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Abstract: Peroxy acetyl nitrate (PAN) is an important photochemical product formed from the
reactions between volatile organic compounds (VOCs) and nitrogen oxides (NOx) under sunlight.
In this study, a field measurement was conducted at a rural site (the backgarden site, or BGS) of the
Pearl River Delta (PRD) region in 2006, with the 10 min maximum PAN mixing ratios of 3.9 ppbv
observed. The factors influencing the abundance of PAN at the BGS site was evaluated by the
process analysis through the Weather Research and Forecasting-Community Multiscale Air Quality
(WRF-CMAQ) model. The results suggested that the increase of PAN abundance at the BGS site
was mainly controlled by the gas-phase chemistry, followed by vertical transport, while its loss
was modulated mainly by dry deposition and horizontal transport. As the dominant important
role of gas-phase chemistry, to provide detailed information on the photochemical formation of
PAN, a photochemical box model with near-explicit chemical mechanism (i.e., the master chemical
mechanism, MCM) was used to explore the relationship of photochemical PAN formation with
its precursors based on the measured data at the BGS site. It was found that PAN formation was
VOC-limited at the BGS site, with the oxidation of acetaldehyde the most important pathway for
photochemical PAN production, followed by the oxidation and photolysis of methylglyoxal (MGLY).
Among all the primary VOC precursors, isoprene and xylenes were the main contributors to PAN
formation. Overall, our study provides new insights into the PAN photochemical formation and its
controlling factors, and highlighted the importance of gas chemistry on the PAN abundance in the
PRD region.

Keywords: peroxy acetyl nitrate; process analysis; relationship; pearl river delta

1. Introduction

Peroxy acetyl nitrate (PAN, CH3C(O)O2NO2) is a key photochemical pollutant which plays an
important role in photochemistry and has detrimental effects on human and vegetation health [1].
In addition to in situ formation near the emission sources of volatile organic compounds (VOCs) and
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nitrogen oxides (NOx), PAN could also be formed in air far away from these sources. PAN is relatively
stable at low temperatures; however, it can be decomposed when the atmospheric temperature is
high [2]. As a NO2 reservoir species, it reduces NO2 concentrations near the emission sources but
releases NO2 in regions remote from fresh emission sources [3]. It is, hence, concerning that PAN
can affect NOx abundance and, ultimately, influence tropospheric ozone formation on local and
regional scales.

PAN is formed from the reaction of NO2 and peroxy acetyl (PA) radical which is produced through
photolysis and oxidation of a small number of oxygenated volatile organic compounds (OVOCs)
(e.g., acetaldehyde (CH3CHO), acetone, methacrolein (MACR), methyl vinyl ketone (MVK), methyl
ethyl ketone, and methylglyoxal (MGLY)) initiated by OH, NO3, and O3. Therefore, the abundances
of aforementioned OVOCs will directly impact PAN levels in the atmosphere. Since PAN was first
discovered in photochemical smog in Los Angeles in the 1950s, numerous studies have investigated the
distribution and source contributions of PAN through field measurements and model simulations [3–6].
The characterization includes the abundance of PAN, the relationship with its precursors, and the
contributions of regional transport in different environments.

The spatial variations of PAN and its formation mechanism has also been investigated in China,
including urban, suburban, rural, and remote areas, for example, in Lanzhou [7], in Beijing [8–10],
and in the Pearl River Delta (PRD) region [11,12]. Zhang et al. [13] found that the thermal
decomposition dominated PAN removal in urban environments in Beijing, from June to September
2010. Liu et al. [8] investigated the contribution of different precursors to the photochemical PAN
formation with the Regional Chemical and Transport Model (REAM), and found that photooxidation of
aromatic non-methane hydrocarbons (NMHCs) was the dominant PAN source at the Peking University
(PKU) site. Xue et al. [9] investigated the PAN–precursor relationship at suburban and urban sites
in Beijing, with an observation-based box model coupled with the Master Chemical Mechanism
(MCM). They found that PAN formation is sensitive to both non-methane hydrocarbons (NMHCs) and
NOx, with isoprene and aromatic NMHCs being the most important NMHC precursors, respectively,
at suburban and urban sites.

Photochemical smog has been frequently observed in the Pearl River Delta (PRD) region, leading
to increasing concerns regarding photochemical pollution. Pollutants that contribute to photochemical
smog are the main focus of many studies, and those pollutants include O3, secondary organic
aerosol (SOA), and their precursors [14–17]. Among them, studies on PAN were scarce in this region.
Wang et al. [11] investigated photochemical ozone formation based on the observed PAN concentrations
at a downwind receptor site in Guangzhou. Zhou et al. [18] investigated the diurnal variations of
PAN and its correlation with O3 at a downwind receptor site in the PRD region. A recent study by
Xu et al. [12] found that the air masses apparently influenced the variations of PAN and the production
efficiency of PAN was correlated to the NOy concentration at a background site in the PRD region.
Despite these efforts, knowledge is still lacking regarding the sources and sinks of PAN and the
PAN–precursor relationship in the PRD region. In this study, data at a rural site (the backgarden
site) were used to investigate the factors influencing the PAN abundance and the PAN–precursor
relationship in the PRD region. Note that the measurement data used in the present study were
collected in 2006, which may not represent the present atmosphere of PRD, where photochemical
products (i.e., O3, PAN, and SOA) and their precursors (VOCs and NOx) have experienced significant
variations in the last decade, because of the rapid urbanization/industrialization and considerable
control measures implemented in the last decade [19,20]. For example, gross national product (GDP),
energy consumption, and developed land area have increased 300%, 160%, and 150%, from 2006 to
2016, respectively [21]; meanwhile, control measures, including laws, standards, regulation, action
plans, and others, have been implemented and formulated to alleviate photochemical pollution [22].
Based on the studies of source apportionments of VOCs (vehicle-related emissions), mixed solvents
and LPG (liquefied petroleum gas) leakage are considered as the major sources of VOCs in PRD in
recent years, with the source contributions varying with the sampling sites, time periods, and types
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of VOCs measured [20]. However, by comparing with the results in previous studies, our results
provided useful information for developing a historical understanding on the PAN photochemistry
in this region, and on the evaluation of the effective control measures for photochemical pollution in
recent years in PRD [23].

2. Methodology

2.1. Field Measurement

Intensive field measurements were conducted during 5–27 July 2006 at the backgarden site (BGS,
23.548◦ N 113.066◦ E) during the Program of Regional Integrated Experiments of Pearl River Delta
Region (PRIDE-PRD2006) Air Quality Monitoring Campaign. The measurement site is a super-site
located in a rural area about 60 km to northwest of Guangzhou city (Figure 1). The detailed description
of the sampling site can be found elsewhere [11]. Briefly, the sampling site was set up on top of a
3-floor building surrounded by trees, farmlands, and a water reservoir, with no industries in vicinity
of the sampling site. During the sampling period, southerly winds were frequently observed, making
the sampling site a receptor site of urban plumes from the center cities in the PRD region.
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Trace gases (i.e., PAN, NOx, NOy, CO, and NMHCs), PPN (peroxypropionyl nitrate),
and meteorological parameters were measured continuously during the campaign. PAN and PPN
was measured by an online gas chromatograph equipped with an electron capture detector (GC-ECD).
The detection limit for PAN and PPN was 5 pptv, with an uncertainty of about ±15% and ±20% of the
measured concentrations, respectively. The instrument was calibrated weekly by predetermined PAN
concentrations. Detailed description for the measurement of PAN could be found in Wang et al. [11].
As the mixing ratios of PAN were about 8 times those of PPN, and about 20% of all PPN data were
below the detection limit (i.e., 5 pptv) [11], only variations of PAN and their impact factors were
investigated in the present study.

The air quality regulated trace gases (i.e, O3, NOx, and CO) were measured by a set of commercial
gas analyzers (Thermo 49C, 42C, and 48C, respectively). In the present study, NOy was measured
by using a NO–O3 chemiluminescence detector combined with a molybdenum converter at 350 ◦C,
while NO2 was measured by chemiluminescence instrument with internal molybdenum converters
maintained at 325 ◦C (42C TEI). A Teflon particulate filter was placed between the inlet and the
molybdenum converter to prevent particles from getting into the detector. It has been reported that
the application of this analyzer would resulted in the overestimation of NO2, as NO2 and other
NOz components, including HNO3, PAN, and HONO, were converted to NO, a process which was
dependent on the photochemical ages of air masses at the sampling sites [24], with the percentages of
overestimation of 10%~30% in the urban and rural sites of the PRD region, respectively, indicating that
the interference of NO2 at the BGS site was not significant [25].
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Detailed information, including the calibration, detection limit, and precision of the above
parameters, was described in Zhang et al. [17]. Furthermore, temperature, solar radiation, wind
direction and speed, and relative humidity, were monitored by an automated weather station.

The NMHCs, including 26 C3–C12 alkanes, 8 C3–C5 alkenes (including the PAN primary
precursors of propene, trans-/cis-2-butenes, and isoprene), and 16 C6–C10 aromatics (including the
PAN primary precursors of toluene, xylenes, and trimethylbenzenes) were measured by an automated
online gas chromatograph equipped with a flame ionization detector (GC-FID) system (see Table S1
for the details). Detailed information for the instrumentation can be found in Zhang et al. [17] and
Wang et al. [26]. Briefly, the detection limit of the instrument ranged from 0.1 to 0.3 ppbv for the
measured species, with an uncertainty within 2%. The whole dataset of NMHC was used as the input
for model simulation [27].

2.2. Photochemical Box Model Incorporating the Master Chemical Mechanism (PBM-MCM)

A photochemical box model, coupled with master chemical mechanism (version 3.2), including
the degradation of 143 primary VOCs and the latest IUPAC inorganic reactions [28,29], was used to
simulate the in situ formation of PAN and the relationship with its precursors. Detailed description of
the model can be found elsewhere [23,30]. The MCM mechanism used in the model is a near-explicit
chemical mechanism, which could describe the degradation of NMHCs and formation of PAN at the
molecular scale. It has been widely used in previous studies to investigate the formation of secondary
products (i.e, O3, PAN, and alkyl nitrate) and their relationship with precursors. In addition to the
chemical mechanism, physical processes, including dry deposition, aloft exchange, and atmospheric
dilution caused by the variations of the planetary boundary layer height, were taken into account in
the model. In this study, the measured concentrations of trace gases (i.e., CO, NOx, and O3), PAN,
50 NMHCs, boundary layer height [31], and meteorological parameters, were used as input for the
model simulation. The net production rate of PAN + PA (peroxy acetyl radical) was simulated by the
model every hour, as suggested in Xue et al. [9].

2.3. Description and Configuration of Community Multiscale Air Quality (CMAQ) Model

The U.S. Environmental Protection Agency’s Community Multiscale Air Quality (CMAQ) model
version 5.0.2 [32,33] was used for air quality simulation during July 2006. Weather Research Forecast
(WRF, version 3.7.1) model was conducted to provide offline meteorological conditions for CMAQ.
A two-nested domain was set for the modeling system with spatial resolution of 27 km (outer domain)
and 9 km (inner domain), respectively. The outer domain covered most of the area of east Asia, aiming
to provide sufficient boundary conditions for the inner domain, whereas the inner domain covered
the entire Guangdong province, with the PRD region being highly focused (Figure 2). In this study,
our model adopted a terrain-following hydrostatic-pressure vertical coordinate, including 30 sigma
levels for all domains with the top fixed at 100 hPa. Each sigma level can be calculated using the
following equation:

H = (Ph − Pht)/(Phs − Pht) (1)

where Ph was the hydrostatic component of the pressure, and Phs and Pht referred to values along
the surface and top boundaries, respectively. η varied from a value of 1 at the surface, to 0 at the
upper boundary of the model domain. For the PRD region, the first vertical layer was connected to the
surface, and had a depth of ~20 m in vertical. The simulation period was conducted from 0000 UTC
1 July to 0000 UTC 27 July 2006.

The 2008-based Multi-resolution Emission Inventory for China (MEIC), developed by Tsinghua
University, was used for anthropogenic emissions. This inventory had a grid resolution of 0.25◦ × 0.25◦,
and considered five emission categories, namely, transportation, agriculture, power plant, industry,
and residence [34]. Biogenic emissions were calculated using the Model of Emissions of Gases and
Aerosols from Nature (MEGAN). It should be noted that anthropogenic and biogenic emissions were
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both incorporated into the first layer, which was regarded as the terrain surface. The model treated
the emissions as follows: once released in the first layer, the anthropogenic and biogenic species
would involve photochemistry, and immediately distribute horizontally and vertically in the specific
domain, through the atmospheric diffusion and advection, respectively, in the model. The detailed
configuration of the WRF-CMAQ model was summarized in Table 1. Our previous studies have
demonstrated that this configuration of the modelling system could have great performance in the
simulation of air quality in the PRD region [35,36].Atmosphere 2018, 9, x FOR PEER REVIEW  5 of 16 
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Table 1. The configuration of physical parameterization for WRF model.

WRF v3.7.1 CMAQ v5.0.2

Microphysics Scheme Morrison (2 moments) Generalized-Coordinate Driver Module Yamartino
Cumulus Scheme Kain–Fristsch Gas-Phase Chemistry Solver Module cb05tucl_ae5

Longwave Radiation Scheme RRTM Aerosol Module Aero5
Shortwave Radiation Scheme Dudhia Photolysis Calculation Module Phot_inline

Boundary Layer Scheme ACM2 Cloud Module Acm_ae5_kmti
Land Surface Scheme Pleim–Xiu Chemical Mechanism cb05tucl

Urban Surface Scheme UCM

In this study, measurement data from seven surface meteorological sites and one surface intensive
observation site (i.e., the BGS site) were used to validate the simulated results from both WRF and
CMAQ modeling systems. Daily mean surface pressure (PSFC), 2 m air temperature (T2), 2 m relative
humidity (RH2), and 10 m wind speed (WS10), measured at the above selected sites, were compared
to modelled results during the simulation period (Table 2).

For meteorological variables, the simulated PSFC and T2 were slightly lower than the
corresponding observed data, with a mean bias of 0.8 hPa and 0.6 ◦C, respectively, while the simulated
RH2 and WS10 were higher, with a mean bias of 5.3% and 1.3 m/s, respectively. The IOA (index
of agreement between observation and simulation) of PSFC, T2, and RH2, were 0.99, 0.82, and 0.75,
respectively, indicating good agreement between the observation data and simulation results. However,
simulated wind speed was 1.3 m/s higher than that observed, and it should be noted that the wind
field was affected by rather complex physical processes, as well as the distribution of land cover. In this
study, a grid resolution of 9 × 9 km was applied, and such a resolution might be difficult to reveal the
sophisticated topography and topographical circulation. Regardless, by comparing synoptic winds,
the model generally captured the patterns of prevailing winds (Figure 3).
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Furthermore, the simulated results of O3, PAN, and NOx (NO + NO2) were compared to those
monitored at the sampling site (Table 2 and Figure 3). The IOA of O3, PAN, and NOx were 0.84,
0.74, and 0.73, respectively, showing that the trends of the chemical variables were well simulated.
Meanwhile, the MB (mean bias) of O3, PAN, and NOx, were −2.2, 0.025, and −5.8 ppbv, respectively,
indicating that the magnitude of simulated variables were close to those observed. Moreover, good
correlation was found between the observed and simulation data of secondary products, i.e, O3

(R2 = 0.80, p < 0.05) and PAN (R2 = 0.71, p < 0.05) (see Figure S1 in the Supplementary). It could be seen
that the peak of O3 and PAN were underestimated on July 18 and July 23, which might be very likely
due to the uncertainty of the VOC emission inventory, as both meteorological variables (wind and
temperature) and NOx were well reproduced. Indeed, Zheng et al. [37] reported that the uncertainty
of emission inventory for VOCs and NOx were relatively high, ranging between −75~150% and
−50~150%, respectively. This can also explain the underestimation of NOx during nighttime on July
20 and July 21 (Figure 3). Since the lifetime of NO is rather short, and it could rapidly titrate O3 during
the night, the significant peak of nighttime NO could be related to random point sources, which were
hard for the emission inventory to record [11]. Nevertheless, the above statistical calculations and time
series comparisons demonstrated that the trend and magnitude of WRF-CMAQ modelling results
were comparable with those observed and, thus, could be used for further analysis.
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Table 2. Comparison of modeling results with observations.

Meteorological Variables
(Unit)

Mean

Obs. Sim. MB NMB RMSE IOA *

Surface pressure (hPa) 998.8 998.0 −0.8 0.01 3.0 0.99
2 m air temperature (◦C) 29.1 28.5 −0.6 −0.01 1.2 0.82
2 m relative humidity (%) 80.3 85.6 5.3 0.1 8.0 0.75
10 m wind speed (m/s) 1.7 3.0 1.3 1.3 1.7 0.60

O3 (ppb) 29.1 31.3 −2.2 0.01 17.2 0.84
PAN (ppb) 0.507 0.532 0.025 0.05 0.561 0.74
NOx (ppb) 21.8 16.0 −5.8 −0.27 15.3 0.73

* IOA is the index of agreement (IOA, IOA = 1− ∑n
i=1(sim(i)−Obs(i))2

∑n
i=1 (|Sim(i)−Obs|+|Obs(i)−Obs|)2 ).
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3. Results and Discussion

3.1. General Statistics

Table 3 presents the measured concentrations of PAN, trace gases, and main PAN precursors at
the BGS site during the sampling period. In general, the median mixing ratio of PAN at the BGS site
was 0.31 ± 0.02 ppbv, with the maximum and the average value of daily maximum mixing ratio of
3.9 and 1.3 ppbv, respectively. These levels were lower than those measured at urban and suburban
areas in Beijing [8,9,13], and an urban site in Lanzhou in western China [7]. Compared to other
field measurements in the PRD region, the mixing ratios of PAN at the BGS site were lower than
those observed at the regional background site (the Hok Tsui site, measurement in 2011) [12] and
the downwind rural site in the PRD region (the Heshan site, measurement in 2012) [18], which were
mainly influenced by the outflow air masses from the center PRD region. The variations of PAN levels
in different field measurements were mainly related to the variations of its precursors. For example, in
the BGS site, the median mixing ratio of NOx was 12 ± 1 ppbv, while toluene was the most abundant
species among all the primary VOC precursors of PAN, with the median mixing ratio of 2335± 408 pptv,
followed by propene, isoprene, and m/p-xylene. In the PRD region, toluene and other aromatics were
mainly from vehicular emissions and solvent usage, while xylenes and trimethylbenzene were emitted
from solvent usage. On the other hand, isoprene was mainly from biogenic emissions, and C3–C4

alkenes (i.e, propene and butenes) were from vehicular emissions [22,38–40]. For anthropogenic
species, the mixing ratios at the BGS site were much lower than the data collected at the downwind
rural site in autumn 2007 (the Wanqinsha site) and in autumn 2014 (the Heshan site, unpublished
data from Prof. Min Shao, Jinan University), while the mixing ratios of biogenic species and isoprene,
between the BGS and Heshan sites, were comparable. Note that the variations of VOCs should be
related to the sampling season, sampling location, meteorological conditions, site topography, and so
on, though vehicle-related emissions, and mixed solvents and LPG leakage were identified as the
major sources of VOCs in PRD in recent years, based on the VOCs’ source apportionment studies [20].

Table 3. The mixing ratios of PAN, its primary precursors, and trace gases at the backgarden site
(median ± 95% confidence interval, unit: PAN, NOx, NOy, and O3 are in ppbv, while non-methane
hydrocarbons (NMHCs) are in pptv).

Species Mixing Ratio Species Mixing Ratio

PAN 0.31 ± 0.02 cis-2-Butene 109 ± 11
NOx 12 ± 1 Isoprene 566 ± 68
NOy 15 ± 1 Toluene 2335 ± 408
O3 21 ± 1 m+p-Xylene 566 ± 99

Propene 1409 ± 96 o-Xylene 245 ± 38
trans-2-Butene 113 ± 13 Trimethylbenzenes 264 ± 44

On the other hand, consistent with other secondary products (i.e., O3), PAN presented a typical
photochemistry profile, with a broad peak observed during daytime hours and reaching the maximum
and minimum mixing ratios in the afternoon and in the early morning.

3.2. Dynamic Processes for PAN Abundance

The mixing ratio of PAN at a given site is affected by processes such as photochemical reactions,
atmospheric transport (vertical and horizontal), dry deposition, and others. In order to explore the
impact factors on the PAN abundance at the BGS site, the integrated process rate (IPR) module
from the WRF-CMAQ model was used. The IPR module provides the contributions of individual
physical processes, and the net effect of photochemistry to PAN levels at a given site and/or region.
The processes examined by the IPR module were vertical and horizontal transport, dry deposition,
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and gas-phase chemical process (including the production and loss through photochemistry, and the
loss due to thermal decomposition).

Figure 4 depicted the spatial distribution of major process contributions to PAN variations at
1400 LT (local time) in PRD. The average spatial contribution, which was obtained by averaging the
simulation results at 1400 LT over the PRD region, was calculated as follows:

X =
∑

i=ngrid
i=1 CONCi

ngrid
(2)

where ngrid is the total numbers of girds in the modelling domain (PRD region), and CONCi is
the contribution at the ith grid within the region. X referred to the averaged spatial contribution,
which was the average value over space at 1400 LT.

The contribution of gas-phase chemistry varied in different areas and presented different patterns,
with the maximum value for the removal of PAN and the maximum value for the increase of PAN levels
through gas-phase chemistry being 850 and 580 pptv in the southern and northern PRD, respectively
(i.e., −850~580 pptv in Figure 4a). Among all the processes that contributed to the increase of PAN
levels, the average contribution of gas-phase chemistry was ~25%, while it was about 26% within
all the processes that contributed to the decrease of PAN levels. Interestingly, the removal of PAN
through gas-phase chemistry could be seen in central urban areas, such as southern Guangzhou,
eastern Dongguan, and Shenzhen. However, gas-phase chemistry was found to make contributions
to the increase of PAN abundance in most rural areas, such as northern Guangzhou, where BGS is
located. As mentioned above, the gas-phase chemical processes considered in the model were the
photochemical formation of PAN through peroxy acetyl radical and NO2, and the removal of PAN
through the thermal decomposition of PAN and the reaction of PAN and OH radical, among which,
thermal decomposition dominated PAN removal [7]. The negative contributions in the central urban
areas of PRD region suggested that the amount of PAN removed by gas-phase chemistry was more
than those formed through gas-phase chemistry.

The difference in the contributions of gas-phase chemistry between rural and urban areas of the
PRD region was mainly related to following factors: (1) PAN formation, through the reaction of peroxy
acetyl radical and NO2 in urban areas, was lower than in rural areas. Though the mixing ratios of
precursors, i.e., NMHCs and NOx, were usually higher in urban rather than rural areas, the PAN
formed through peroxy acetyl radical and NO2 was lower in urban areas, and the concentration of OH
radical was usually lower in urban areas. Indeed, by checking the spatial distribution of emissions
of NOx and isoprene, it was found that there was less isoprene in urban areas than rural areas of the
PRD region, while NOx levels were the opposite (see Figure S2 in the Supplementary). To illustrate
the impact of precursors on the chemical formation of PAN, the production of “C2O3 + NO2 → PAN”
(C2O3 represented peroxy acetyl radicals in CMAQ model), which could reflect the formation through
gas-phase chemistry to the increase of PAN abundance (Figure 5b), were extracted from the model
simulation. The results showed that the formation of PAN was higher in rural areas than that in
urban areas. By considering the spatial distributions of NOx and isoprene in PRD, it was suggested
that higher isoprene levels favored photochemical formations in rural areas, while higher NOx levels
suppress radical activity in urban areas. On the other hand, to provide more evidence for the above
speculation, the PBM-MCM model was applied to the observed VOC and NOx data observed during
summer 2006 at an urban site in Guangzhou. Note that there was no observed PAN data at that site.
The mixing ratio of NOx at the urban site of Guangzhou was 56 ± 3 ppbv, higher than that at the BGS
site. In addition, the most abundant NMHCs at the urban site was propane (9.2 ± 0.7 ppbv, median
± 95% confidence interval), followed by toluene (6.5 ± 0.4 ppbv), ethane (4.7 ± 0.1 ppbv), n-butane
(4.4 ± 0.2 ppbv), ethene (3.6 ± 0.1 ppbv), and i-butane (2.9 ± 0.1 ppbv), higher than those at the BGS
site, due to the closure to emissions. For biogenic species, the mixing ratio of isoprene at the urban site
(0.84 ± 0.04 ppbv) was still higher than that at the BGS site. However, through the PBM-MCM model
simulation, the average production rate of PAN formed from peroxy acetyl radical and NO2 at the
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urban site was about ~700 pptv/hour, lower than that at the rural site (i.e., the BGS site in this study)
(1620 pptv/hour). This was mainly related to the lower concentrations of OH radical at the urban site.
For example, the daily average concentration of OH radical, through model simulation at the urban
site, was 1.2 × 106 molecule/cm3, lower than that at the rural site (3.7 × 106 molecule/cm3), due to
the higher mixing ratio of NO2 that could suppress radical activity and make a dominant contribution
to the sink of OH radicals.

Furthermore, the more PAN removed by gas-phase chemistry was also a result of the higher
surface temperature in central urban areas, which could increase the thermal decomposition of
PAN [10]. The surface temperature in central urban areas was ~2–5 ◦C higher than that in rural
areas, likely due to the difference of underlying surface (Figure 5). Indeed, the sensitivity analysis
of the influence of the increased temperature on thermal decomposition of PAN at the BGS site has
been investigated by the PBM-MCM model (Section 3.3). It was found that the rate of the thermal
decomposition of PAN could increase by ~29% if the temperature was increased by 5 ◦C (data not
shown). On the other hand, though variations in mixing ratios of precursors could result in the different
production rates of PAN between urban and rural areas, the deviation between the production rate
of PAN and its destruction rate through thermal decomposition, could be smaller at urban areas due
to higher temperatures in urban areas [13]. Indeed, through the simulation of the PBM-MCM model,
it was found that the deviation between the production rate and destruction rate was about 41 pptv/h
at the urban site, lower than those simulated at the rural site (p < 0.01).

In addition to gas-phase chemistry, vertical transportation was another process for the increase
of PAN abundance, suggesting that higher PAN levels at upper layers could lead to the increase of
PAN levels through downward advection/diffusion. For example, it was found that the area-averaged
concentrations of PAN, and gas-phase chemistry to PAN loadings at 800 m (above surface), were 70 pptv
(with the maxima value reaching 508 pptv) and 65 pptv (with the maxima value reaching 405 pptv),
higher than those of surface (Figure 6), demonstrating, on one hand, the great contribution of
gas-phase chemistry at the upper layer and, on the other hand, the positive contributions from
vertical transportation diagnosed by the IPR module. Furthermore, both dry deposition and horizontal
transportation resulted in the decrease of PAN abundance. Differently, horizontal contribution varied
significantly in spatial distribution, with the contribution ranging from ~12.1% of the removal of
PAN to ~18.0% of the increase of PAN abundance. Last but not least, dry deposition functioned
as a major sink for PAN, with the averaged spatial contribution being ~48% (~251 pptv) over the
whole PRD region, significantly higher than other processes for PAN removal. This is consistent
with the previous studies, which indicated that dry deposition was the main removal pathway
for PAN in the atmosphere [9,41,42]. For example, through a revised parameterization method
developed by a new non-stomatal resistance formulation, a realistic treatment of cuticle and ground
resistance in winter, and other resistance parameters, the mean values of dry deposition velocity of
PAN in land-use categories of 12 vegetation types, and at seven rural sites, were 0.82 ± 0.08 and
0.74 cm/s [41], comparable to the value calculated by the WRF-CMAQ model in the present study
(i.e., 0.80 ± 0.05 cm/s). However, the dry deposition velocity in the present study was higher than
those modelled in a temperate deciduous forest in the United States [43] (daytime average: ~0.5 cm/s),
which was mainly due to the large uncertainties in the parameterization of Rc (canopy resistance).
In addition to the comparison of simulation results, the simulated results by the WRF-CMAQ model,
in the present study, were similar to that measured in a coniferous forest in North California during
summer 2003, with a mean daily maximum value of ~1.2 cm/s [44]. Furthermore, the simulation of
GEOS (Goddard Earth Observing System)-Chem model indicated that the dry deposition of PAN could
be 0.11 kg N ha−1 yr−1 over the Yangtze River Delta region. Moreover, compared to the observation
results, the removal of PAN through dry deposition (~251 pptv), simulated by WRF-CMAQ in the
present study, was similar to that calculated based on the observed data at a rural site (i.e., Weybourne
Atmospheric Observatory, ~302 pptv/hour) [45].
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Figure 4. Spatial distribution of physical and chemical contributions to averaged PAN concentrations
at noon time. (a) Gas-phase chemical process, (b) dry deposition, (c) vertical transport, (d) horizontal
transport; black triangle highlights the position of BGS. To more clearly present the variations in the
contributions of different process, the negative values in the figure represent corresponding processes
that made contributions to the removal of PAN, while positive values represent corresponding processes
that could increase PAN levels at the sampling site.
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Diurnal patterns, providing more information on the contributions of different processes to the
concentration of PAN, were investigated at the BGS site (Figure 7). In general, the net production rate
of PAN started to increase from 0800 LT, and reached a maximum value of 333 pptv/h at 0900 LT,
which decreased to minimum values at 1300 LT (i.e., −128 pptv/h, indicating that more PAN was
removed than produced, at that time). The contribution of gas-phase chemistry increased in the
morning and reached maximum values at around 1000 LT (local time), with an average production
rate of 794 pptv/h (~75% of all the processes to the increase of PAN levels) during the whole sampling
period. Decreases after the peak are due mainly to the thermal deposition of PAN with increased
temperature [7]. Similarly, dry deposition contributed predominantly to PAN removal, with the
maximum process contributions of 671 pptv/h to PAN removal at around 1100 LT. Furthermore,
similar patterns were found for horizontal and vertical transport, with maximum contributions to the
production and removal of PAN at around 1000 LT, with the average rates of 365 and −248 pptv/hour,
followed by a decrease trend until 1600 LT.
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3.3. The PAN–Precursor Relationship

The above analysis suggested that gas-phase chemistry was the most important factors of the
accumulation of PAN levels at the BGS site, revealing the necessity for the understanding mechanisms
for photochemical PAN formation. Therefore, in this section, the PBM-MCM model was employed to
simulate in situ PAN formation, assign the major factors of photochemical PAN formation, and evaluate
the PAN–precursor relationship at the BGS site.

Figure 8 shows three major pathways leading to production of PA radical at the BGS site during
the sampling period, in the following order: the oxidation of acetaldehyde by OH and NO3 (46 ± 5%),
photolysis and oxidation of methylglyoxal (MGLY) by OH and NO3 (31 ± 2%), and radical recycling
of other radicals to the PA radical (21 ± 1%). Our results were consistent with those simulated at
suburban and urban sites in Beijing [9,13]. The remaining pathway for production of PA radical was
very minor (about 2%), contributed to from the oxidation of other OVOCs and MPAN (methacryloyl
peroxy nitrate, a secondary product formed through the acylperoxy radical (MACO3) with NO2).
In general, secondary sources of both acetaldehyde and MGLY significantly dominated over the
corresponding primary sources [23,46–48]. Therefore, primary precursors (named first-generation
precursors hereafter) that produce important secondary sources, such as acetaldehyde and MGLY,
through photochemical reactions, are significant and indirect contributors to PAN production, and need
to be further identified.
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The RIR (relative incremental reactivity, defined as the ratio of the percent change of the PAN
production to the percent change (20% in this study) of the precursor concentration) was used to
evaluate the relative importance of the first-generation precursors for the net production of PAN [9].
A larger RIR value for a given precursor means a greater probability; that is, the PAN concentrations
can be effectively reduced through cutting down the emission of the precursor. The RIR values for
VOCs were all positive, with the average RIRs (the weighted mean for each RIR value of different
VOC groups at each sampling day) for alkanes, alkenes, and aromatics of 1.1, 1.2, and 1.4, respectively,
while the RIR was negative for NOx, consistent with the sign preferences of the RIR values for both
VOCs and NOx, for photochemical ozone formation at another site in the PRD region [47]. However,
the RIR patterns of VOCs and NOx were different from those at the suburban and urban sites in
Beijing [9], which were mainly associated with the different levels of VOCs and NOx observed in
this study, and those in Beijing [49]. The positive RIR values for VOCs indicated that the in situ PAN
production at the BGS site was controlled by the concentrations of the VOCs, and reduction of VOC
emissions would inhibit PAN production. Figure 9 shows the top 6 VOC species/groups with high
RIR values at the BGS site during the sampling period. Among all the VOCs, isoprene had the highest
average RIR value (0.58± 0.03), suggesting that isoprene was the most important contributor for in situ
PAN formation, followed by xylenes, butenes, and toluene. In the PRD region, isoprene was considered
to be emitted mainly from biogenic emissions. In addition to PAN, it has been reported that isoprene
was one of the most important precursors to photochemical products, including O3 and SOA, though
anthropogenic species dominated the abundance of NMHCs [47,50]. Though the concentrations of
isoprene were not as high as those of toluene and propene, its higher photochemical reactivity resulted
in higher contributions to the formation of PAN. It could be expected that the contributions of isoprene
to PAN, O3, and SOA would become more and more significant in future, as more strict control
measures have been implemented and formulated to reduce the VOCs from anthropogenic emissions,
including solvent usage, biomass burning, industrial emissions, and vehicular emissions [22,51].Atmosphere 2018, 9, x FOR PEER REVIEW  13 of 16 
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4. Conclusions

In this study, the impact factors on the abundance of PAN at a receptor site of the PRD region were
investigated using the IPR analysis module from the WRF-CMAQ model. It was found that gas-phase
chemistry contributed to PAN removal in the urban center of the PRD region, because of the higher
thermal decomposition rate due to higher temperature, while it made a major contribution to the
increase of PAN levels in northern PRD, where the BGS site was situated. Therefore, to provide detailed
information on the formation mechanism of PAN, the PBM-MCM model was applied to simulate the
in situ formation of PAN and its relationship with the primary and secondary precursors. The in situ
formation of PAN was VOC-limited, with the oxidation of acetaldehyde by OH and NO3, and the
photolysis and the oxidation of MGLY being the main pathways for PAN formation. Furthermore,
sensitivity analysis revealed that isoprene was the most important first-generation precursor for PAN
formation, followed by butenes, xylenes, and toluene.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/10/372/s1,
Figure S1: the correlation between observed and simulated data of PAN (a) and O3 (b) at the BGS site (unit:
ppbv), Figure S2: emission rate for NOx and isoprene in Guangdong Province. The left panel is isoprene and the
right panel is NOx (unit: mole/s). The figure indicates that isoprene in the rural area is higher than urban center
while NOx is opposite, Table S1: the mixing ratios of NMHCs at the Backgarden site (median ± 95% confidence
interval).
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