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Abstract: Hyperspectral image (HSI) classification is a widely used application to provide important
information of land covers. Each pixel of an HSI has hundreds of spectral bands, which are often
considered as features. However, some features are highly correlated and nonlinear. To address these
problems, we propose a new discrimination analysis framework for HSI classification based on the
Two-stage Subspace Projection (TwoSP) in this paper. First, the proposed framework projects the original
feature data into a higher-dimensional feature subspace by exploiting the kernel principal component
analysis (KPCA). Then, a novel discrimination-information based locality preserving projection
(DLPP) method is applied to the preceding KPCA feature data. Finally, an optimal low-dimensional
feature space is constructed for the subsequent HSI classification. The main contributions of the
proposed TwoSP method are twofold: (1) the discrimination information is utilized to minimize the
within-class distance in a small neighborhood, and (2) the subspace found by TwoSP separates the
samples more than they would be if DLPP was directly applied to the original HSI data. Experimental
results on two real-world HSI datasets demonstrate the effectiveness of the proposed TwoSP method
in terms of classification accuracy.

Keywords: hyperspectral image (HSI) classification; kernel principal component analysis (KPCA);
locality preserving projection; discrimination information

1. Introduction

Due to rapid development, hyperspectral images (HSIs) play a very significant role in various
hyperspectral remote sensing applications, e.g., military [1], astronomy [2], and classification [3–5].
Among these mentioned tasks, HSI classification is a fundamental yet important application to provide
primary information for the subsequent tasks, which is the main focus of this paper.

The goal of HSI classification is to distinguish the land-cover types of each pixel, which often has
hundreds of spectral bands [6]. Although the high-dimensional features may provide the advantages
for more accurate classification, the Hughes phenomenon [7] still exists in the classification process.
An effective way is to perform dimensionality reduction of these features before HSI classification.

The existing dimensionality reduction methods can be divided into two categories:
feature selection [8,9] and feature extraction [10,11]. The design of feature selection is to select some
valuable features from the original HSI data. By contrast, the focus of feature extraction is to project
the original high-dimensional feature data into an optimal low-dimensional subspace, which is able to
construct valuable features in the projective transformation. Consequently, many feature extraction
methods have been presented [12–18]. Several popular feature extraction methods are principal
component analysis (PCA) [19], independent component analysis (ICA) [20], linear discriminant
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analysis (LDA) [21], and locality preserving projection (LPP) [22]. In general, PCA is a popular
global dimensionality reduction method, while LPP is an effective local dimensionality reduction
method. Both global and local structures are important for projecting the original high-dimensional
data into a low-dimensional subspace while preserving the valuable information. LDA constructs
a linear transformation by minimizing the within-class scatter and maximizing the between-class
distance. Many extended versions of LDA methods have been presented to improve the classification
performance. For instance, a regularized version of LDA (RLDA) [23] was proposed by exploiting
a regularized with-class scatter matrix. Wang et al. [24] proposed an HSI classification method by
constructing a scatter matrix from a small neighborhood. Since the global structure of HSI data may be
inconsistent with the local structure, the classification accuracy of the LDA-based methods is low for
the HSI data [25]. To deal with the nonlinear problem involved in the original feature space, the kernel
technique has been widely used, which is able to project the data from the original feature space into
a kernel-induced space. The corresponding kernel-based versions have kernel principal component
analysis (KPCA) [26], kernel independent component analysis (KICA) [27], and kernel discriminant
analysis (KDA) [28]. To alleviate the nonlinear and inconsistent problems, Li et al. [29] proposed an
unsupervised subspace projection method for single image super-resolution. However, it is difficult to
obtain better classification performance because the discrimination information is underutilized.

The classifiers of the HSI data fall into two categories: generative and discriminative [30].
The generative classifiers are to learn the joint probability densities with the feature data and the
label information and then compute the posterior probabilities via naive Bayesian [31] or Gaussian
mixture model [32]. Although the generative model exploits the feature data exhaustively, it still lacks
the discriminative information. The discriminative classifiers are able to find the optimal decision
boundaries among different classes, including neighbor neighbors (NN) [33], logistic regression [34],
support vector machine (SVM) [35], and random forest (RF) [36]. Compared to the generative
classification methods, the discriminative model is able to distinguish between classes. Hence, we use
the discriminative model for the corresponding HSI classification.

Due to high-dimensionality of the HSI data, the relationship between the features is often nonliear.
Directly applying the linear transformation method for the high-dimensional feature data may lead to
over-fitting problem during the training process and may provide low accuracy in the classification
process. Kernel-based techniques [37] are designed to deal with the nonlinear problem. We chose
the most popular kernel-based feature representation method, i.e., KPCA, as the first-stage subspace
projection. However, the original feature data will be projected onto a higher-dimensional subspace
to acquire the approximate linear relationship. In order to practically address the dimensionality
reduction problem, we propose a new discrimination-information based locality preserving projection
(DLPP) method by computing the kernel distances in a k-nearest neighborhood for the foregoing KPCA
projected data when the training samples are belong to the same class. Overall, the proposed two-stage
subspace projection framework first applies KPCA to the original high-dimensional HSI data and then
exploits the proposed DLPP method for the preceding KPCA feature data, which is able to preserve
both global and local structures.

In this work, we propose a new dimensionality reduction method for supervised HSI classification,
termed as Two-stage Subspace Projection (TwoSP). In order to exploit the global and local structures of
the original HSI data, the proposed TwoSP framework first projects the data onto the KPCA space to
preserve the global structure and to alleviate the nonlinear problem. Furthermore, the discrimination
information in a k-nearest neighborhood for the within-class samples is used to learn the DLPP
transformation matrix in the training process. The final subspace found by TwoSP substantially
separates the testing samples from different classes. In summary, the main contributions of this paper
can be summarized as follows:

(1) The discrimination information is utilized to compute the samples’ kernel distances from a
k-nearest neighborhood in the subspace, so the local structure of the original HSI data can be
captured adaptively.
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(2) The proposed TwoSP framework is an effective way for supervised HSI classification by
combining the existing KPCA and the proposed DLPP methods, which not only extracts the
nonlinear feature, but also exploits the discrimination information to preserve both global
and local structures of the original HSI data. In an optimal low-dimensional subspace,
the classification boundary can be found for the HSI data.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the
traditional KPCA method. In Section 3, we describe the proposed DLPP method in detail. Section 4
summaries the proposed TwoSP framework for the HSI data. Section 5 evaluates the TwoSP on two
real-world HSI databases compared with several previous works. Finally, we provide a conclusion of
this work in Section 6.

2. Kernel Principal Component Analysis

In this section, we briefly introduce the kernel principal component analysis (KPCA)
method [26,29]. Let XXX = [xxx1, xxx2, · · · , xxxn] ∈ Rd×n be the original feature data, where d is the data
dimensionality and n is the number of the input samples. We then consider the nonlinear problem in a
feature subspace F induced by a mapping function φ : Rd → F. The projected feature data becomes
linearly related in F, which is also named as reproducing kernel Hilbert space.

First, the mapping data, φ(xxxi) should be transformed by zero-mean normalization,
i.e., subtracting the mean vector uuu = 1/n ∑n

i=1 φ(xxxi). Similar to principal component analysis
(PCA) [19], the corresponding covariance matrix CCC for KPCA transformation can be defined as

CCC =
1
n

n

∑
i=1

(φ(xxxi)− uuu)(φ(xxxi)− uuu)T . (1)

We seek the optimal projection vector vvv that maximizes the covariance matrix after projection,
i.e., solving the eigenvalue problem, that is

CvCvCv = λvvv (2)

where λ and vvv are the eigenvalue and the corresponding eigenvector, respectively. The eigenvector vvv
can be expanded as

vvv =
n

∑
i=1

αi(φ(xxxi)− uuu) (3)

where αi is the i-th weighted coefficient and all the n weights are grouped into ααα = [α1, α2, · · · , αn]T .
Substituting Equations (1) and (3) into Equation (2), the eigenvalue problem can be reduced to the
following equation (for the details, see [29]):

K̃KKααα = λααα (4)

where K̃KK is the centered kernel matrix with size of n× n. The relationship between K̃KK and the kernel
matrix KKK of the original feature data can be defined as K̃KK = GKGGKGGKG, where GGG = IIIn − 1/n111n, IIIn is an
identity matrix with size of n× n, and 111n is a matrix all for 1 with size of n× n. Gaussian radial basis is
the most popular kernel function, which is used in this paper, defined as KKKi,j = exp(−‖xxxi − xxxj‖2

2/σ),
where σ is the kernel parameter [38].

The optimal KPCA projection matrix WWW for problem (4) is formed by the r eigenvectors of the
centered kernel matrix K̃KK with respect to the r largest eigenvalues. Therefore, the original feature data
can be converted onto the KPCA subspace:

XXXr = WWWTK̃KK. (5)
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Therefore, the original features are mapped from the d-dimensional space Rd to a r-dimensional
subspace Rr, where the optimal value of r may be larger than d. Although the original features may be
projected onto a higher-dimensional feature space, the linear relationship and global structure can be
captured, which is important for the subsequent dimensionality reduction.

3. Discrimination-Information-Based Locality Preserving Projection

In this section, the proposed discrimination-information based locality preserving projection
(DLPP) method is introduced in detail.

After applying the first-stage KPCA subspace projection, we can obtain the mapping data
XXXr = [xxx1

r , xxx2
r , · · · , xxxn

r ] ∈ Rr×n, which preserves the global structure of the original high-dimensional
feature data. However, in the real-world HSI classification, the local structure may be inconsistent with
the global structure. Therefore, the extraction of the local structure should be taken into consideration
in the process of dimensionality reduction.

Denote another nonlinear mapping function as ψ : Rr → F. Denote the value of kernel matrix be
KKKr

i,j = ψ(xxxi
r)

Tψ(xxxj
r). As mentioned, we also chose the Gaussian kernel function in the computation of

the kernel distances, i.e., KKKr
i,j = exp(−‖xxxi

r − xxxj
r‖2

2/ρ), where ρ is the corresponding kernel parameter.
Then, we can compute the kernel distances among the KPCA mapping data XXXr as follows:

DDDψ
i,j = ‖ψ(xxx

i
r)− ψ(xxxj

r)‖2

=

√
ψ(xxxi

r)
Tψ(xxxi

r) + ψ(xxxj
r)Tψ(xxxj

r)− 2ψ(xxxi
r)

Tψ(xxxj
r)

=
√

KKKr
i,i +KKKr

j,j − 2KKKr
i,j

=
√

2− 2KKKr
i,j ∵ KKKr

i,i = 1 and KKKr
j,j = 1.

(6)

To further preserve the local structures, an adjacency matrix SSS is designed to measure the similarity
relationship between feature vectors xxxi

r and xxxj
r that are from the same class, i.e.,

SSSi,j =


1−DDDψ

i,j, if
(

xxxi
r ∈ N (xxxj

r) or xxxj
r ∈ N (xxxi

r)
)

and
(
`(xxxi

r) = `(xxxj
r)
)

0, otherwise

(7)

where N (xxxi
r) and N (xxxj

r) indicate the k-nearest neighbors of xxxi
r and xxxj

r, respectively. `(·) is the function
to obtain the class information of the input feature vector. That is to say, when the two feature vectors
xxxi

r and xxxj
r have the same class information and exist in each other’s neighborhood, the value of the

adjacency matrix SSS is computed by the corresponding kernel distances; otherwise, zero.
The proposed DLPP is to adjust the adjacency during the dimensionality reduction. Denote PPP

be the projection matrix that embeds the first-stage KPCA mapping data XXXr into an optimal
low-dimensional subspace transformed by XXXm = PPPTXXXr, which yields the following formula:

min
PPP

n

∑
i,j=1
‖PPPT(xxxi

r − xxxj
r)‖2

2SSSi,j. (8)
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Problem (8) can be further reduced to

min
PPP

tr

(
1
2

n

∑
i,j=1

PPPT
(

xxxi
r − xxxj

r

) (
xxxi

r − xxxj
r

)T
PPPSSSi,j

)

=min
PPP

tr

(
1
2

n

∑
i,j=1

(
2PPPTxxxi

rSSSi,j

(
xxxi

r

)T
PPP− 2PPPTxxxi

rSSSi,j

(
xxxi

r

)T
PPPT
))

=min
PPP

tr

(
n

∑
i=1

PPPTxxxi
r

(
n

∑
j=1

SSSi,j

)(
xxxi

r

)T
PPP−

n

∑
i,j=1

PPPTxxxi
rSSSi,j

(
xxxj

r

)T
PPP

)
=min

PPP
tr
(

PPPTXXXrZZZsXXXT
r PPP− PPPTXXXrSSSXXXT

r PPP
)

=min
PPP

tr
(

PPPTXXXrLLLsXXXT
r PPP
)

(9)

where LLLs = ZZZs − SSS and ZZZs = diag(SSS1̃11), 1̃11 is a vector all for 1 with size of n× 1, tr(·) and diag are the
trace function and the diagonal function. To obtain an optimal solution of problem (9), a normalized
scale constraint is imposed as

PPPTXXXrZZZsXXXT
r PPP = IIIm (10)

where IIIm is a m × m identity matrix. Therefore, the optimal DLPP projection matrix PPP∗ can be
computed as

PPP∗ = arg min
PPP

tr
(

PPPTXXXrLLLsXXXT
r PPP
)

s.t. PPPTXXXrZZZsXXXT
r PPP = IIIm (11)

which can be solved analytically through generalized eigenvalue decomposition between XXXrLLLsXXXT
r and

XXXrZZZsXXXT
r . PPP∗ is then formed by the m eigenvectors corresponding to the m smallest eigenvalues.

When the optimal DLPP projection matrix PPP∗ is obtained, the second-stage projected feature data
can be computed by

XXXm = (PPP∗)T XXXr. (12)

After the two-stage subspace projection, the dimensionality of the final projected feature data
is m, which is significantly lower than the original dimensionality, i.e., m� d.

4. The Proposed Framework

In this section, we will show the proposed TwoSP method can be applied to the HSI data.
According to the class information in an ascending sort order, the input HSI feature data
XXX = [xxx1, xxx2, · · · , xxxn] is changed into XXX = [XXX1, XXX2, · · · , XXXc], where XXXi = [xxxni−1+1, xxxni−1+2, · · · , xxxni ],
i = 1, 2, · · · , c, n = n1 + n2 + · · ·+ nc, and n0 = 0 (i.e., excluding the samples with the class information
of 0). These samples are then further partitioned as the training samples and the test ones. Like the
dataset partition method in [39], a small portion of the training set is enough for a good classification
performance. For each subset XXXi (i = 1, 2, · · · , c), we randomly select 5% samples to compose the
training subset and all the remaining samples are used as the test subset. Therefore, we can denote
the training dataset as XXXs = [XXXs,1, XXXs,2, · · · , XXXs,c], where XXXs,i = [xxx1

s,i, xxx2
s,i, · · · , xxxns,i

s,i ], and ns,i = dni ∗ 5%e,
and the test subset is defined as XXXt = [XXXt,1, XXXt,2, · · · , XXXt,c], where XXXt,i = [xxx1

t,i, xxx2
t,i, · · · , xxxnt,i

t,i ], and nt,i =

ni − ns,i. Moreover, the number of training and test samples are denoted as ns = ns,1 + ns,2 + · · ·+ ns,c

and nt = nt,1 + nt,2 + · · ·+ nt,c.
For simplicity, the training dataset and the corresponding class information are marked as

XXXs = [xxx1
s , xxx2

s , · · · , xxxns
s ] and YYYs = [y1

s , y2
s , · · · , yns

s ], where yi
s ∈ [1, 2, · · · , c]. On the other hand, the test

dataset is labeled as XXXt = [xxx1
t , xxx2

t , · · · , xxxnt
t ]. After the HSI classification, the estimated class information
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of the test samples is denoted as YYYt = [y1
t , y2

t , · · · , ynt
t ], where yi

t also belongs to [1, 2, · · · , c]. The details
of the whole framework is described in Algorithm 1.

Algorithm 1: The Proposed Framework for HSI classification.
Input: Training dataset XXXs, training class information set YYYs, test dataset XXXt, the number of

neighbors in DLPP k, first-stage dimensionality r, and second-stage dimensionality m.
Output: Estimate the test class information set YYYt.
First-Stage Subspace Projection:

1. merge XXXs and XXXt into the whole dataset XXX = [XXXs, XXXt] = [xxx1, · · · , xxxns , xxxns+1, · · · , xxxns+nt ];
2. compute the original kernel matrix KKK, where KKKi,j = exp(−‖xxxi − xxxj‖2

2/σ) and

σ =
(

3 ∑n
i,j=1 ‖xxxi − xxxj‖2/n2

)2
; n is equal to ns + nt;

3. compute the centered kernel matrix K̃KK = GKGGKGGKG, where GGG = IIIn − 1/n111n;
4. solve the eigenvalue problem as Equation (4);
5. select the r eigenvectors of K̃KK corresponding to the r largest eigenvalues, to construct the

first-stage subspace projection matrix WWW;
6. according to Equation (5), obtain the KPCA feature data XXXr;

Second-Stage Subspace Projection:

7. extract the projected training samples XXXs,r = [xxx1
s,r, xxx2

s,r, · · · , xxxns
s,r], and compute the

corresponding kernel matrix KKKr, where KKKr
i,j = exp(−‖xxxi

s,r − xxxj
s,r‖2

2/ρ) and

ρ =
(

3 ∑ns
i,j=1 ‖xxx

i
s,r − xxxj

s,r‖2/n2
s

)2
;

8. compute the adjacency matrix SSS in the corresponding k-nearest neigbhors with the same
class using Equation (7), where yi

s = `(xxxi
s,r);

9. solve problem (11), where ZZZs = diag(SSS1̃11) and LLLs = ZZZs − SSS;
10. choose the m eigenvectors corresponding to the m smallest eigenvalues, to construct the

second-stage subspace projection matrix PPP∗;
11. for the training samples, the DLPP feature data XXXs,m is obtained using Equation (12), i.e.,

XXXs,m = (PPP∗)T XXXs,r.;

Classification:
for i = 1, 2, · · · , nt do

12. also according to Equation (12), the final projected feature vector for each test sample
can be computed as xxxi

t,m = (PPP∗)T xxxi
t,r;

13. using the NN classifier, find the nearest training sample in the optimal
low-dimensional feature space, i.e., j∗ = arg minj ‖xxxi

t,m − xxxj
s,m‖2

2, where j = 1, · · · , ns;

14. obtain the corresponding class information, i.e., yi
t = `(xxxj∗

s,m); and then set i = i + 1;

end
Result: Obtain the class estimation for all the test samples, i.e., YYYt.

5. Experimental Results

To validate the effectiveness of the proposed algorithm for hyperspectral image classification,
experiments are conducted to compare with several existing dimensionality reduction methods
including principal component analysis (PCA) [19], independent component analysis (ICA) [20],
linear discriminant analysis (LDA) [21], kernel discriminant analysis (KDA) [28], kernel principal
component analysis (KPCA) [26], the proposed discrimination-information based locality preserving
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projection (DLPP), and the proposed two-stage subspace projection (TwoSP). In addition, we also compare
the classification results of the raw spectral features (RAW).

5.1. Experimental Setting

In this paper, we conduct the experiments on two real-world HSI datasets, i.e., Indian Pines and
Kennedy Space Center (KSC) datasets [40], to demonstrate the effectiveness of the proposed TwoSP
method compared with the existing dimensionality reduction algorithms.

The Indian Pines dataset in the corrected version consists of 145× 145 pixels and 200 spectral
bands, which was gathered by an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
over Northwestern Indiana. By removing the background with the class information of 0, 10,249 pixels
are annotated from 16 classes. On the other hand, the KSC dataset was acquired by an AVIRIS sensor
over the Kennedy Space Center, Florida. The size of this HSI is 512 × 614. Each pixel has 176 spectral
bands with the annotated 13 classes. By removing the background pixels, 5211 valuable pixels remain.
Table 1 shows various land-cover types and the selected sizes of the training and test subsets for the
two aforementioned HSI datasets.

Table 1. Land-cover classes with the number of training and test samples for the Indian Pines and KSC.

Indian Pines KSC

Class No. Land Cover Training Test Class No. Land Cover Training Test

1 Alfalfa 3 43 1 Scurb 39 722
2 Corn-notill 72 1356 2 Willow-swamp 13 230
3 Corn-mintill 42 788 3 Cabbage-palm-hammock 13 243
4 Corn 12 225 4 Cabbage-palm/oak-hammock 13 239
5 Grass-pasture 25 458 5 Slash-pine 9 152
6 Grass-tree 37 693 6 Oak/broadleaf-hammock 12 217
7 Grass-pasture-mowed 2 26 7 Hardwood-swamp 6 99
8 Hay-windrowed 24 454 8 Graminoid-marsh 22 409
9 Oats 1 19 9 Spartina-marsh 26 494
10 Soybeans-notill 49 923 10 Cattail-marsh 21 383
11 Soybeans-mintill 123 2332 11 Salt-marsh 21 398
12 Soybeans-clean 30 563 12 Mud-flats 26 477
13 Wheat 11 194 13 Water 47 880
14 Woods 64 1201
15 Bldg-grass-tree-drives 20 366
16 Stone-steel-towers 5 88

Total 520 9729 Total 268 4943

For classification, we use the nearest neighbor (NN), support vector machine (SVM), and random
forest (RF) classifiers to obtain the estimated classes of the test samples. For SVM, we use the
“libsvm” toolbox in a Matlab version with a linear kernel [41]. After that, we select three widely
used classification measurements, i.e., average accuracy (AA), overall accuracy (OA), and kappa
coefficient (KC) between the estimates and the ground-truths of all the classes, to objectively assess the
performance of HSI classification. All the experiments we performed on a personal computer with
Intel Xeon CPU E5-2643 v3, 3.40 GHz, 64 GB memory, and 64-bit Windows 7 using Matlab R2017b.

5.2. Performance on Hyperspectral Image Datasets

To alleviate the random error caused by the randomly selecting 5% samples as the training set and
all the remaining samples as the test set, we repeated the experimental results five times and reported
the average accuracy for each class, average AAs for all the classes, average OAs and average KCs for
all the test samples with their corresponding standard deviations (STDs) in this paper. The quantitative
classification accuracy of these methods are given in Tables 2 and 3 for the Indian Pines dataset and
KSC dataset, respectively. Each method uses its best reduced dimensionality shown in brackets.
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From the two tables, we can see that TwoSP outperforms all the competitors in terms of AA,
OA, and KC. Especially, the classification performance of TwoSP is better than directly applying the
proposed DLPP method to the original HSI feature data. PCA neglects the nonlinear relationship
from the original high-dimensional feature data, although it achieves the dimensionality reduction.
Due to the nonlinear problem, which may lead to a one-to-many relationship among the feature vector,
ICA is unable to capture the global and local structures. LDA preserves the local manifold structure by
exploiting the discrimination information of the training samples. However, the global structure is
lost in the dimensionality reduction. KDA considers both the global and local data relationship in the
discriminant analysis. For a small number of training samples, the classification accuracy is often low.
For instance, “Class No. 9” in Table 2, the average OA value (%) for individual class No. 9 of KDA, is
6.3, while that of our TwoSP reaches up to 30.5 in spite of having only one training sample. To achieve
dimensionality reduction, KDA introduces the discrimination information of all the within-class and
between-class samples. However, the within-class samples that are far away from the referred sample
may have a negative effect on the final classification accuracy. Therefore, the discrimination information
in a small neighborhood should be taken into consideration in the dimensionality reduction process,
which is proposed in this paper. KPCA largely alleviates the nonlinear problem from the HSI data, but it
cannot preserve the local data relationship with the valuable discrimination information. The proposed
DLPP method directly applying to the original feature data is better than the traditional linear feature
transformation approaches, i.e., PCA, ICA, and LDA. The proposed TwoSP method investigates the
local structure of the HSI data adaptively, and preserves the global structure in the first-stage subspace
projection. Therefore, TwoSP can achieve the best classification performance on a large proportion of
the occasions shown in the quantitative results.

Table 2. Performance (%) of different methods (with the best reduced dimensionality in brackets) on
the Indian Pines dataset using the NN classifier.

Class No. RAW (200) PCA (17) ICA (17) LDA (11) KDA (16) KPCA (40) DLPP (14) TwoSP (20)

1 40.0 ± 12.6 42.3 ± 20.6 41.4 ± 22.2 42.8 ± 17.8 45.1 ± 11.2 43.3 ± 23.5 49.3 ± 15.7 31.6 ± 12.2
2 48.1 ± 1.2 49.3 ± 2.0 38.9 ± 4.1 57.0 ± 2.1 68.1 ± 3.6 39.5 ± 3.3 59.8 ± 3.1 67.0 ± 1.7
3 44.2 ± 2.4 44.0 ± 2.3 29.0 ± 3.2 42.6 ± 6.6 59.4 ± 3.4 29.9 ± 4.4 48.6 ± 5.4 56.1 ± 3.2
4 30.2 ± 6.3 28.2 ± 6.9 29.4 ± 5.6 27.9 ± 3.2 39.3 ± 5.0 29.9 ± 5.8 31.8 ± 5.3 40.1 ± 4.8
5 76.3 ± 5.1 75.9 ± 3.6 44.4 ± 3.2 83.6 ± 5.5 82.6 ± 2.9 47.8 ± 4.1 83.4 ± 3.3 84.1 ± 4.4
6 92.2 ± 1.9 92.4 ± 2.2 78.0 ± 4.5 91.2 ± 2.1 92.0 ± 2.5 78.8 ± 4.1 90.1 ± 2.5 92.3 ± 1.7
7 80.0 ± 10.0 79.2 ± 10.4 55.4 ± 15.5 76.2 ± 14.7 73.1 ± 12.5 59.2 ± 15.0 85.4 ± 9.2 82.3 ± 6.4
8 94.5 ± 2.3 94.9 ± 2.5 87.5 ± 2.9 96.0 ± 1.4 84.7 ± 1.8 87.1 ± 1.0 93.7 ± 2.8 89.3 ± 5.8
9 14.7 ± 10.8 14.7 ± 10.8 1.1 ± 2.4 12.6 ± 9.6 6.3 ± 6.9 2.1 ± 4.7 24.2 ± 13.2 30.5 ± 9.4

10 61.3 ± 6.5 62.2 ± 6.7 50.3 ± 6.1 46.8 ± 3.8 61.2 ± 3.0 51.3 ± 5.1 57.4 ± 2.9 69.1 ± 1.4
11 67.4 ± 3.4 67.4 ± 2.1 56.4 ± 2.4 64.8 ± 1.7 75.9 ± 2.8 57.6 ± 2.3 63.1 ± 1.1 74.8 ± 2.0
12 35.0 ± 2.6 34.6 ± 3.7 29.5 ± 1.9 46.8 ± 3.9 59.3 ± 8.0 29.6 ± 1.9 48.4 ± 4.9 56.0 ± 6.3
13 93.3 ± 1.5 93.2 ± 1.7 77.9 ± 6.7 92.6 ± 3.7 97.4 ± 1.0 78.6 ± 6.6 93.7 ± 5.0 96.4 ± 1.3
14 90.3 ± 2.9 89.3 ± 3.8 81.1 ± 3.0 93.4 ± 1.6 94.2 ± 1.1 81.6 ± 2.8 94.0 ± 2.0 95.2 ± 2.1
15 27.2 ± 2.0 27.3 ± 2.3 20.3 ± 3.2 44.6 ± 8.1 44.2 ± 3.3 20.9 ± 3.6 44.5 ± 7.7 46.7 ± 6.1
16 86.4 ± 3.0 86.4 ± 3.1 89.1 ± 4.9 79.8 ± 8.3 76.6 ± 9.9 80.9 ± 5.6 82.1 ± 6.0 86.4 ± 3.2

AA 61.3 ± 1.4 61.3 ± 2.0 50.6 ± 1.9 62.4 ± 2.7 66.2 ± 1.5 51.1 ± 2.1 65.6 ± 0.8 68.6 ± 0.9
OA 64.8 ± 1.0 64.9 ± 0.8 53.6 ± 1.0 65.8 ± 1.7 73.4 ± 0.9 54.4 ± 0.7 67.5 ± 0.9 73.9 ± 1.2
KC 59.7 ± 1.1 59.8 ± 0.8 47.1 ± 1.1 60.8 ± 2.1 61.0 ± 18.4 48.0 ± 0.7 62.9 ± 1.0 70.1 ± 1.4

Furthermore, the classification maps of the aforementioned methods on Indian Pines and KSC
datasets are visualized in Figures 1 and 2. RAW, PCA, ICA, and KPCA have low classification
performance because they cannot use the discrimination information in the subspace projection process.
Although LDA and KDA use the discrimination information, they introduce all the within-class and
between-class samples in the discriminant analysis, which is difficult to preserve the local manifold
structure. From the subfigures (f) and (g) in Figures 1 and 2, a clear classification map is shown
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for several classes. TwoSP, which enforces the discrimination information in a small neighborhood,
shows better visualization quality than the others, since it not only preserves the global structure in
the first-stage KPCA subspace projection, but also learns the local data relationship in the second-stage
DLPP subspace projection. It also demonstrates that the utilization of discrimination information
within a small neighborhood can largely improve the classification performance in the corresponding
nonlinear feature space.

Table 3. Performance (%) of different methods (with the best reduced dimensionality in brackets) on
the KSC dataset using the NN classifier.

Class No. RAW (176) PCA (23) ICA (8) LDA (10) KDA (10) KPCA (87) DLPP (41) TwoSP (22)

1 87.7 ± 3.2 87.6 ± 3.2 60.9 ± 3.7 86.1 ± 4.2 66.9 ± 3.4 65.9 ± 5.7 82.4 ± 1.8 90.6 ± 2.3
2 75.7 ± 13.3 75.7 ± 13.2 50.9 ± 13.4 86.4 ± 1.9 58.2 ± 14.3 49.7 ± 12.7 87.8 ± 2.4 77.4 ± 2.0
3 66.7 ± 3.7 66.8 ± 3.8 26.2 ± 3.1 53.4 ± 7.1 27.7 ± 5.1 28.0 ± 4.6 55.3 ± 7.7 77.4 ± 3.5
4 50.0 ± 3.3 49.9 ± 3.0 24.4 ± 2.5 39.9 ± 4.5 26.0 ± 4.8 23.3 ± 3.7 39.3 ± 5.1 64.0 ± 4.2
5 45.8 ± 13.1 45.4 ± 12.9 29.3 ± 8.7 50.4 ± 4.7 33.6 ± 12.7 27.9 ± 11.2 51.3 ± 1.9 73.0 ± 1.8
6 34.2 ± 5.2 34.5 ± 5.1 23.8 ± 0.4 50.6 ± 8.2 22.8 ± 3.5 23.7 ± 5.5 52.9 ± 8.8 59.0 ± 7.5
7 64.0 ± 11.2 63.0 ± 10.3 23.0 ± 6.4 53.7 ± 13.0 23.6 ± 11.1 24.7 ± 7.4 47.3 ± 9.2 78.8 ± 9.5
8 69.4 ± 6.8 69.0 ± 7.4 42.4 ± 6.8 78.4 ± 4.4 46.0 ± 7.3 44.7 ± 7.7 77.7 ± 3.8 83.1 ± 3.5
9 88.5 ± 4.0 88.5 ± 4.0 67.4 ± 6.3 82.3 ± 3.2 67.7 ± 7.8 68.2 ± 5.7 80.7 ± 2.3 93.5 ± 2.6
10 81.1 ± 2.4 81.2 ± 2.5 50.2 ± 8.8 94.8 ± 0.8 61.9 ± 5.5 54.6 ± 6.0 91.6 ± 1.6 82.5 ± 1.7
11 92.8 ± 1.6 92.8 ± 1.6 88.3 ± 1.7 87.6 ± 2.6 94.4 ± 1.6 88.2 ± 3.6 87.5 ± 3.1 85.2 ± 3.0
12 78.3 ± 4.7 78.2 ± 4.6 62.9 ± 9.1 89.1 ± 2.6 68.1 ± 6.1 64.1 ± 5.3 88.3 ± 4.1 80.9 ± 4.2
13 98.4 ± 0.9 98.4 ± 0.9 98.0 ± 1.0 99.6 ± 0.4 98.1 ± 0.7 98.2 ± 0.9 98.5 ± 0.9 98.5 ± 0.9

AA 71.7 ± 1.8 71.6 ± 1.8 49.8 ± 1.7 73.3 ± 1.1 53.5 ± 1.9 50.9 ± 1.7 72.4 ± 1.3 80.3 ± 0.9
OA 79.6 ± 0.6 79.5 ± 0.6 60.9 ± 1.6 81.4 ± 0.6 64.6 ± 0.9 62.4 ± 1.0 80.3 ± 0.6 85.0 ± 0.6
KC 77.3 ± 0.6 77.2 ± 0.6 56.5 ± 1.8 79.3 ± 0.7 60.6 ± 1.0 58.1 ± 1.1 78.1 ± 0.7 83.3 ± 0.8

Figure 1. Classification maps for the Indian Pines dataset with different dimensionality reduction
algorithms using NN classifier. (a) The ground truth of the classes. (b) Randomly selected training
samples. (c) Result obtained by using RAW features. (d) PCA. (e) ICA. (f) LDA. (h) KDA. (g) KPCA.
(i) the proposed DLPP. (j) The proposed TwoSP.
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Figure 2. Classification maps (cropped to a size of 290 × 310) for the KSC dataset with different
dimensionality reduction algorithms using NN classifier. (a) The ground truth of the classes.
(b) Randomly selected training samples. (c) Result obtained by using RAW features. (d) PCA. (e) ICA.
(f) LDA. (h) KDA. (g) KPCA. (i) The proposed DLPP. (j) The proposed TwoSP.

To further validate the effectiveness of the proposed method, we conducted an additional
experiment by the effective cross validation method, i.e., the McNemar test [42]. Table 4 shows
the results of the McNemar test for the proposed method and the baselines, where the methods on
the vertical direction are the test methods, while those on the horizontal direction are the reference
methods. When the value is greater than zero, it illustrates that the classification performance of the
test method is better than that of the reference method; otherwise, the reference method has more
advantages. Generally, the threshold of significance in the McNemar test is set to 0.05. Furthermore,
when the absolute value is larger than 1.96, it indicts that the two methods have obvious differences.
From Table 4, we can see that the TwoSP has the highest classification performance when compared
with the existing approaches. In addition, the simplified version of our TwoSP, i.e., DLPP, also has
good performance to some extent.

Table 4. McNemar test of different methods on the Indian Pines and KSC datasets.

Methods
Indian Pines KSC

PCA ICA LDA KDA KPCA DLPP TwoSP PCA ICA LDA KDA KPCA DLPP TwoSP

RAW −0.3 20.8 −1.9 −1.3 20.2 −4.9 −18.7 0.9 26.6 −3.0 24.3 26.9 −1.3 −9.4
PCA - 21.5 −1.7 −1.2 20.9 −4.7 −18.1 - 26.5 −3.1 24.2 26.8 −1.2 −9.5
ICA - - −19.3 −19.1 −1.5 −22.1 −33.7 - - −24.5 −4.7 −1.0 −21.7 −25.4
LDA - - - 0.7 18.6 −3.6 −15.5 - - - 21.9 24.3 5.5 −7.1
KDA - - - - 18.5 −3.9 −17.4 - - - - 4.2 −18.8 −23.1

KPCA - - - - - −21.4 −33.2 - - - - - −21.5 −25.1
DLPP - - - - - - −12.8 - - - - - - −10.2

5.3. Discussion on Computational Cost

In this subsection, we only discuss the computational cost of the proposed method compared
with state-of-the-art approaches. Considering the main steps in Algorithm 1, the proposed HSI
classification method takes account of three parts: KPCA subspace projection, DLPP subspace
projection, and classification.

Let ns and nt be the number of training and test samples, respectively. n = ns + nt.
The computational complexity of first-stage subspace projection matrix, i.e., WWW, is O(n3). Here, we can
obtain the KPCA feature data XXXr with the dimensionality of r. k is denoted as the number of neighbors
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in the computation of adjacency matrix. The computational complexity of the second-stage subspace
projection process is thenO(rkns + r3). After the two-stage subspace projection framework, the original
HSI data is projected onto an optimal low-dimensional feature space with the dimensionality of m.
For classification using NN classifier, each test sample is compared with all the training samples to
find the nearest neighbor. Therefore, the computational complexity of classification is O(mntns).

Table 5 shows the computational time (in terms of seconds) of the proposed method and the
baselines, where T1 represents the computation of projection for different methods, and T2, T3, and T4
are the classification time obtained by NN, RF, and SVM classifiers, respectively. Since the first-stage
projection of TwoSP needs to compute the kernel matrix (i.e., KKK) with all the training and test samples,
T1 of TwoSP is larger than that of other methods. The T1s of KPCA and TwoSP are similar because
they both involve in the computation of a large kernel matrix. KDA uses the discriminant information
of a small portion of training samples, so the computation of its kernel matrix is small. RAW directly
puts the original HSI data into the classification process, so its T1 is null. Among the T2, T3, and T4
of different methods, we can see that the RF classifier needs more time to classify all test samples.
Considering classification performance and computational time simultaneously, we chose the NN
classifier in the experiments.

Table 5. Computational time (s) of different methods on Indian Pines and KSC datasets.

Methods
Indian Pines KSC

T1 T2 T3 T4 T1 T2 T3 T4

RAW - 1.67 35.48 2.84 - 0.42 20.63 2.88
PCA 0.68 0.70 21.48 0.92 0.28 0.19 12.81 0.67
ICA 11.69 0.66 21.36 3.19 5.41 0.17 8.44 0.52
LDA 0.20 0.62 17.64 0.63 0.08 0.18 7.58 0.31
KDA 1.05 0.69 19.42 0.80 0.35 0.16 7.64 0.30

KPCA 423.63 0.83 26.03 1.60 89.23 0.31 16.70 0.66
DLPP 0.61 0.67 18.48 0.53 0.17 0.22 10.20 0.41
TwoSP 428.25 0.68 21.28 0.83 89.38 0.19 12.00 0.41

5.4. Performance of Reduced Dimensionality

Each method is performed with different reduced dimensionality. To demonstrate the optimal
reduced dimensionality for the corresponding method, the classification accuracy in terms of overall
accuracy is obtained by the NN classifier when the dimensionality varies within {2, 3, · · · , 30} on
Indian Pines and KSC, respectively.

Figure 3 shows the curves of OA versus the reduced dimensionality on two different HSI datasets.
The quantitative results are obtained with a random dataset partition. The proposed TwoSP method
achieves the highest OA constantly. Especially, the OA value obtained by TwoSP exceeds that of
the other methods to a large extent when the reduced dimensionality is more than 7. In Figure 3,
the classification performance becomes stable when the dimensionality increases to a certain value.
In most cases, the performance with low-dimensional projected data is better than the original
high-dimensional data, which also validates that the dimensionality reduction does improve the
classification accuracy.
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Figure 3. Overall Accuracy (OA) obtained by the NN classifier versus the reduced dimensionality of
various different methods on two real-world HSI datasets, i.e., (a) Indian Pines and (b) KSC.

5.5. Analysis of Classifier

To evaluate the classification performance of each dimensionality reduction method with three
different classifiers, i.e., NN, RF, and SVM, we randomly selected five different dataset partitions
and then computed the average OA values. After the projected feature data was obtained by one of
these dimensionality reduction methods, the classes of the test set were discriminated by the NN, RF,
and SVM classifiers, respectively. Figure 4 shows the classification results vs. different classifiers on
two HSI datasets.

Figure 4. Classification Results in terms of Overall Accuracy (OA) of each dimensionality reduction
method with different classifiers on (a) Indian Pines and (b) KSC.

In Figures 4a,b, the proposed TwoSP method presents the best classification performance for
different classifiers when compared with the other dimensionality reduction methods, which also
demonstrates that TwoSP has better robustness in different classifiers. For most cases on the Indian
Pines dataset, the NN and RF classifiers generates better OAs than the SVM classifier. On the other
hand, the RF classifier achieves better results on the KSC dataset, while the results with NN are superior
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to RF for LDA and DLPP. It also illustrates the classification accuracy of different classifiers on different
datasets may have relatively large differences. To unify the utilization of the classification model,
we applied the NN classifier to evaluate the classification performance of each class in Tables 2 and 3.

5.6. Analysis of Parameters

In our proposed TwoSP method, there are three parameters set first, as shown in the input of
Algorithm 1. Therefore, the first- and second-stage subspace projection dimensionality r and m and the
number of neighbors k are studied experimentally. We randomly choose one of the training and test set
partition and mainly take the Indian Pines dataset for instance. The objective values of the parameters
are changed during the analysis process.

Figure 5a shows the overall accuracy results obtained by simultaneously varying the
dimensionalities r and m. Since the first-stage subspace projection is designed to preserve the global
structure of the original HSI data, the dimensionality of the second-stage subspace projection m should
be smaller than r. From this subfigure, we can see that TwoSP is robust to r and m in a wide range.
When r and m increase to a certain value, the classification performance in terms of OA is the best.
Therefore, we select r = 45 and m = 20 for the Indian Pines dataset in the experiments. Figure 5b shows
the different OA values vs. different number of neighbors in the second-stage subspace projection.
TwoSP achieves the highest OA value when the number of neighbors k = 200, which is chosen in
this paper. Note that the neighbors are selected by comparing the kernel distances first. Only the
within-class samples are used to compute the value of adjacency matrix, and zero otherwise. Therefore,
in practice a small number of training samples are used to learn the local structure of the first-stage
projected data.

Figure 5. Parameter analysis of (a) OAs with simultaneously varying the first-stage subspace projection
dimensionality r and the second-stage subspace projection dimensionality m on Indian Pines, and (b)
OAs with varying the number of neighbors k in the computation of adjacency matrix.

6. Conclusions

In this paper, we proposed the TwoSP method on the basis of the preservation of global and local
structures to learn the optimal low-dimensional feature space for HSI classification. TwoSP first applies
the traditional KPCA method to address the nonlinear problem which often exists in the HSI data.
However, the dimensionality of the first-stage subspace projection is not small enough. It needs to
apply the second-stage subspace projection to the preceding projected features. TwoSP exploits the a
priori knowledge of the training samples to construct an adjacency matrix for the within-class samples,
which can enhance the discrimination information of projected features.

Compared with the state of the art, TwoSP is better able to learn the data manifold relationship in
the desired feature space, which creates various valuable features for HSI classification. In addition,
TwoSP strongly retains the local smoothness within a small neighborhood. Through the experiments
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on two real-world HSI datasets, i.e., Indian Pines and KSC, TwoSP provides better classification
performance than the existing dimensionality reduction methods, which also validates the effectiveness
of the proposed method.

Our future work will focus on how to extend the proposed method to train the optimal
transformation matrix for each test sample quickly. It is desirable to improve the classification
performance and increase the computation efficiency of the dimensionality reduction.
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