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Abstract
Bayesian operational modal analysis and modal strain energy are employed for determining the damage and looseness of
bolted joints in beam structures under ambient excitation. With this ambient modal identification technique, mode
shapes of a damaged beam structure with loosened bolted connections are obtained based on Bayesian theory. Then,
the corresponding modal strain energy can be calculated based on the mode shapes. The modal strain energy of the
structure with loosened bolted connections is compared with the theoretical one without bolted joints to define a dam-
age index. This approach uses vibration-based nondestructive testing of locations and looseness of bolted joints in beam
structures with different boundary conditions by first obtaining modal parameters from ambient vibration data. The
damage index is then used to identify locations and looseness of bolted joints in beam structures with single or multiple
bolted joints. Furthermore, the comparison between damage indexes due to different looseness levels of bolted connec-
tions demonstrates a qualitatively proportional relationship.
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Introduction

Structures often suffer issues of accumulated damages
due to changes in loadings and deterioration from age
or environmental factors. Damage detection is therefore
a key step in structural health monitoring.1 Assessment
of the state of a structure has been conducted by using
either direct visual inspection or experimental tech-
niques such as acoustic emission, ultrasonic check, and
magnetic particle inspection to avoid causing destruc-
tion or influences to structural operation.2 A character-
istic of all these local methodologies is that they require
a priori localization of damaged zones and lack practic-
ability for large-scale structures.

These limitations can be resolved by using vibration-
based (VB) methods, which can give a global damage
assessment. Bayesian operational modal analysis

(BOMA)3–10 is more convenient than experimental
modal analysis (EMA) or conventional operational
modal analysis (OMA) methods because it can process
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the response histories at all the measured degrees of
freedom (DOFs) and only one set of response time his-
tories is required.3,4 Moreover, it has good robustness
against noisy measurement data because it uses directly
calculated fast Fourier transform (FFT) results without
the need of smoothing or averaging data.5,6 Thus, such
method gives a great implication for the economy and
convenience to identify dynamic responses of structures
under their actual working situations. And the identifi-
cation accuracy of the global damage can be validated.

Nowadays, many structural damage identification
methods based on dynamic responses and dynamic
parameters, including model updating methods, neural
network methods, sensitivity-based methods, and dam-
age index (DI) identification methods, 11–20 have been
developed by comparing vibration information before
and after damages to determine structural damage loca-
tions as well as assessing damage levels. Among them,
DI identification methods are of increasing interest
because they do not need to solve structural parameters
by inversion but directly use vibration characteristics.
Such methods only involve simple calculations and easy
implementations and, hence, can generally satisfy
requirements of monitoring systems.

In this work, the BOMA and modal strain energy
(MSE) methods are used for identifying the locations
and looseness of bolted joints in beam structures with
different boundary conditions under ambient excita-
tion. Advantages of the BOMA and MSE methods are
integrated in this work. Modal parameters of beam
structures with bolted joints before and after damages
are determined by the BOMA method under ambient
excitation. Then, by using mode shape curvature to
obtain MSE, the DI can be obtained to identify loca-
tions and looseness of bolted joints in beam structures
with single or multiple bolted joints. Furthermore, the
comparison between DIs due to different looseness lev-
els of the bolted connections demonstrates a qualita-
tively proportional relationship.

BOMA

Let u be modal parameters including the natural fre-
quency f, modal damping ratio z, mode shape F, power
spectral density (PSD) of the modal force S, and PSD
of prediction error Se. Let fZkg= ½FT

k ,G
T
k �

T 2 R2n be an
augmented vector of the real and imaginary parts of the
FFT, where Fk and Gk denote real and imaginary parts
of the FFT, respectively.3 With a large amount of data,
Zk follows a Gaussian distribution with zero mean and
its covariance matrix is
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where F= F1, . . . ,Fm½ � 2 Rn 3 m is the mode shape
matrix, I2n 2 R2n 3 2n is an identity matrix, and Hk is the
spectral density matrix of modal response with its (i, j)
element given by

Hk(i, j)= Sijfk
�4 (b2
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with bik = fi=fk , in which fi, zi, and fk are the natural
frequency, damping ratio of the ith mode and Nsubk
frequency with FFT results, respectively, and Sij is the
cross spectral density between the ith and jth modal
excitations.

In Bayes’ theorem, the posterior probability density
function (PDF) of u given the FFT data of output
vibration is expressed as

p(ujfZkg)}p(u)p(fZkgju) ð3Þ

where p(u) is the prior PDF of u. By assuming a nonin-
formative prior distribution, the posterior PDF of u,
that is, p(ujfZkg), is proportional to the likelihood
function p(fZkgju)
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For convenience, the negative log-likelihood func-
tion L(u) is used

p(ujfZkg)} exp �L(u)½ � ð5Þ

where L(u)= (1=2)
P

k ln detCk(u)+ (1=2)
P

k Z
T
k Ck(u)

�1Zk.
Minimizing L(u), which is equivalent to maximizing
p(ujfZkg), one can obtain the most probable values
(MPVs) of the modal parameters u. The detailed com-
putation procedure can be found in Au et al.4

MSE

Physical damages of structures can cause changes to
their dynamic characteristics. The vibration parameters
employed in the identification of damages include the
natural frequency, mode shape, damping ratio, mode
shape curvature, MSE, and the flexibility matrix
Generally speaking, structural damage would reduce
the stiffness, increase the damping ratio, and change
the information of the frequency and mode shape.21,22

The MSE method involving curvatures of the mode
shapes has a good sensitivity in small structural
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damage identification and change of mechanical per-
formance.14–16

For a Euler–Bernoulli beam, the strain energy can be
expressed as

U =

ð
EI

2

d2y

dx2

� �2

dx ð6Þ

where x is along the direction of the beam length, y is
the transverse displacement, EI is the bending stiffness,
and d2y=dx2 denotes the approximated curvature of the
beam. For a particular mode shape uk , the energy asso-
ciated with the mode shape is expressed as

Uk =

ð
EI

2

d2uk

dx2

� �2

dx ð7Þ

As the schematic diagram shows in Figure 1, grid
points x1, x2, . . . , xi, . . . , xn separate the beam to be
n� 1 elements. Hence, the element MSE of the kth
mode is given by

Uk, i =

ðxi+ 1

xi

EI

2

d2uk

dx2

� �2

dx ð8Þ

Obviously, the total MSE of the kth mode of the
beam is Uk =

Pn�1
i= 1 Uk, i. A participation factor of

MSE associated with the ith element in the kth mode is
defined as

Fk, i =Uk, i=Uk ð9Þ

The summation of all fractional energies isPn�1
i= 1 Fk, i = 1. Similarly, u�k represents the kth mode

shape of the damaged structure. The corresponding
total MSE and element MSE of the kth mode of the
beam is expressed as U�k and U�k, i; hence, a fractional
energy of the kth mode of the beam can be obtained as

F�k, i =U�k, i=U�k ð10Þ

Considering all measured modes m, DI bi of the ith
element is defined as

bi =

Pm
k = 1

F�k, i

Pm
k = 1

Fk, i

ð11Þ

and

Figure 1. A flowchart of damage detection of a beam with bolted joints.
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Zi =
(bi � �bi)

si

ð12Þ

where Zi denotes a standard DI and �bi and si are the
mean and standard deviation of the DI, respectively. It
should be noted that calculations of partial differential
terms in strain energy, as shown in equation 8, are diffi-
cult. Therefore, in order to obtain precise results, the
method of a cubic spline function is used to fit the val-
ues of the discrete mode shape. Moreover, the deriva-
tion and integration in equation (8) can be yielded by
the fitted cubic spline function. In addition, the theore-
tical modal information of a beam before damage can
be obtained through its analytical solution, and the the-
oretical MSE of the beam before damage then can be
found.

Damage detection in beam structures

In order to simulate damages in a beam, bolted joints
are used in this work. They can not only preset damage
numbers and locations but also simulate different levels
of looseness in bolted connections. Structures with
bolted connections are wildly used in civil engineering.
Damage detection of these structures, such as looseness
localizations for bolted joints, is an important research
topic.17–20 A flowchart of damage detection of a beam
with bolted joints used in this work is shown in
Figure 1 according to the abovementioned theoretical
methods. The arrangement of n DOFs with a uniform
distribution for a cantilever beam is shown in Figure 2.
In each setup of the experiment, three DOFs are tested
and the second DOF is selected as a reference. Only

one-dimensional mode shapes (vertical direction) are
considered here. Accelerometers are Kistler (8395A)
with a sensitivity of 2000 mV=g and measurement range
of 6 2g. Environmental excitation is used to simulate
random white noise. In order to obtain highly precise
results, a sampling rate of 5000Hz and total recording
data length of 600 s were used in this study. The cantile-
ver beam with a bolted joint is shown in Figure 3.
Unless otherwise stated, the physical parameters of the
cantilevers and clamped beams with single damage or
multiple damages are listed in Table 1. The beam is
made of low carbon steel.

The identified natural frequencies and corresponding
standard deviations obtained by the BOMA method
for cases I–IV in Table 1 are listed in Table 2. The mea-
surements were conducted according to different mea-
surement setups according to Figure 2. And the results
in Table 3 show very good consistency for different
setups.

Cantilever beam with different damages

Cantilever beams with single damage (case I with a sin-
gle bolted joint) and multi-damages (case II with multi-
bolted joints) were detected here. Figure 4 shows the
first six identified mode shapes of the cantilever beam
with a single bolted joint before and after damages
obtained by the BOMA and theoretical method, respec-
tively, where MAC= uT

i u�i
�� ��=( uik k � u�i

		 		); ui and u�i
are the ith mode shapes of the beam before and after
damage, respectively. From the values of MAC in
Figure 4, the difference of the mode shapes before and
after damage is small. Thus, it is not reliable to locate

Figure 2. Arrangement of DOFs and measurement setups of the cantilever beam.
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Figure 3. A single damage in the cantilever beam.

Table 1. Physical parameters.

Cantilever beam Clamped beam

Single-damage
Case I

Multi-damage
Case II

Multi-damage
Case III

Multi-damage
Case IV

Length (L/m) 0.967 1.508 1.462 2.003
DOFs (n) 13 19 19 25
Damaged element 7 7, 13 7, 13 7, 13, 19

Table 2. Results of identified natural frequencies with different measurement setups (Unit: Hz).

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Cantilever beam
case I after damage

Frequency MPV Setup 1 7.09 37.25 141.07 225.60 449.86 593.22
Setup 2 6.99 35.39 141.21 225.35 447.11 584.52
Setup 3 7.00 37.20 140.06 230.36 442.44 600.25
Setup 4 6.66 36.36 139.97 227.45 436.52 595.35

Mean frequency 6.94 36.55 140.58 227.19 443.98 593.33
Standard deviation 0.19 0.87 0.65 2.31 5.84 6.57

Cantilever beam
case II after damage

Frequency MPV Setup 1 3.00 17.83 44.83 111.62 169.80 229.35
Setup 2 2.99 17.70 43.75 110.61 170.62 229.26
Setup 3 3.00 17.48 44.29 111.32 170.51 229.46
Setup 4 3.01 17.50 44.71 110.99 170.65 228.31
Setup 5 2.97 17.91 44.80 111.01 170.83 232.78
Setup 6 2.88 17.46 44.59 111.55 169.42 231.21

Mean frequency 2.98 17.64 44.49 111.18 170.30 230.06
Standard deviation 0.05 0.20 0.41 0.38 0.56 1.63

Clamped beam
case III after damage

Frequency MPV Setup 1 22.74 5576 124.08 194.73 263.61 421.57
Setup 2 22.37 54.38 123.56 196.72 263.23 420.02
Setup 3 22.06 55.64 123.07 197.55 263.81 416.44
Setup 4 22.19 55.11 124.12 196.89 263.37 416.24
Setup 5 22.55 54.85 122.32 196.89 263.87 418.42
Setup 6 22.69 55.96 124.62 197.71 264.32 419.24

Mean frequency 22.43 55.28 123.63 196.75 263.70 418.65
Standard deviation 0.27 0.61 0.83 1.07 0.39 2.07

Clamped beam
case IV after damage

Frequency MPV Setup 1 12.97 30.49 54.61 108.12 160.98 204.44
Setup 2 12.92 30.10 53.55 107.43 161.69 205.55
Setup 3 12.80 30.09 54.57 107.66 160.93 206.44
Setup 4 12.72 30.45 54.30 107.57 161.55 206.09
Setup 5 12.73 30.48 54.24 107.40 161.85 206.12
Setup 6 12.82 29.90 54.57 107.86 161.06 205.63
Setup 7 12.95 30.07 54.18 107.39 160.27 204.25
Setup 8 12.99 30.58 54.86 108.59 161.56 205.22

Mean frequency 12.86 30.27 54.36 107.75 161.24 205.47
Standard deviation 0.11 0.26 0.40 0.42 0.52 0.79

MPV: most probable values.
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the damage directly by the changes in mode shapes.
Then, the DI is used to identify the location of the dam-
age. The total and element MSEs can be calculated by

equations (7) and (8), and element damage indices can
be obtained by equations (11) and (12) as shown in
Figure 5. There is a peak in the 7th element of the canti-
lever beam, which simply reveals the damage location
in accordance with the potential damage position.
Figure 6 shows the first six identified mode shapes of
the cantilever beam with two bolted joints before and
after damages. The damage locations are in the 7th and
13th elements, which can be clearly seen in Figure 7 by
the element damage indices. Thus, it is apparent that
the element damage indices are suitable for detecting
damage locations.

Clamped beam with different damages

Two clamped–clamped beams with different damages
simulated by bolted joints were studied in this section.
In case III, three beams were connected by two bolted

Table 3. Contribution of individual modes to the damage index of the damaged element.

Type Element Mode 1 (%) Mode 2 (%) Mode 3 (%) Mode 4 (%) Mode 5 (%) Mode 6 (%)

Cantilever case I 7th 0.24 39.94 5.68 22.25 0.00 31.88
Cantilever case II 7th 0.04 0.01 4.11 17.32 41.78 36.75

13th 0.10 0.01 38.03 26.71 2.27 32.88
Clamped case III 7th 4.83 64.77 26.71 0.08 2.86 0.76

13th 1.11 7.06 85.50 0.34 5.68 0.30
Clamped case IV 7th 11.47 17.91 11.31 5.64 45.66 8.00

13th 0.03 0.62 89.11 6.58 3.65 0.01
19th 1.48 5.03 28.30 64.91 0.28 0.00

Figure 4. Mode shapes of the cantilever beam with a single bolted joint before and after damages (case I).

Figure 5. Element damage indices of the cantilever beam with
a single bolted joint (case I): (a) damage index and (b)
normalized DI.
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joints. In case IV, three bolted joints connected four
beams. Physical parameters and the damage locations
of the two clamped–clamped beams are listed in
Table 1. For case III, Figure 8 shows the first six identi-
fied mode shapes of the clamped–clamped beam with
two bolted joints before and after damages obtained by
the BOMA and theoretical method, respectively.
Moreover, the element damage indices of the clamped–
clamped beam in Figure 9 point out the damage loca-
tions successfully. For Case IV of the clamped–clamped
beam with three damages, damage indices in Figure 10
can be used to identify the three damage locations even

Figure 6. Mode shapes of the cantilever beams with two bolted joints before and after damages (case II).

Figure 7. Element damage indices of the cantilever beam with
two bolted joints: (a) damage index and (b) normalized DI.

Figure 8. Mode shapes of the clamped–clamped beam with two bolted joints before and after damage (case III).
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if the MACs in Figure 11 are very close to 1. The
results of the examination of the cantilever and
clamped–clamped beams show that the values of DI of

the cantilever beams are much higher than those of the
clamped–clamped beams, which indicate that cantilever
beams are more sensitive to structural injuries.
Contribution of individual modes to the DI of the dam-
aged element is defined as Z~i, k=Z~i 3 100%, where Z~i is a
standard DI of the ~ith damaged element considered the
effect of all the measured modes as shown in equation
(12), and Z~i, k is a standard DI of the ith damaged ele-
ment only considered the effect of the kth measured
mode. Table 3 listed the contributions of individual
modes to the DI of the damaged element, from which
one can find the following results: (1) the contributions
of individual modes to the DI are related with locations
of damages and boundary conditions of a beam; (2) the
contribution of the first mode to the DI is relatively
small.

Different looseness levels of bolted connections

DI was used to study different levels of looseness in the
bolted connections of a cantilever beam with single dam-
age and a clamped–clamped beam with multi-damages,
as shown in Figure 12. Obviously, damage in Figure
12(b) is more severe than that in Figure 12(a), and hence,
larger damage indices are expected. Figure 13(a) and (b)
shows the DI for the cantilever and clamped–clamped
beams, respectively. It can be found from Figure 13 that
the damage increases with the increase in the looseness
levels of the bolted connections and clearly the damage
indices as well. Therefore, such methods indicate that
there is a qualitatively proportional relationship between
DI and damage levels.

Figure 9. Element damage indices of the clamped–clamped
beam (case III): (a) damage index and (b) normalized DI.

Figure 11. Mode shapes of the clamped–clamped beam with three bolted joints before and after damage (case IV).

Figure 10. Element damage indices of the clamped beam (case
IV): (a) damage index and (b) normalized DI.
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Conclusion

Using a non-destructive ambient vibration test, modal
parameters of beam structures with different damages
were identified by the BOMA method. One fundamen-
tal difference between the BOMA method and conven-
tional approaches is that BOMA involves no concept of
stochastic averaging and no decision on what quantity
to average. Moreover, the BOMA and MSE methods
can be used to identify locations and looseness of bolted
joints in beam structures with different boundary condi-
tions under ambient excitation. As applications, dam-
age identification for beams with single damage or
multiple damages under different boundary conditions
(cantilever and clamped) were studied successfully by
using a few mode shapes of beams only. Experiments
for different levels of structural damages were carried

out, and comparison between DIs due to different loos-
eness levels of the bolted connections demonstrated a
qualitatively proportional relationship.
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