeh, Kavianpour, Kisi, & Nourani, 2017;
Heddam & Kisi, 2017). Generally, the water quality vari-
ables can be modeled individually or as water quality
indices (WQIs). However, applying the water quality

indices in comparison with the individual water quality
data requires a wider range of datasets and parameters
to be available. Also, for some special purposes, some
parameters may be more valuable. Consequently, models
with higher accuracy and reliability for this parameters
should be developed.

Ensemble models gain advantages of multiple indi-
vidual models, resulting in superior performance over
the best single forecast models (DeChant & Moradkhani,
2011; Najafi & Moradkhani, 2016; Seo, Liu, Moradkhani,
& Weerts, 2014; Shi et al., 2015). Moreover, the fore-
casting uncertainty can be decreased by including fore-
casts of several individual models with different mod-
els than using a single model. Barzegar, Adamowski,
and Moghaddam (2016) combined forecasts of multi-
wavelet-ANN models to establish an ensemble model.
They employed the model for monthly forecasting of
electrical conductivity (EC) in Aji-Chay River, Iran.
The performance evaluation of the models indicated
the superiority of the ensemble model to the individual
models.

To date, there is no reported study that employs
ensemble models for simulation and prediction of water
quality in estuaries and coastal waters. The forecasting
of water quality parameters for more than one time step
can be of great interest for coastal ecosystem and envi-
ronmental management. Therefore, the development of
reliable models with acceptable accuracy for multi-step
ahead projection of the variables in estuaries and seas is
an interesting subject of study.

This study is mainly organized to take advantage of
ensemble models to achieve reliable multi-day ahead
forecasts of chlorophyll a concentration and salinity in
Hilo Bay, on the Island of Hawaii in the Pacific Ocean.
In this regard, forecasts of different individual wavelet-
ANN models were combined by means of bagging and
boosting ensemble techniques. Daily values of chloro-
phyll a and salinity with up to three lags were applied
to predict the same variable up to three days in advance.
Performance and reliability of the models were evalu-
ated using error measures and uncertainty analysis. In
section 2, basic concepts of ANN and wavelet transform
specifications of the study area and the data and a short
description of ensemble models are presented. Section 3
provides details of the proposed models. The results are
discussed in section 4. Concluding remarks are presented
in the last section.

2. Materials and methods

2.1. Artificial neural networks

An ANN in its usual form consists of three different lay-
outs that are linked to each other sequentially, e.g. the
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input is linked to the hidden layer and the hidden one
is connected to the output layer. The layers are made of
neurons that connect each layer to the following layer.
Input and output neurons represent the input and tar-
get variables, respectively. During the training process,
the back propagation in a repetitive process is applied to
assign appropriate weights to each input variable or node
in such a way the more influential input variables get
higher weights or stronger connection with the following
layer’s nodes. In brief, the mathematical expression for an
ANN is given as Equation (1) (Jeong & Kim, 2005):

M N
Or=g | ) wyg (Z WjiXi + Wjo) + Wk | (1)

j=1 i=1

where x;, Oy are the input and output values in node i
and node k, respectively; g (log-sigmoid) and g (linear)
are the hidden and output layers’ activation functions,
respectively; and N and M are the input and hidden
neuron numbers. The weights between connections are
defined by wj; (the input node i and the hidden node j)
and wy; (the hidden node j and the output node k). Also,
biases for neurons are represented with wj, (the jth node
in the hidden layer) and wy, (the kth node in the output
layer).

2.2. Discrete wavelet transform (DWT)

The wavelet is a useful tool to extract frequency and
time information from a signal. In general, two types
of wavelets including discrete and continuous trans-
forms are recognized, in which each can employ dif-
ferent wavelet functions. Each wavelet function has its
specific characteristics. Therefore, employing different
wavelet functions for time series decomposition can lead
to sub-signals with different specifications. Translation
and dilation are two components of any wavelet function.
According to Partal (2009), for a given signal of x(t), the
continuous wavelet transform (CWT) with translation
(a) and dilation (b) can be expressed as:

+o00 _ b
Wi(a,b) = %/ " (%) xdt ()

where ¢ represents the time, ¥ and * denote the mother
wavelet (wavelet function) and conjugate complex func-
tion, respectively. The discrete wavelet transform (DWT)
has advantages over the CWT due to its involving less
computational effort and complexity. Therefore, it has
been selected for time series decomposition in this study.
Following Grossmann and Morlet (1984) the DWT is

defined in Equation (3):

lm‘ﬁ(t - nioag“)
Vag' o
where integer values of m and » are applied as the dilation
and transformation parameters (Alizadeh et al., 2017);
ap > 1 and by > 0 are called the dilation step and loca-
tion parameter, respectively. When dealing with DWT,
the wavelet function and also decomposition level should
be chosen appropriately in order to achieve desired
outputs.

wm,n (t) = (3)

2.3. Case study and data analysis

In this study, historical daily average water temperature
and salinity data recorded at Hilo Bay, Hawaii were used
for forecasting. For this purpose, the water quality buoy
(WQB-04) operating in Hilo Bay was selected as the
case study. WQB-04 (located at 19.7430N, 155.0814W)
is among several buoys installed as part of the Pacific
Islands Ocean Observing System. WQB-04 measures
water quality data at 15min intervals in the upmost
meter of the water column (z = —0.75 m). Daily data of
chlorophyll a concentration and salinity are obtained by
averaging 96 values per day. For the modeling process,
daily average data from 1 January 2012 to 31 Decem-
ber 2016 were applied. The quality of all the data in this
study has been controlled and low-quality data or days
with missed data records were omitted from the mod-
eling procedure. In this regard, the chlorophyll a data
have fewer numbers than the salinity data because there
are more missing data for chlorophyll. The chlorophyll
a concentration is measured by means of fluorescence
(light re-emitted by chlorophyll molecules). Chlorophyll
dissipates the absorbed light by driving photochemical
energy conversion (photosynthesis) and emitting fluo-
rescence radiation. The EC characteristic is applied as
an indirect tool to measure salinity, since saltwater has
higher values of EC than freshwater with no dissolved
salt. The data are divided into subsets for calibration and
verification purposes. Figure 1 illustrates position of the
buoy in Hilo Bay and the Pacific Ocean.

Data normalization to a range of [0, 1] was carried
out to transpose the input variables into the same data
range as the activation functions. Table 1 gives the basic
statistical characteristics of the daily data including aver-
age ‘Mean’, minimum ‘Min’, maximum ‘Max’, standard
deviation S4 and skewness coefficient Cgy.

2.4. Ensemble modeling

Ensemble modeling is a suitable technique to decrease
the bias and variance of the predictions. In the ensemble
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Figure 1. (a) The study area in Hawaii and (b) the water quality buoy (WQB).

Table 1. Statistical analysis of the whole dataset.

Variable Mean Min Max Sd Cox
Chlorophyll a (mg/m3) 333 0.015 12.41 2.302 0.70
S (psu) 28.28 10.12 34.75 3.98 —1.26

model, forecasts of different individual models are com-
bined to achieve the desired output. Regarding the vari-
ance and bias of predictions, bootstrap (bagging) or
boosting ensemble methods can be employed. The boot-
strap approach is more suitable for high-variance pre-
dictions whereas the boosting method is more efficient
for high-bias predictions. In this study, two simple tech-
niques including Bates-Granger and least square meth-
ods are applied to minimize the error of the forecasting
models. To do this, forecasts of different independent
models are combined to establish the ensemble model.
The procedure employs an empirical formula/algorithm
to assign appropriate weights to the independent mod-
els based on their variance of error/goodness of fit. In
this research, a linear least square technique as well as
the empirical technique proposed by Bates and Granger
(1969) is employed to find optimum weights for indepen-
dent models. Using the least square method and through
alinear solution, the weights (w;) are assigned in a way to
achieve the least error (E). The general form of the least
square method is given in Equation (4).

k
Z W,'yi —Y=E (4)
i=1

where y; = predictions, Y = measured values, and k =
number of individual models. More details about ensem-
ble methods and algorithms can be found in Zhou (2012).
In the Bates—Granger technique, weights of the indi-
vidual models are found regarding the variance of the
error of the models in the calibration period as per

Equation (5):
1/0?

w; = L 5
" 1/ol .+ 10} )

where o represents the variance of error for model i
over the calibration step. The main assumptions with this
method are presuming a constant variance of residuals
over time and unbiased forecasts for the models.

3. The proposed model and modeling
procedure

To obtain acceptable forecasts of water temperature and
salinity on a daily time scale, observed time series of
the target variable up to three lags were decomposed
using a discrete wavelet transform. The correct struc-
ture of the input variables indicating the number of lags
was found using autocorrelation analysis. Several wavelet
functions — Haar ‘haar’, discrete Meyer ‘dmey’, Coiflets
‘coifl,coif5’, Daubechies ‘db2, db4, db6’, Symlets ‘sym4,
sym10, sym20’ — were employed for decomposition pur-
poses. For the decomposition level of i, the DWT decom-
poses each data set to i subsets of details (d, ..,d;) and
approximations (ay, . . ., a;). Equation (6) was applied to



obtain a suitable decomposition level (Aussem, Camp-
bell, & Murtagh, 1998):

L = int[log(n)] (6

~

where L represents the wavelet decomposition level and
n stands for number of data sample. Therefore, for this
study, the decomposition level of 3 was recognized for
data decomposition. Using the three levels of decompo-
sition, six subsets of the data for each time series are
obtained in which dy, d, d3 (high frequency component)
and a3 (high scale component) were incorporated as the
input datasets in the forecasting models. Therefore, for
each variable forecasting (water temperature or salinity)
and also for each lead time (¢t + 1/t + 2/t + 3), 10 differ-
ent individual models based on the wavelet function were
developed.

In the ensemble approach, each wavelet-ANN model
is weighted based on variance of error (in the case of the
Bates—Granger approach) and goodness of fit with the
real data (for the least square technique). Therefore, mod-
els that have higher accuracy in forecasting gain higher
values of weights. In cases of Bates—Granger approach,
the weights are assigned using Equation (5). In the least
square boosting ensemble model, the optimum weights
(w;) for the k individual models are achieved by solving
a matrix of coeflicients (Equation (7)). After finding the
weights of the individual models in the ensemble forecast,
the error of the model can be computed using Equation
(4). It is noteworthy that some of the individual mod-
els with relatively low accuracy may be excluded in the
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ensemble model.

yirooccr Yk | (m Y,
. . . — E (7)

nl " Ynk Wk Y,

where n, y and Y denote the number of data sample, fore-
casts of the individual models and the real data, respec-
tively. Generally, the least-square-based ensemble model
can be illustrated as shown in Figure 2.

To assess the performance of the individual and
ensemble models, two statistical error measures of coef-
ficient of determination (R?) and root mean square error
(RMSE) are used. These error measures can be defined as
follows.

L (Yi— V)i —3)°

R = — (8)
Y Y= Y (i - )
n )2
RMSE = | 2=t Fi =00 (:1 ¥ ©)

where Y;, Y, y; and n denote observed water quality vari-
able, mean observed value, predicted target variable and
number of data, respectively.

For long-term forecasting, not knowing the exact val-
ues of input variables for predicting the target factor is
a big problem. In this regard, the reliability of the long-
term forecasting models due to using only past events of
the input variables is expected to decrease remarkably.

ANN
A

ﬂlput
DWT

Effective

Original
time series,

Original
time serie

Effective
sub-signals

O—O
sub-signals <
C X@

Hidden Outpt?

OIN

&1
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dlquidsug ST

S,
N

>

Figure 2. Schematic layout of the least-square-based ensemble wavelet-ANN model.
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Therefore, uncertainty analysis conducted along with sta-
tistical error measures can be deemed a better indicator
of the performance of the models. The accuracy expresses
how precise the experiment is while the uncertainty is
the component of a reported value which characterizes
the range of values within which the real value is asserted
to lie. Different sources of uncertainty can be recognized
when dealing with data-driven and forecasting models,
such as uncertainty in data sampling, tuning the cor-
rect network structure, considering important input vari-
ables, etc. However, in this study only a primary uncer-
tainty analysis is carried out to find the range that the
predictions are expected to lie in. For the uncertainty
analysis, the mean (e) and standard deviation of the error
(Se) are employed for the best individual model and for
the ensemble model. The indices can be computed as per
Equations (10 and 11):

e= l €; (10)
n“
i=1
Se= D (e—o°/n—1 (11)
i=1

where e; = y; — Y;, n = number of data sample. Using
these indices, the width of uncertainty band for the
95% confidence level is written as £1.96S,. It should
be noticed that the results of the trial period only are
reported in this study. The data for water temperature and
salinity during trial period included the daily values from
August 2015 to March 2016.

4, Results and discussion
4.1. Chlorophyll a concentration

To predict the chlorophyll a concentration up to three
days in advance, historical time series of the same variable
with three lags have been employed as input variables.
Using different types of wavelet functions, 10 separate
wavelet-ANN models were developed. Further, ensemble
models including the Bates—-Granger approach and least
square technique were constructed to enhance the effi-
ciency of the single models. The results for the trial period
are presented in Table 2.

According to Table 2, the wavelet-ANN models have
great capabilities to predict chlorophyll a up to three
days in advance. Generally, the models provide accept-
able predictions with high value of R? and low value
of RMSE. The models with ‘dmey’ and ‘sym20’ wavelet
functions are among the most efficient types of indi-
vidual models. Shorter-period predictions (t+ 1) per-
form better than longer-period predictions (¢ + 2, t + 3).

Table 2. Results of the forecasting models for chlorophyll a con-
centration.

t+1 t+2 t+3

RMSE RMSE RMSE
Model R? (mg/m?3) R? (mg/m3) R? (mg/m?3)
Haar 0.79 0.73 0.59 1.02 0.53 1.09
Dmey 0.93 0.40 0.85 0.61 0.75 0.78
coif1 0.87 0.56 0.71 0.84 0.70 0.85
coif5 0.93 0.40 0.82 0.65 0.73 0.84
db2 0.87 0.56 0.71 0.84 0.57 1.04
db4 0.87 0.56 0.79 0.72 0.60 1.01
db6 0.91 0.47 0.79 0.72 0.70 0.88
symé4 0.91 0.47 0.78 0.76 0.71 0.85
sym10 0.92 043 0.77 0.74 0.62 1.01
sym20 0.93 0.40 0.81 0.67 0.79 0.72

BG ensemble  0.96 0.31 0.85 0.59 0.81 0.69
LSensemble  0.96 0.31 0.85 0.61 0.76 0.75

To establish the ensemble models, forecasts of the eight
wavelet-ANN models (haar and coifl were excluded in
the ensemble models due to their relatively low perfor-
mance) were combined to provide a better forecast of
chlorophyll a concentration. As observed from Table 2,
the Bates—Granger approach (BG ensemble) outperforms
all the individual models (even the best single wavelet-
ANN model) and the least square based ensemble model
(LS ensemble). However, the results of the two ensem-
ble methods are very close to each other. The forecasts
of the BG ensemble models for all the three lead times
have R? higher than 0.8, which implies good agreement
among observed and forecasted values of the target vari-
able. Moreover, the ensemble models have lower values
of RMSE than the individual models. Therefore, the BG
ensemble model is recognized as the most accurate model
for chlorophyll a concentration forecasting up to three
days in advance. As the models only use the chlorophyll
historical data as input variables, the results are promis-
ing for the application of such methods to water quality
and ecological modeling, especially in cases with limited
data. Figures 3-5 depict scatter plot and forecasts of the
BG ensemble model versus the observed values for one
to three lead times.

From Figures 3-5, it can be derived that acceptable
forecasts of chlorophyll a can be achieved using the BG
ensemble model. The proposed model provides accurate
forecasts for the first lead time. The forecasts approxi-
mately overlap the real values. For two other lead times,
the forecasts still represent high accuracy. However, the
models for the second and third lead times underesti-
mate the extreme values of chlorophyll a. The figures
demonstrate that a roughly sound prediction for chloro-
phyll concentration can be achieved even three days in
advance, which is valuable for water quality monitoring
and assessment. Moreover, the proposed model can be
employed as a useful tool to estimate the missing data for
chlorophyll.
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Figure 3. Ensemble-forecasted temperature against observed values: (a) scatter plot; (b) time series for t 4 1.
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Figure 4. Ensemble-forecasted temperature against observed values: (a) scatter plot; (b) time series for t + 2.
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Figure 5. Ensemble-forecasted temperature against observed values: (a) scatter plot; (b) time series for t 4 3.

4.2. Water salinity

To evaluate the validation and generalization of the
results for chlorophyll g, the whole process has repeated
for salinity. The water salinity up to three days in advance
was forecasted by incorporating the historical time series
of the salinity with three time lags. The results of the

individual models as well as the ensemble models for the
test data set are presented in Table 3.

As can be seen in Table 3, the individual models have
good performance for first lead time forecasting. How-
ever, the models’ efficiency decreases rapidly as they are
applied to longer-period forecasting. For the third lead
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Table 3. Results of the forecasting models for salinity.

t+1 t+2 t+3
RMSE RMSE RMSE
Model R? (psu) R? (psu) R? (psu)
Haar 078 1.79 0.61 2.39 0.30 335
Dmey 0.96 0.77 0.86 1.44 0.76 1.93
coif1 0.87 1.38 0.76 1.87 0.59 2,51
coifs 0.95 0.90 0.84 151 0.71 2.08
db2 0.86 1.42 0.75 2.05 0.75 1.92
db4 0.92 112 0.79 177 0.73 2.03
dbé 0.92 1.09 0.78 1.83 0.74 2.05
sym4 091 114 0.78 1.83 0.68 2.22
sym10 0.94 0.95 0.82 161 0.80 1.80
sym20 0.95 0.91 0.79 1.81 0.77 1.89
BG ensemble  0.97 0.62 0.90 122 0.89 136
LS ensemble  0.98 0.57 0.89 1.30 0.87 1.39

time, no individual model provides an R? higher than
0.8. Therefore, an ensemble model can be helpful to
improve the accuracy of forecasts. Comparing the results
of the ensemble models with those of the individual mod-
els demonstrates that the ensemble models are able to
increase the accuracy of the models significantly. The
LS and BG ensemble models outperform the individual
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models consisting of the best single wavelet-ANN model
for all lead times. The superiority of the ensemble models
to the individual models is more apparent when the mod-
els are employed to longer-period forecasting. In other
words, the difference between the performance of the
ensemble model and the individual models for three days
ahead is greater than the difference between the ensem-
ble and individual models for the next day (¢ + 1). The
ensemble models improve the performance of the best
individual models in terms of R? on average about 2%, 4%
and 9% for one, two and three lead times, respectively. A
similar conclusion relating to RMSE can be derived. For
the first and second lead times, the wavelet-ANN model
embedded with the ‘dmey’ function gives the highest
accuracy while for the third lead time the model using
‘sym10’ provides the best predictions. Therefore, there
is not always a single model that is the best one and
therefore ensemble models consisting of several indi-
vidual models are advantages over the single models.
Figures 6-8 illustrate scatter plot and time series of the
ensemble forecasts and real values for one to three lead
times.

Figure 6. Ensemble-forecasted salinity against observed values: (a) scatter plot; (b) time series for t + 1.
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Figure 7. Ensemble-forecasted salinity against observed values: (a) scatter plot; (b) time series for t + 2.
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Figure 8. Ensemble-forecasted salinity against observed values: (a) scatter plot; (b) time series for t + 3.

From Figure 6, it can be seen that the ensemble model
provides acceptable forecasts of salinity for the whole
range of the data in the first lead time. For the second
and third lead times, the forecasts are generally in a good
agreement with those of the observed data. However, the
models overestimate low values of salinity. For medium
and high values, the forecasts of the BG ensemble for one
to three days ahead are relatively satisfactory. In general,
acceptable forecasts of salinity up to three days ahead can
be achieved when the ensemble model is employed. A
comparison between the results of ensemble forecasting
of salinity conducted by this study with those of the pre-
vious study in terms of R? indicates the superiority of the
ensemble models. The current model gives an R? of 0.98
for the next day while it did not exceed 0.93 in the previ-
ous study using a single wavelet-ANN model (Alizadeh
& Kavianpour, 2015).

4.3. Uncertainty analysis

Uncertainty analysis is a useful tool to investigate the reli-
ability of forecasting models. Table 4 presents the results
of the uncertainty analysis for the best single model and
the ensemble model in terms of mean error e and the
width of uncertainty band (for the 95% confidence level).
Thus, the performance of the models can be evaluated
from the points of view of accuracy and reliability. As the
results of the BG ensemble and LS ensemble models are
roughly similar to each other, the uncertainty analyses are
conducted only for the best individual and BG ensemble
models.

Generally, the ensemble models are superior to the
best single model for each variable and lead time due to
lower values of mean error and narrower width of uncer-
tainty band. On the other hand, it is not always an easy
task to find the best single model. Moreover, it requires

Table 4. Uncertainty analysis for the best single and ensemble
models.

Chlorophyll a Salinity
Best Best
single Ensemble single Ensemble
t+1 e 0.023 —0.004 0.090 0.028
Width of +0.742 +0.642 +1.473 +1.256
uncertainty
band
t+2 e 0.020 0.016 0.057 0.034
Width of +1.305 +1.212 +2.623 +2.064
uncertainty
band
t+3 e 0.026 0.058 0.185 0.035
Width of +1.506 +1.385 +2.937 +2.194
uncertainty
band

examination of the efficiency of many different models
to obtain the most efficient one. Therefore, combining
the forecasts of several individual models in ensemble
models can be thought of as a useful way to enhance the
accuracy of model forecasts. For any time series and case
study, individual models may have good predictions for
some points and other models may give better predic-
tions for some other points. Therefore, ensemble models
may outperform single models because they gain the
advantages of several models.

Uncertainty analysis for different lead times reveals
that with increasing lead time the uncertainty of the fore-
casts increases. For more lead times, the width of uncer-
tainty band increases for both forecasting variables. The
comparison of the results for chlorophyll a and salin-
ity in Table 4 demonstrates that the forecasting models
for salinity have a greater degree of uncertainty than the
models for temperature. Negative and positive values for
mean error in Table 4 represent the models’ underesti-
mation and overestimation, respectively. Low values of
mean error may indicate a symmetry distribution of the
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errors but should not be confused with very accurate pre-
dictions. For example, the mean error for the second lead
time of chlorophyll a has a lower value than the mean
error for the first lead time whereas the forecasts for the
first lead time are more accurate. This is mainly because
the errors with negative and positive signs neutralize each
other when one computes mean error. Moreover, the
width of the uncertainty band for the first lead time fore-
casts are significantly narrower than the third lead time
forecasts of chlorophyll a. The models applied for salin-
ity have higher values of uncertainty band for salinity
than with chlorophyll a due to higher level of variation
of salinity than of chlorophyll. The chlorophyll average
value is 3.33 mg/m? where salinity has an average of 28.28
psu. However, more accurate forecasts are expected for
salinity than for chlorophyll a because of higher R?. The
uncertainty band with 95% confidence level for chloro-
phyll a and salinity for one to three days ahead forecasting
changes from 0.64 to 1.38 mg/m> and from 1.25 to 2.2
psu, respectively. These ranges with their average values
imply an acceptable level of reliability and accuracy for
the BG ensemble forecasts.

5. Conclusions

In this study, ensemble models based on least square and
Bates—Granger techniques were constructed in order to
achieve acceptable forecasts of the parameters in Hilo
Bay, Hawaii. Multi-wavelet-ANN models consisting of
several functions were employed to this end. The models
were applied for chlorophyll a and salinity forecasting in
coastal water up to three days in advance. To predict each
variable, the historical data of the same variable in the
past three days were incorporated as the model inputs.

Results of multi-wavelet-ANN models indicate that
the wavelet functions of ‘demy’, ‘sym20’ and ‘sym10’ are
among the most efficient types for this study. The best
forecasting model is obtained for the ‘dmey’ wavelet-
ANN, which gives an R? of 0.93 and 0.96 for chlorophyll
a and salinity, respectively, in the next day (£ 4 1). The
worst model relates to ‘haar’ wavelet-ANN with R? of
0.53 and 0.3 for chlorophyll a and salinity, respectively.
With increasing forecasting time horizon, the accuracy
and reliability of the forecasts decrease. A comparison
between the models for the first and third lead times
reveals that the R? of the best model varies from 0.97 to
0.86 for the temperature and from 0.96 to 0.80 for the
salinity. The temporal variation of the models” perfor-
mance (with lead time) declines more sharply for salinity
than for temperature.

Comparing the forecasts obtained from different mod-
els demonstrates the superiority of the ensemble models.
Also, the outperformance of the ensemble models over

the individual models is enhanced with increasing lead
time. Regarding the results of the forecasting models for
chlorophyll a in the third lead time, the ensemble model
improves the performance of the best single model in
terms of R? from 0.75 to 0.81 and in terms of RMSE
from 1.80 to 1.36 mg/m?>. For salinity on the third day,
the performance of the best single model is improved
from 0.8 to 0.87 in terms of R? and it is improved from
1.89 to 1.39 psu in terms of RMSE. A similar conclu-
sion for two other lead times can be derived. Moreover,
it was found that the ensemble models outperform the
individual models with respect to the uncertainty of the
predictions. The ensemble models for both chlorophyll a
and salinity have a narrower width of uncertainty band
than the best individual models. According to this study,
it can be concluded that the ensemble models developed
for chlorophyll a and salinity provide acceptable forecasts
up to three days in advance. The proposed model is rec-
ommended to be applied for forecasting of other water
quality parameters. Hence, its application for different
areas with different characteristics can serve as a useful
tool for environmental monitoring purposes. The consid-
eration of new techniques for ensemble purposes could
be subject of future studies.
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