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ABSTRACT
Nanofluid viscosity is an important physical property in convective heat transfer phenomena. How-
ever, the current theoretical models for nanofluid viscosity prediction are only applicable across a
limited range. In this study, 1277 experimental data points of distinct nanofluid relative viscosity
(NF-RV) were gathered from a plenary literature review. In order to create a general model, adaptive
network-based fuzzy inference system (ANFIS) code was expanded based on the independent vari-
ables of temperature, nanoparticle diameter, nanofluid density, volumetric fraction, and viscosity of
the base fluid. A statistical analysis of the data for training and testing (with R2 = .99997) demon-
strates the accuracy of the model. In addition, the results obtained from ANFIS are compared to
similar experimental data and show absolute and maximum average relative deviations of about
0.42 and 6.45%, respectively. Comparisons with other theoretical models from previous research is
used to verify the model and prove the prediction capabilities of ANFIS. Consequently, this tool can
be of huge value in helping chemists andmechanical and chemical engineers – especially thosewho
are dealing with heat transfer applications by nanofluids – by providing highly accurate predictions
of NF-RVs.
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1. Introduction

Nanofluids are comprised of a base liquid and uniformly
dispersed solid nanoparticles. The word ‘nanoparticle’
refers to solid particles with a diameter of less than
100 nm. In general, nanofluids have a volumetric frac-
tion of less than 4%nanoparticles (Kamiński&Ossowski,
2014). Nanofluids usually contain TiO2, Al2O3, SiC,
SiO2, and CuO as nanoparticles, and deionized water,
water, ethylene glycol, polyalphaolefin, ethanol, or a mix-
ture of ethylene glycol or propylene glycol with water
as the base fluid (Mahbubul, Saidur, & Amalina, 2012).
Based on recent investigations, nanofluids’ thermal con-
ductivity is generally higher than that of the base fluid
(Murshed, Leong, & Yang, 2008).

Fluid viscosity is a measure of fluid’s internal resis-
tance against flowing, which is the main thermophysical
property of fluid – especially in convective thermal appli-
cations in the presence of fluid flow. Therefore, fluid
viscosity can influence the pumping power needed by
altering the friction head and convective heat transfer
coefficient. Consequently, because of the complexities
of nanofluid hydrodynamics caused by particle–particle
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collision, a precise model for predicting the viscosity of
nanofluids would seem to be essential (Mehrabi, Sharif-
pur, & Meyer, 2013). In the past 20 years, a number of
investigations have been completed on nanofluids, espe-
cially on nanofluid synthesis (H. Chen, Ding, & Tan,
2007; L. Chen, Xie, Li, & Yu, 2008) and thermal conduc-
tivity (Ahmadi, AlhuyiNazari, et al., 2018;Ahmadi, Tatar,
et al., 2018; Jung, Cho, Lee, & Kang, 2011; S. Lee, Choi,
Li, & Eastman, 1999; Shaikh, Lafdi, & Ponnappan, 2007).
However, few investigations related to nanofluid relative
viscosity (NF-RV) have been carried out, even though
this physical property plays a major role in the design of
industrial equipment (H. Chen et al., 2007; Duangthong-
suk & Wongwises, 2009; J.-H. Lee et al., 2008). Masuda,
Ebata, and Teramae (1993) determined the viscosity of
an aqueous nanoparticle solution (consisting of Al2O3,
SiO2, and TiO2), while other researchers have evaluated
the viscosity of various different nanofluids experimen-
tally (L. Chen et al., 2008; Murshed et al., 2008; Nguyen
et al., 2007; Pak & Cho, 1998). In addition, the effects
of independent variables like temperature and the shape,
diameter, and volumetric fraction of the particles on
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NF-RV have been considered (Mahbubul et al., 2012;
Rudyak&Krasnolutskii, 2014; Rudyak, Belkin, & Egorov,
2009).

Modeling could provide an opportunity to formulate
a general equation for predicting the viscosity of differ-
ent nanofluids (Heidari & Ghoreishi, 2013). The Ein-
stein (1906) model (μnf = μbf (1 + 2.5ϕ)) is essentially
the first model for predicting NF-RV at a low volumet-
ric fraction of around 0.02 (Eastman, Phillpot, Choi, &
Keblinski, 2004). However, for higher volumetric frac-
tions, models based on the power law assumption are
superior. For a system of simplified hardened spheres,
Krieger and Dougherty’s (1959) half-empirical equation
makes a good prediction of NF-RV (such as the viscosity
ratio of the nanofluid relative to the base fluid). A decade
later, Nielsen (1970) proposed a more general equation,
while more recently Mehrabi et al. (2013) conducted a
comprehensive study on the best correlations for NF-RV.
However, model verification is the key point of model-
ing, which is controlled by simplistic assumptions that are
applied to the development of the model.

Lately, heuristic models such as genetic program-
ing, neural networks, and fuzzy logic have generated
a lot of attention for their ability to predict thermo-
physical properties without the need for experimen-
tal verification (Aghayari, Maddah, Ahmadi, Yan, &
Ghasemi, 2018; Ahmadi, Ahmadi, Mehrpooya, & Rosen,
2015; Ahmadi, Ahmadi, Sadatsakkak, & Feidt, 2015;
Ahmadi, Alhuyi Nazari, et al., 2018; Ahmadi, Tatar,
et al., 2018; Ahmadi, Sorouri Ghare Aghaj, & Nazeri,
2013; Baghban, Bahadori,Mohammadi, &Behbahaninia,
2017; Baghban, Pourfayaz, et al., 2018; Baghban, Jalali,
Mohammadi, & Habibzadeh, 2018; Baghban, Kardani, &
Habibzadeh, 2017; Baghban, Mohammadi, & Taleghani,
2017; Faizollahzadeh Ardabili et al., 2018; Fotovatikhah
et al., 2018; Ghalamchi, Kasaeian, Ahmadi, &Ghalamchi,
2017; Ghazani, Baghban, Mohammadi, & Habibzadeh,
2018;Kasaeian,Ghalamchi, Ahmadi,&Ghalamchi, 2017;
Kazemi et al., 2018; Li, Zhang, & Liu, 2017; Loni, Asli-
Ardeh, Ghobadian, Ahmadi, & Bellos, 2018; Pourkiaei,
Ahmadi, & Hasheminejad, 2016; Taormina, Chau, &
Sivakumar, 1985; Wu & Chau, 2011; S. Zhang & Chau,
2009; Z. Zhang, Li, Chang, Pan, & Luo, 2018). These
models, with their data mining approach, are useful for
finding complex correlations between noisy and incom-
plete data. In addition, they are easier to apply than the-
oretical models (Heidari & Ghoreishi, 2013). Kurt and
Kayfeci (2009) developed an artificial neural network
(ANN) model for anticipating the effect of temperature
and the volumetric fraction and density of nanoparti-
cles on the thermal conductivity of nanofluids based on
ethylene glycol and water. Papari, Yousefi, Moghadasi,
Karimi, and Campo (2011) present a diffusional neural
network (DNN) model for the thermal conductivity of

Table 1. General specifications of the present data set.

Parameters Range

Temperature −35.0–71.2°C
Nanoparticle diameter 7–190 nm
Nanoparticle volumetric fraction 0–9%
Nanoparticle density 2650–6310 kg m−3

Base fluid viscosity 0.394–452.599 cp
Nanofluid relative viscosity 0.560–9.776

Table 2. Detailed analysis of the present data set.

Nanoparticle Base fluid
No. of data
points References

TiO2 DI water 3 Murshed et al. (2008)
Al2O3 DI water 3 Murshed et al. (2008)
Al2O3 Water 499 Nguyen et al. (2007);

Lee et al. (2008);
Tavman, Turgut,
Chirtoc, Schuchmann,
and Tavman (2008);
Chandrasekar, Suresh,
and Chandra Bose
(2010); Mehrabi et al.
(2013); Meybodi et al.
(2016)

SiC DI water 4 Lee et al. (2011)
TiO2 Water 13 Duangthongsuk and

Wongwises (2009)
Al2O3 Transformer oil 15 Singh and Kundan (2013)
SiO2 DI water 50 Zhao et al. (2009)
TiO2 Ethylene glycol 135 Chen et al. (2007)
SiO2 Ethanol 16 Chevalier, Tillement, and

Ayela (2007)
CuO Water 291 Nguyen et al. (2007);

Pastoriza-Gallego
et al. (2011); Mehrabi
et al. (2013); Meybodi,
Naseri, Shokrollahi,
and Daryasafar (2015);
Meybodi et al. (2016)

CuO Propylene glycol
and water, 30:70

34 Naik and Sundar (2011)

CuO Propylene glycol
and water, 60:40

72 Namburu, Kulkarni, Misra,
and Das (2007); Kulkarni,
Das, and Vajjha (2009)

SiO2 Water 19 Tavman et al. (2008)
SiO2 Transformer oil 6 Jamshidi et al. (2012)
SiO2 Ethylene glycol and

water, 25:75
7 Jamshidi et al. (2012)

SiO2 Ethylene glycol and
water, 50:50

30 Jamshidi et al. (2012)

SiO2 Ethylene glycol 47 Rudyak et al. (2013)
Al2O3 R1 1 refrigerant 13 Singh and Kundan (2013)
Al2O3 Polyalphaolefins 20 Zhou, Ni, and Funfschilling

(2010)

single-wall and multi-wall carbon nanotubes. Nanofluid
viscosity prediction is modeled by 182 and 536 exper-
imental data points using a DNN (Yousefi, Karimi, &
Papari, 2012) and an adaptive network-based fuzzy infer-
ence systems (ANFIS; Mehrabi et al., 2013), respec-
tively. However, these data-driven models are confined
to specific nanofluids and a limited range of independent
variables.

The final subject of the present investigation is
extending a general model, namely ANFIS, for the
precise prediction of nanofluid viscosity. Therefore,
experimental data for NF-RV were collected from
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Figure 1. Schematic structure of a fuzzy inference system (FIS).

Figure 2. Structure of an ANFIS model with two input
parameters.

verified studies across a wide range of conditions. Lastly,
the results of the proposed ANFIS model are veri-
fied using the theoretical models of Einstein (1906),
H. Chen et al. (2007), Maı̈ga, Nguyen, Galanis, and
Roy (2004), Batchelor (1977), Brinkman (1952), and
Hosseini, Moghadassi, and Henneke (2010). In addi-
tion, the suggested ANFIS model is checked with new
correlations.

2. Data sets

There are a number of experimental investigations of
NF-RV (H. Chen et al., 2007; Duangthongsuk & Wong-
wises, 2009; J.-H. Lee et al., 2008; S. W. Lee, Park, Kang,
Bang, & Kim, 2011; Murshed et al., 2008; Singh & Kun-
dan, 2013; Zhao, Luo, Ni, & Cen, 2009). The independent
variables in these studies include temperature, volume
concentration, nanoparticle diameter, shape, and aspect
ratio, and inter-particle spacing. In addition, the effects

of settling time, fluid density, fluid polarity, etc. on NF-
RV have also been investigated experimentally (Meyer,
Nwosu, Sharifpur, & Ntumba, 2012). In previous stud-
ies, three independent variables such as temperature,
nanoparticle diameter, and nanoparticle volumetric frac-
tion were chosen as the model inputs. However, these
models are only carried out for specific nanofluids, so
they are not universal and applicatory to all nanofluids
(Mehrabi et al., 2013). In the present study, these three
variables are also applied; however, other input param-
eters are introduced in order to generalize the model to
different types of nanoparticle. The fourth input param-
eter can be the molecular weight or bulk density of
the nanoparticles. It is inferred that the ANFIS model’s
ability can be improved by including the nanoparticle
bulk density as another input parameter. The fifth input
parameter is the viscosity of the base fluid. A detailed
analysis and specification of the 1277 data points for the
NF-RVs across a wide range of different input parameters
is shown in Tables 1 and 2. These data points are classified
into two groups, the first of which was used for training
the system and the second ofwhichwas used for verifying
the model; three quarters of the data points were used as
training data and the remainder were used as testing data.

3. Theory

3.1. ANFISmodel

Figure 1 presents the schematic structure of fuzzy infer-
ence system (FIS) processing, which is comprised of four
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Figure 3. The final status of the MFs after training using the PSO method for input parameters: (a) temperature; (b) particle diameter;
(c) volumetric fraction; (d) particle density; (e) fluid viscosity.

sections: the knowledge base, the inference engine, fuzzi-
fication inference, and defuzzification (Jang, 1993). The
ANFIS model has diverse interconnected nodes in its
structure. A number of these nodes have adaptive sec-
tions, which means that their output is limited by setting
the value for that node.

3.2. ANFIS structure

For the FIS, x1 and x2 are assumed for the importing vari-
ables and y is assumed for the exporting variable. Then,
principles are formed as conditional statements (e.g., if
x1 = A and x2 = B then y = f (x1, x2)), in which A
and B are considered fuzzy sets (FSs) and y is named a
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Figure 5. Cross plot of the predictions of the PSO-ANFIS model.

crisp function (CF). CFs can be any function (generally
of a polynomial form) that is capable of giving an output
under specific conditions (Jang, 1993).

In the case of assuming the status of f (x1, x2) =
cte, a Sugeno-type fuzzy model with an order of zero is
obtained. For a particular condition, any available law
will follow the similar resultant section. In the case of
assuming a first-order polynomial for f (x1, x2), a first-
order Sugeno FIS is encountered.

The method proposed in Takagi and Sugeno (1993)
has become the most popular choice for ANFIS devel-
opment; it has been used in various studies across dif-
ferent fields due to its excellent efficiency. Therefore, in
the present study, a Takagi–Sugeno FIS is applied to the
prediction of NF-RV values.

For the assumption of two first-order polynomials,
laws of the Takagi–Sugeno type can be written as follows
(Takagi & Sugeno, 1993):
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Table 3. Calculated statistical parameters for the PSO-ANFIS
model.

Dataset R2 AARD STD RMSE

Training .999 .977 .018 .023
Testing .999 .994 .017 .022

Note: AARD = average absolute relative deviation; RMSE = root mean
square error; STD = standard.

Law I: If (x1 is A1) and (x2 is B1) then f 1 = p1x1 +
q1x2 + r1.

Law I: If (x1 is A2) and (x2 is B2) then f 2 = p2x1 +
q2x2 + r2.

Then a weighting-based averaging method is used for
calculating the average of different existing laws’ out-
puts, which is assumed as an output for the model. This
structure is described schematically using squares and
circles in Figure 2, which represent adaptive and fixed
nodes, respectively. There are five layers that nodes can
be placed inside, and it can be seen that the nodes in
each layer act in the same way (Baghban, Bahadori, et al.,
2017; Baghban, Kardani, & Habibzadeh, 2017; Baghban,
Mohammadi, & Taleghani, 2017).

In Layer 1, the nodes that are connected to inputs
operate certain membership functions (MFs). Gaussian-
typememberships functions, as formulated below, are the
most common type of MF:

O1
i = β(X) = exp

(
−1
2

(X − Z)2

σ 2

)
, (1)

where O is the layer output, σ is the variance parameter,
and Z is the Gaussian MF center. The suggested model
optimizes these parameters in order to improve accuracy.
In Layer 2, the following equation is applied in order to
evaluate the antecedent’s condition consistency and the
reliability of the model:

O2
i = Wi = βAi(X).βBi(X). (2)

Layer 3 applies the following equation in order to
normalize the values ofWi predicted in the prior step:

O3
i = Wi∑

i Wi
. (3)

Table 4. Some available models for the prediction of nanofluid viscosity.

Model Correlation Remarks

Einstein (1906) μnf(CP) = μbf(1 + 2.5ϕ) Spherical particles, low particle volumetric fraction ϕ < 0.02
Maı̈ga et al. (2004) μnf(CP) = μbf(1 + 7.3ϕ + 123ϕ2)

Batchelor (1977) μnf(CP) = μbf(1 + 2.5ϕ + 6.5ϕ2)

Chen et al. (2007) μnf(CP) = μbf(1 + 10.6ϕ + 10.6ϕ2)

Hosseini et al. (2010)
μnf(CP) = μbf exp

(
m + α

(
T
T0

)
+ β(ϕ) + γ

(
dp
1+R

))
α = −0.485,β = 14.94, γ = 0.0105
m = 0.72, T0 = 20◦C, R = 1nm

For Al2O3/H2O

Brinkman (1952) μnf(CP) = μbf(1 − ϕ)2.5
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Figure 7. Comparison of the predicted NF-RVs with the experimental data for: (a) TiO2–water, t = 25°C, nanoparticle diame-
ter = 21 nm; (b) TiO2–water, t = 35°C, nanoparticle diameter = 21 nm (Duangthongsuk & Wongwises, 2009).

Layer 4 is responsible for specifying the output linguistic
terms, using the following equation to specify the result
level:

O4
i = Wifi = Wi(miX1 + niX2 + ri). (4)

In order to optimize the efficiency, the linear parameters
mi, ni, and ri are improved by ANFIS. Finally, in Layer
5 all laws that are connected to an output parameter are
considered by the following equation:

O5
i = Y =

∑
i
Wif i = W1f1 + W2f2 =

∑
i Wifi∑
i Wi

. (5)

4. Model development

In the first stage of the development of the model, an ini-
tial structure for the FIS was created using the MATLAB
2014 genfis function. The Takagi–Sugeno–Kang type of
FIS can be obtained using various methods, including
grid partition, the lookup table method, fuzzy c-means,
and the subtractive clustering method. In the proposed
ANFIS model, the subtractive clustering method and
Gaussian MFs were applied to the initial structure and
the MF type, respectively. In addition, 15 clusters were
used; therefore, based on the input and MF parameters,
a total of 180 parameters existed for tuning. The FIS
structure, once created, needed to be trained to improve
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Figure 8. Comparisonof thepredictedNF-RVswith the experimental data for: (a) Al2O3–water, nanoparticle diameter = 36 nm, particle
volumetric fraction = 1%; (b) Al2O3–water, nanoparticle diameter = 47 nm, particle volumetric fraction = 1% (Nguyen et al., 2007).

the model’s efficiency. In the present study, FIS training
was undertaken using the particle swarm optimization
(PSO) method in MATLAB 2014. The improved MFs of
the trained FIS are demonstrated in Figure 3. The opti-
mal structure was obtained at an iteration of 1200 and a
population size of 80.

5. Results and discussion

5.1. Model verification

Verification of the proposed PSO-ANFIS model was car-
ried out using both statistical and graphical methods.

The experimental and estimated values are presented in
Figure 4 for both the training and testing data sets, and
it can be seen that they are in good agreement. A cross
plot of the model, which compares the predicted NF-RV
data with the experimental values, is shown in Figure 5.
It can be seen that the data points are spread close to the
y = x line, which means that the predicted data exhibits
adequate consistency and good agreement with the target
NF-RVvalues. The relative error of themodel predictions
compared to the target NF-RV data is shown in Figure 6.
It can be seen that most of the errors are grouped close to
the zero lines, which proves the accuracy and reliability of
the proposed model. It is also notable that the maximum
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Figure 9. Comparison between the NF-RV data predicted by different models and the experimental data for SiO2–DI water, t = 25°C,
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model error is less than 10%. Four statistical parameters
for assessing the accuracy of the proposed model are also
introduced as follows:

R2 = 1 −
∑N

i=1 (ρpred(i) − ρExp(i))
2∑N

i=1 (ρpred(i) − ρ̄Exp(i))
2 , (6)

%AARD = 100
N

N∑
i=1

(ρpred(i) − ρExp(i))
ρExp(i)

, (7)

MSE =
(∑N

i=1 (ρpred(i) − ρExp(i))2

N

)0.5

, (8)

STD =
n∑

i=1

(
(ρpred(i) − ρ̄Exp(i))2

N

)0.5

. (9)

Table 3 shows the values of these parameters for the
training and testing data sets. The data points were ran-
domly divided into training and testing classes. It is clear
that the proposed model has a low average absolute rel-
ative deviation (AARD) value and a relatively high R2

value, which confirms the model’s applicability and reli-
ability.

5.2. Comparative evaluations

The proposed ANFIS model was developed to calculate
the NF-RVs, which are listed in Table 2. Several mod-
els from the literature (see Table 4) were selected for
comparison with the results generated by the proposed
model.

The predicted NF-RVs of TiO2 and water with a parti-
cle diameter of 21 nm at room temperature as a function
of volumetric fraction are compared to the experimen-
tal results in Figure 7(a) (Duangthongsuk &Wongwises,
2009). It can be seen that the NF-RV predicted by the
ANFIS model is in good agreement with the experimen-
tal data. In addition, it seems that in the range of 0.0
to 2.5% the more the volumetric fraction of the parti-
cle the more the NF-RV values. It should be noted that
in previous models such as those presented in Einstein
(1906), H. Chen et al. (2007), Batchelor (1977), Maı̈ga
et al. (2004), and Brinkman (1952), the NF-RV is inves-
tigated as a function of the viscosity of the base fluid and
the volumetric fraction. Thus, the viscosity predicted by
these models is fixed against time changes. The trend of
the NF-RVs calculated by previous models is steady ver-
sus temperature variations. A comparison of the exper-
imental data and the calculated NF-RVs of TiO2 and
water nanofluid versus the particle volumetric fraction is
presented in Figure 7(b).

The experimental data are compared to the calculated
NF-RVs for Al2O3 and water with a particle diameter of
36 nm and a volumetric fraction of 1% versus tempera-
ture in Figure 8(a) (Nguyen et al., 2007). TheNF-RVs pre-
dicted by the ANFIS model are in very good agreement
with the experimental data. The results of the othermod-
els are in reasonable to good agreement with the experi-
mental data, with the exception of the model of Hosseini
et al. (2010), which is greatly affected by the temperature
and varies considerably from the experimental results.
TheNF-RVs forAl2O3 andwater with a particle diameter
of 47 nm at room temperature against particle volumetric
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Figure 10. Comparison of the predicted NF-RVs with the experimental data for: (a) CuO–water, nanoparticle diameter = 29 nm, parti-
cle volumetric fraction = 1% (Nguyen et al., 2007); (b) CuO–water, nanoparticle diameter = 33 nm, t = 25°C (Pastoriza-Gallego et al.,
2011).

fraction are illustrated in Figure 8(b) (Jamshidi, Farhadi,
Ganji, & Sedighi, 2012). Ascending attitude in all the the-
oretical models is observed; however, the ANFIS model
shows the best agreement with the experimental data.

The experimental data are compared to the calcu-
lated NF-RVs for SiO2 and deionized water with a
particle diameter of 7 nm at room temperature versus
the nanoparticle volumetric fraction in Figure 9 (Zhao
et al., 2009). It is clear that the ANFIS calculations are
in very good agreement with the experimental data,
and compare favorably with the results of the other
models.

The experimental data are compared to the calculated
NF-RVs for CuO and water with a particle diameter of
29 nm and a volumetric fraction of 1% versus tempera-
ture in Figure 10(a) (Nguyen et al., 2007). It can be seen
that only the ANFIS model has a very good fit to the
experimental data compared to the other models. The
calculated NF-RVs of CuO and water versus the volu-
metric fraction are compared to the experimental data
in Figure 10(b) (Pastoriza-Gallego, Casanova, Legido, &
Piñeiro, 2011). Again, the ANFIS model is in very good
accordance with the experimental data, and compares
favorably with the other models. Figures 7 to 10 show
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Figure 11. Results of the sensitivity analysis conducted on the ANFIS model.

that the predictions of the proposed ANFIS model are
in very good agreement with the experimental data for
all the NF-RV values. This demonstrates that the pro-
posed model is a flexible and accurate tool for model-
ing complex non-linear dependencies between a num-
ber of parameters without predefining the correlation
structures.

5.3. Sensitivity analysis

The proposedANFISmodel can potentially provide good
dependency between the inputs and the output. In order
to investigate how the inputs affect the output, a sensitiv-
ity analysis was undertaken. The most effective input can
be recognized by the relevance factor r, which is in the
range of−1 to+1 and is stated by the following equation
(Hosseinzadeh & Hemmati-Sarapardeh, 2014):

r =
∑n

i=1(Xk,i − Xk)(Yi − Ȳ)√∑n
i=1 (Xk,i − Xk)

2∑n
i (Yi − Ȳ)

2
, (10)

where Xk,i is the ith importing parameter, Yi is the ith
exporting value, Xk is the average value of the kth input,
Ȳ is the average value of exporting parameter, and n is the
number of sets. The absolute value of r has a direct rela-
tion on the output. As can be seen in Figure 11, the NF-
RV shows a straight dependency on the particle diameter,
the particle volumetric fraction, and the particle density,
and an opposite dependency on the temperature and the
viscosity of the base fluid. In addition, the particle vol-

umetric fraction is the most effective input variable by
a 0.71 relation factor and the temperature is the most
ineffective parameter by a −0.023 relation factor.

6. Conclusion

In this study, a generalizable and precise model for pre-
dicting NF-RVs is proposed using ANFIS. The input
variables consist of the temperature, base fluid viscos-
ity, and nanoparticle volumetric fraction, diameter, and
density. The ANFIS model results were compared to
experimental training and testing data, and the validity
and sufficiency of the proposed model for a wide range
of input variables was affirmed by an AARD value of
0.98% and an R2 value of .9997. In addition, the pro-
posed model results were compared to literature corre-
lations and existing theoretical models, and it was shown
that the proposed model generates accurate and reliable
results compared to prior modeling of NF-RVs. Conse-
quently, this tool is potentially of huge value, as it can
provide chemists andmechanical and chemical engineers
– especially those who deal with heat transfer applica-
tions by nanofluids – with a tool for estimating NF-RVs
with a high degree of accuracy. In future work, other
approaches such as using different types of ANNs and
support vector machines (SVMs) optimized using differ-
ent algorithms can be implemented and compared with
the results generated by the ANFIS model proposed in
the present study.
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