
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcfm20

Engineering Applications of Computational Fluid
Mechanics

ISSN: 1994-2060 (Print) 1997-003X (Online) Journal homepage: http://www.tandfonline.com/loi/tcfm20

Effect of river flow on the quality of estuarine and
coastal waters using machine learning models

Mohamad Javad Alizadeh, Mohamad Reza Kavianpour, Malihe Danesh,
Jason Adolf, Shahabbodin Shamshirband & Kwok-Wing Chau

To cite this article: Mohamad Javad Alizadeh, Mohamad Reza Kavianpour, Malihe Danesh,
Jason Adolf, Shahabbodin Shamshirband & Kwok-Wing Chau (2018) Effect of river flow on the
quality of estuarine and coastal waters using machine learning models, Engineering Applications of
Computational Fluid Mechanics, 12:1, 810-823, DOI: 10.1080/19942060.2018.1528480

To link to this article:  https://doi.org/10.1080/19942060.2018.1528480

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 10 Oct 2018.

Submit your article to this journal 

Article views: 140

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tcfm20
http://www.tandfonline.com/loi/tcfm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/19942060.2018.1528480
https://doi.org/10.1080/19942060.2018.1528480
http://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2018.1528480&domain=pdf&date_stamp=2018-10-10
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2018.1528480&domain=pdf&date_stamp=2018-10-10


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS
2018, VOL. 12, NO. 1, 810–823
https://doi.org/10.1080/19942060.2018.1528480

Effect of river flow on the quality of estuarine and coastal waters using machine
learning models

Mohamad Javad Alizadeha, Mohamad Reza Kavianpoura, Malihe Daneshb, Jason Adolfc,
Shahabbodin Shamshirband d,e and Kwok-Wing Chauf

aFaculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran; bFaculty of Electrical and Computer Engineering, University of
Science and Technology of Mazandaran, Behshahr, Iran; cBiology Department, Monmouth University, West Long Branch, NJ, USA; dDepartment
for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; eFaculty of Information
Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam; fDepartment of Civil and Environmental Engineering, Hong Kong
Polytechnic University, Hung Hom, Hong Kong

ABSTRACT
This study explores the river-flow-induced impacts on the performance of machine learningmodels
applied for forecasting of water quality parameters in the coastal waters in Hilo Bay, Pacific Ocean.
For this purpose, hourly recorded water quality parameters of salinity, temperature and turbidity as
well as the flow data of theWailuku River were used. Severalmachine learningmodels including arti-
ficial neural network, extreme learningmachine and support vector regression have been employed
to investigate the river-flow-induced impact on the water quality parameters from the current time
up to 2 h ahead. Following the input structure of themachine learningmodels, two separatemodels
based on including and excluding the river flow were developed for each variable to quantify the
importance of the flow discharge on the accuracy of the forecasting models. The performance of
different machine learning models was found to be close to each other and showing similar pattern
considering accuracy and uncertainty of the forecasts. The results revealed that flow discharge influ-
enced thewater salinity and turbidity of the bay inwhich themodels including the river flow as input
variables had better performance compared with those excluding the flow time series. Among the
water quality parameters investigated in this research, river flow made the most and least improve-
ment on the efficiency of the models applied for forecasting of turbidity and water temperature,
respectively. Overall, it was observed that water quality parameters can be properly forecasted up
to several hours ahead providing a potentially valuable tool for environmental management and
monitoring in coastal areas.
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1. Introduction

Water quality parameters are important components to
assess the health of the coastal environment and to
guarantee suitable conditions for aquatic life. Estuar-
ine and coastal waters are particularly susceptible to
non-point/point source pollution conveyed by rivers and
streams (Clark, 1995). These coastal areas are among
the most important regions considering food supply
and natural resources. Recently, anthropogenic pollu-
tion released in water bodies has been recognized as an
important point of pollutants which necessitates seri-
ous attention to prevent drastic environmental problems.
There are many estuaries that have been closed to com-
mercial fishing due to pollution problems (Weiner and
Matthews, 2003). Concerning an increasing demand on
the use of estuarine waters, development of comprehen-
sive water quality management programs is needed to
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evaluate conflicting uses of the estuary such as the dis-
charge of wastewater, alterations of physiographic fea-
tures, and alterations in the distribution and amount of
freshwater inflow (Espey & Ward, 1972). Development
of forecasting models of water quality parameters sev-
eral hours ahead based on river flow can provide an
early-stage alarm to prevent severe disaster in the coastal
ecosystem by taking necessary actions in advance. More-
over, they can be employed as helpful tools for coastal
monitoring purposes.

Water quality includes a wide variety of parameters
that may be classified into three groups – biological,
chemical and physical factors. In this study, three well-
known physical properties of water quality including
water temperature, salinity and turbidity are investigated.
Sharp increase or decrease in these physical parameters
can adversely affect water quality and microorganisms

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2018.1528480&domain=pdf
http://orcid.org/0000-0002-6605-498X
mailto:shahaboddin.shamshirband@tdt.edu.vn
http://creativecommons.org/licenses/by/4.0/


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 811

as well (e.g. high turbidity has side effects on flora and
fauna).Water qualitymodels can be constructed as physi-
cally basedmodels or data-drivenmodels. In the physical
models, good knowledge of physics of the phenomena,
relationships among different parameters (using math-
ematical descriptions) is mandatory. Chau and Jiang
(2002) developed a three-dimensional numerical model
of pollutant transport for the Pearl River Estuary. This
model was applied for chemical oxygen demand (COD)
distribution in the estuary and the results indicated the
impact of pollutants especially during the wet season.
Corbari, Lassini, andMancini (2016) investigated intense
short rainfall events on the water quality variables in
the coastal waters. This study was carried out by means
of remote sensing data including MODIS. The results
showed that spatial and temporal water quality variation
is dependent on the rainfall intensity and also on the dis-
tance from the shoreline. Data-drivenmodels are becom-
ing more popular due to their simplicity, ease of imple-
mentation and suitable performance. Dealing with water
quality models, key elements of the water bodies can be
designated as water quality indicators, or a combination
of several water quality parameters can be formulated as
water quality indices (WQIs). Several WQIs have been
presented which consider different variables in the for-
mulation. Gazzaz, Yusoff, Aris, Juahir, and Ramli (2012)
used theWQI as a function of dissolved oxygen (DO), the
concentration of suspended solids (SS), biochemical oxy-
gen demand, COD, pH and ammonia nitrogen (NH3-N).
Sotomayor, Hampel, & Vázquez (2017) applied k-means
classifying technique and a combined model of a KKN-
genetic algorithm for water quality assessment in a river
basin in southern Ecuador. In this study, a large num-
ber of water quality parameters have been taken under
consideration. The results indicated that the efficiency
of the employed techniques for water quality manage-
ment in the river, especially when dealing with a com-
plex dataset is required. Such models may require a large
number of variables to estimate the WQIs. However, in
some cases, these datasets are not available. Moreover,
sometimes the models need to concentrate on some spe-
cific parameters. Therefore, development of water quality
models based on individual important parameters rather
than composite WQIs is a good alternative. Further-
more, some of the water quality parameters are mutually
interrelated (e.g. water temperature with DO). There-
fore, investigation of some particular parameters will
suffice.

The data-driven (machine learning) models under-
stand mathematical equations from analysis of concur-
rent input and output time series (Solomatine & Ost-
feld, 2008). Artificial neural network (ANN), adaptive
neuro-fuzzy inference system (ANFIS), support vector

regression (SVR), extreme learning machine (ELM) and
decision tree (D3) are some of the common machine
learning techniques. The ANN and SVR are among the
most widely used ofmachine learningmethods. Recently,
ELM has gained great popularity for time series and fore-
casting purposes in several fields. Thesemodels are being
increasingly used for and forecasting purposes in hydrol-
ogy, earth and environmental studies including water
quality. Applications of different machine learning tech-
niques such as genetic algorithm, artificial neural net-
work and fuzzy inference system into water quality have
been reviewed by K.-W. Chau (2006). ANN and ELM
models have been employed for water quality forecasting
in rivers and seas (Alizadeh & Kavianpour, 2015; Dogan,
Sengorur, & Koklu, 2009; Nodoushan, 2018; Tomić,
Antanasijević, Ristić, Perić-Grujić, & Pocajt, 2018; Wu,
Wang, Chen, Cai, & Deng, 2018), for DO concentra-
tionmodeling (Heddam&Kisi, 2017), for river discharge
monitoring (Garel & D’Alimonte, 2017; Motahari &
Mazandaranizadeh, 2017) and for analysis of chlorophyll
dynamics (Tian, Liao, &Zhang, 2017). Fotovatikhah et al.
(2018) provided a comprehensive survey on the compu-
tational intelligence applications in flood management
systems. Yang et al. (2018) used SVR, ANN, principal
component analysis methods for forecasting of water
quality in Dianchi Lake. They investigated the spatial
and temporal variations of lakewater surface temperature
and water quality. Barzegar, Moghaddam, Adamowski,
and Ozga-Zielinski (2018) integrated different wavelet-
ELM models through an ensemble process for multi-
time-step-ahead forecasting of water quality. The results
indicated the efficiency of the proposed technique. Other
types ofmachine learningmodels such as ANFIS, genetic
algorithm and ELM have been used in different fields
of studies (Aghbashlo, Shamshirband, Tabatabaei, Yee, &
Larimi, 2016; Chenar & Deng, 2018; Franco-Lopez, Ek,
& Bauer, 2001; Jung, Popescu, Kelderman, Solomatine, &
Price, 2010; Mohammadi, Shamshirband, Kamsin, Lai, &
Mansor, 2016; Olyaie, Banejad, Chau, & Melesse, 2015;
Wang, Xu, Chau, & Lei, 2014).

To date, no research study has been reported to
explore river-flow-induced impacts on the water qual-
ity parameters in coastal and estuarine waters. Lack of
enough data records of the river flow and water qual-
ity elements in coastal waters is a drawback for such
studies. An interesting point related to the river flow
impacts on the water quality in coastal waters is to con-
sider the travel time of flow (or pollutant) from the
river flow gauge to coastal waters and also its lability
in the natural environment. In this regard, multi-time-
step-ahead forecasting models can be of great impor-
tance. However, uncertainty about future events can
reduce the efficiency of the long-term forecastingmodels.
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Therefore, development of forecasting models with reli-
able outputs necessitates examining different datamining
techniques.

Themain objective of this study is to explore the effect
of river flow on the performance of machine learning
models for forecasting of water quality parameters in
coastal and estuarine waters in Hilo Bay, Pacific Ocean.
In this regard, surface water temperature, salinity and
turbidity as water quality indicators are forecasted up
to 2 h ahead. ANN, ELM, and SVR are employed to
explore impacts of the river flow on the water qual-
ity parameters. The width of uncertainty band with
95% confidence level as well as root mean square error
(RMSE) and coefficient of determination (R2) and mean
error is used to evaluate the performance of the mod-
els. The performance of different models is compared in
terms of river flow impacts, time horizon, the forecast-
ing technique and its time and space complexity proce-
dure. A brief description of the methodology, datasets
and study area and model development procedures are
given in the next section. The results of the models are
discussed in Section 3. Conclusions are presented in
Section 4.

2. Materials andmethods

2.1. Study area and data analysis

To explore the river flow impacts on the water quality
parameters, the hourly flow data related to the Wailuku
River entering Hilo Bay, Pacific Ocean were considered
for the procedure. Moreover, the datasets of hourly water
quality parameters including water temperature, salin-
ity and turbidity in Hilo Bay were employed. These data
were recorded by the Hilo Bay water quality buoy (HBB)
moored within 1 m of the surface in one location within
a small tropical estuary. The hourly data used in this
study are average data of 15-minute records of the buoy.
Quality of all data has been controlled and their accu-
racy has been validated. They have been provided by
PacIOOS (Pacific Islands Ocean Observing System). The
water quality measured by HBB is expected to be affected
by freshwater inputs from the Wailuku River into Hilo
Bay. The river is 45.1 km long and is the longest river
in Hawaii. The coordinates for the buoy station (HBB)
are 19.7430 N 155.0814 W, and the river station is USGS
16704000 Wailuku River at Piihonua, HI at 19.71214 N
and 155.15080 W. The data cover hourly records from
2014 to 2016. Figure 1 illustrates the study area and
Figure 2 shows the HBB components.

The datasets used in this study were recorded from
January 2012 to December 2016 with 15-minute inter-
val. Each hourly data are the average of four values. All

the data have been normalized in a range of [0,1], as
follows.

X′
i = Xi − Xmin

Xmax − Xmin
(1)

where X′
i represents the normalized data and Xi,

Xmax,Xmin denote the observed data, maximum and
minimumof themeasured data, respectively. The statisti-
cal analysis including minimum ‘Min’, maximum ‘Max’,
average ‘Mean’, standard deviation ‘Sd’ and skewness
‘Skew’ are given in Table 1 to give more details about the
applied data.

The statistics show that the data have a wide range of
variation. Especially, the flow data have high values of
standard deviation that implies a high deviation of data
from the average value.

2.2. Machine learning techniques

2.2.1. Artificial neural networks
Feed forward neural networks (here called ANN) are a
common type of artificial neural networks which applied
in this study. An ordinary ANN model consists of input,
hidden and output layers in which each layer has its
nodes/neurons. Each layer is connected to the following
layer via nodes. The nodes in the input layer which rep-
resenting the input variables are transformed to hidden
layer with weighted connections. The computations and
processes are carried out in the hidden layer and then the
nodes of the hidden layer are connecting to the output
layer. Based on the relative importance of each input vari-
able, appropriate weights between the connections of the
nodes in the layer with those of the following layer are
assigned.

Usually, the appropriate weights are determined
through an iterative backpropagation algorithm in the
training stage. Given N distinct samples (xi, yi), a single
hidden layer ANN model with a linear activation func-
tion of output nodes in the general form can be expressed
as (Huang, Zhu, & Siew, 2006):

oj =
n∑

i= 1
βig(wixj + bi), j = 1, . . . ,N (2)

where xj is the input value to node j, oj is the output
at node j, g is the hidden layer activation function (in
this study means log-sigmoid) for the hidden layer, bi is
the hidden layer bias, and n is the number of nodes in
the hidden layer. wi and βi are the weight between the
input nodes and the ith hidden node, and the weight
between the ith hidden node and the output nodes,
respectively.
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Figure 1. Study area in Hilo Bay, Hawai’i Island.

Figure 2. The Hilo Bay water quality Buoy (HBB) components.

Table 1. Data statistical analysis.

Variable Min Max Mean SD Skew

Salinity (ppt) 5.127 35.695 28.25 4.54 –1.28
Turbidity (NTU) 0 88.375 2.286 3.34 5.733
Temperature (°C) 18.082 29.5 24.996 1.403 –0.360
River flow (m3/s) 0.133 494.25 6.024 16.87 10.67

2.2.2. ELM
ELM proposed by Huang, Zhu, and Siew (2004) has
become popular due to its faster implementation and

better generalization compared to traditional ANNs.
Unlike the gradient-based learning algorithm, ELM does
not suffer from the stacking in local minima and over-
fitting problems. Dealing with ELM, the input weights
and hidden layer biases are chosen randomly while in
ANN models, it is a time-dependent procedure due
to determination through an iterative process. Also, in
ELM the method, unlike the ANN, there is no need
to tune all the parameters but determining the output
weights analytically while choosing the input weights
and hidden layer biases randomly. Assuming that there
exist wi,βi, bi in which the target variable of N sam-
ple (Yj) can be estimated with zero error (i.e. Yj = oj).
Therefore Equation (3) can be rewritten in a compact
form as:

Hβ = Y (3)

where

H =

⎡
⎢⎣
g(w1.x1 + b1) . . . g(wn.x1 + bn)

... . . .
...

g(w1.xN + b1) . . . g(wn.xN + bn)

⎤
⎥⎦
N∗n

(4)
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β =

⎡
⎢⎣

βT
1
...

βT
n

⎤
⎥⎦
n∗m

, Y =

⎡
⎢⎣
yT1
...
yTN

⎤
⎥⎦
N∗m

(5)

where H is the hidden layer output matrix.
Working with ELM, the matrix H can remain fixed

once arbitrary values have been assigned to these param-
eters at the beginning of learning. Therefore, the model
can be trained by finding a least-squares solution β̂ for
Equation (6).

H(w1, ..,wn, b1, .., bn)β̂ − Y

= min
β

H(w1, ..,wn, b1, .., bn)β − Y (6)

If n = N, the H will be a square and invertible matrix
and the training samples can be easily approximated with
zero error.However, in real applications, it is usual to con-
sider n � N, therefore, having a non-square matrix H,
the exact solution may not exist. Therefore, a least square
technique is used to obtain the solution.

β̂ = H†Y (7)

where H† is the Moore–Penrose generalized inverse
of matrix H. A complementary introduction into ELM
algorithm can be found in Huang et al. (2004) and
Taormina and Chau (2015).

2.2.3. SVR
Generally, support vector machines (SVMs) are a com-
mon type of data mining technique for classifying and
regression purposes. They employ a hyperplane to sepa-
rate data points of two categories. SVR is a type of support
vector machine dealing with regression problems. Given
a training dataset of {(xi, yi)}ni=1 wheren is the sample size
and x and y represent input and output data, the method
is applied to map the input space into an n-dimensional
feature space using a non-linear function (ϕ(x)). Basi-
cally, the SVR function can be expressed as (Liu, Zhou,
Chen, & Guo, 2014):

f (x) = (w.ϕ(x)) + b (8)

wherewdenotes theweight vectorw = {w1, . . . ,wn}, and
b represents the bias. In SVR, the coefficients including
the weight vector and the bias are estimated by defining
a cost function. In the conventional regression mod-
els, the coefficients were obtained by minimizing square
error while in SVR, they are determined using a new
loss function known as the ε-insensitive loss function

(Liu et al., 2014).

Lε(f (x), y) =
{|f (x) − y| − ε for |f (x) − y| ≥ ε

0 Otherwise (9)

where Lε is the loss function, y is the target value, and ε

is the region of ε insensitivity (defined by the user).
In SVR, the weight vector is derived using the regular-

ized risk function as follows:

Rreg = C
1
n

n∑
i=1

Lε(f (xi), yi) + 1
2
w2 (10)

where 1
2w

2 and C are called regularization term and con-
stant, respectively. The constant can be introduced by the
user. Equation (10) can be rewritten as an optimization
problemwith the following cost function and constraints
(Vapnik, 2013):

minimize
1
2
w2 + C

n∑
i=1

(ξi, ξ∗
i ) (11)

subject to

⎧⎨
⎩
yi − (w.ϕ(xi) + b) ≤ ε + ξi
(w.ϕ(xi) + b) − yi ≤ ε + ξ∗

i
ξi ≥ 0, ξ∗

i ≥ 0, i = 1, . . . , n
(12)

where ξi and ξ∗
i are the positive slack variables tomeasure

the training samples’ deviation outside the ε-insensitivity
zone. Finally, the general form of the SVR regression
function is formulated as (Vapnik, 2013):

f (x) =
n∑

i=1
(ai − a∗

i )K(x, xi) + b (13)

where ai, a∗
i ≥ 0 are the Lagrangian multipliers that sat-

isfy the equality aia∗
i = 0; and K(x, xi) is the kernel

function(Liu et al., 2014). Different types of kernel func-
tion such as linear, Gaussian, polynomial, etc., can be
employed in which selection of an appropriate type of the
function is a mandatory step toward achieving suitable
performance of SVR. Further details of SVM and SVR
can be found in Vapnik (2013).

2.3. Procedures

To select and develop any data mining techniques for
forecasting purposes, input selection, accuracy of the
models, physical meaning of the relationship, size of the
data in training stage and its homogeneity with the test-
ing dataset and complexity of the models’ structure have
to be taken under consideration to guarantee efficiency
and reliability of the models (Alizadeh, 2017). Different
machine learning techniques have their own advantages
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and disadvantage because of employing different formu-
lations. Therefore, they are different in terms of structure,
training procedures, learning time, etc. For instance, the
dataset in traditional ANNmodels is usually divided into
three subsets of training, validation and testing in which
validation set is applied to control the model overfitting.
On the other hand, the SVR and ELM need two datasets
(no overfitting problem). In terms of learning time, the
ELM and ANN are faster than the SVR technique. More-
over, they have different input structure but in this study,
all the three techniques have been fed by the same input
variables. In this study, an attemptmade to themodel and
forecast water temperature, salinity and turbidity up to
several hours ahead in Hilo Bay. To select the right input
variables for each model, the correlation between each
predictor with different lags and the target variable has
been determined (Table 2).

As seen in Table 2, each water quality parameter is
correlated mainly to its previous values. Moreover, an
acceptable correlation between the river flow and water
quality parameters especially salinity and turbidity are
observed. A negative correlation between salinity and the
river flow indicates freshwater intrusion to coastal and
estuarine saline waters. The high correlation between the
river flow and water turbidity in the estuary shows that

the flow increases water turbidity due to making turbu-
lence and spreading it. The river flow with 1 lag has the
highest correlation with the water quality parameters in
which implies the travel time (1 h) of flow from gauging
station in the river to the Buoy in the Bay. Figure 3 illus-
trates a variation of water quality parameters and the flow
time series for 18-day period in August 2014 in which the
peak flow has happened in this time period. It is observed
from the figure that turbidity and salinity fluctuations
are in accordance with the flow discharge. Moreover, the
peak flow has affected the water temperature. However,
for the other flow values, the temperature is only slightly
influenced by the river discharge.

This study investigates the efficiency ofmachine learn-
ing methods of ANN, ELM, and SVR to simulate and
forecast the water temperature, salinity and turbidity in
Hilo Bay for the current time (t) up to 2 h in advance
(t+ 2). In each model, the same variable as the output
variable with different lags (up to 3) is used as input vari-
ables. Moreover, the river flow data are included in the
input structure of the developed models to forecast the
target variable up to 2 h in advance. To provide more
comparisons, separate models excluding the river flow
data as an input variable are considered. In the model
development, there are some parameters which need to

Table 2. Correlation analysis for water quality parameters.

Tem Sal Tur River flow (Q)

Variable t t–1 t–2 t t–1 t–2 t t–1 t–2 t t–1 t–2

Tem (t) 1 0.98 0.96 0.24 0.22 0.20 −0.19 −0.19 −0.19 −0.29 −0.30 −0.31
Sal (t) 0.24 0.22 0.21 1 0.96 0.93 −0.54 −0.54 −0.54 −0.58 −0.59 −0.60
Tur (t) −0.19 −0.18 −0.17 −0.54 −0.52 −0.51 1 0.94 0.88 0.66 0.67 0.65

Figure 3. Time series of water quality parameters and flow discharge in August 2014.
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Figure 4. Schematic layout of the research study.

be tuned accordingly to reach the desired performance.
In the ANN, the number of neurons in the hidden layer
was 10, with the Levenberg–Marquardt algorithm. The
activation function of ELM was set as ‘sigmoid’. The lin-
ear kernel function for SVR is used. Other important
characteristics of the models were set as default. The
main steps of the study can be schematically illustrated
as Figure 4.

The performance of the models is measured using
three indices of the coefficient of determination (R2),
RMSE and width of uncertainty band (±1.96Se). In

Equation (26), ei = Oi − yi and ē = 1
n

n∑
i=1

ei represent the

prediction error and mean error, respectively.

R2 = (
∑n

i=1(yi − ȳ)(Oi − Ō))
2

∑n
i=1 (yi − ȳ)2

∑n
i=1 (Oi − Ō)

2 (14)

RMSE =
√∑n

i=1 (yi − Oi)
2

n
(15)

Se =
√√√√ n∑

i=1
(ei − ē)2 /n − 1 (16)

where n is the number of data.

3. Results and discussion

3.1. Turbidity

Table 2 shows that river flow has the highest correlation
with turbidity compared to salinity and temperature. As
observed, the turbidity in the current hour has the highest
correlation with the river discharge in the previous hour
which can be due to travel time between hydrometric sta-
tion recording the flow data and the water quality buoy.
Moreover, there is a remarkable dependency of turbidity
with those of flow data in other time horizons including t,
and t–1. Therefore, the machine learning models includ-
ing the flow data were constructed using the flow data
in t, t–1, and t–2. These models were employed to pre-
dict turbidity up to 2 h ahead. The results are presented
in Table 3. The models excluding and including the river
flow as input variables are denoted with ‘–Q’ and ‘+Q’
respectively.

Regarding Table 3, it can be obtained that the mod-
els including the river flow (regardless of the machine
learning type) provide more accurate forecasts of turbid-
ity compared with those of excluding the river flow in the
input structure. Therefore, it can be derived that the river
flow can affect the turbidity of such large water bodies
remarkably. Effects of the river flow on the turbidity in
t+ 1 and t+ 2 indicate that it takes some hours to recover
disturbance and turbidity caused by the river flow in the
previous hours. Following the performance of themodels
at different times, it can be seen that the models’ effi-
ciency decreases as the time horizon increases. However,

Table 3. Results of machine learning models for the turbidity in
the test period.

ANN ELM SVR

Time −Q +Q −Q −Q −Q +Q

t RMSE 1.04 0.98 1.517 1.394 1.49 1.48
R2 0.877 0.892 0.871 0.892 0.876 0.877

1.96Se 2.916 2.739 2.97 2.73 2.93 2.917

t+ 1 RMSE 1.518 1.261 2.033 1.81 2.022 1.919
R2 0.78 0.83 0.772 .818 0.778 0.8

1.96Se 3.898 3.434 3.982 3.544 3.947 3.749

t+ 2 RMSE 2.329 2.0719 2.304 2.054 2.324 2.293
R2 0.706 0.769 0.707 0.765 0.704 0.711

1.96Se 4.555 4.057 4.512 4.02 4.544 4.485



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 817

Figure 5. Scatterplots of turbidity for the ANNmodels.

Figure 6. RMSE and uncertainty band of turbidity forecast during the test period.

the results for all three times investigated in this study
are acceptable. Considering the performance of different
machine learning models, it can be found that all three
types of the models (ANN, ELM, and SVR) behave in a
similar manner and the errormeasures for all of them are
close to each other. Therefore, only forecasts of onemodel
(the ANN) for different times are depicted against those
of the observed data during the test period (Figure 5).
As the models including the river flow have a higher
coefficient of determination, here only their scatterplots
are illustrated.

Generally, good agreement was obtained between
observed and forecasted data. As the time horizon
increases, the correlation between observed and fore-
casted data decreases. In Figure 5, for time t+ 1 and t+ 2,
the data have more deviation from the linear trend line.
In time t, the extreme values have been fairly forecasted
while for times t+ 1 and t+ 2, the values have been
generally underestimated. Comparison of the RMSE and
1.96Se for different times and the ANN models with and
without the river flow inputs is shown in Figure 6.

Figure 6 implies that the model for time t has the best
accuracy and the uncertainty band for its output is nar-
rower than the other times. As the time horizon increases,

the uncertainty band is going to increase with a sharper
rate. Therefore, the models applied for multi-hour-ahead
forecasting may embed a high amount of uncertainty.

3.2. Water salinity

Among the variables considered in this study, it was
found the water salinity in the Hilo Bay is mostly
dependent on its values in the previous time steps and
also on the river flow. Salinity is inversely correlated with
those of the river flow with the highest correlation in t–2.
Therefore, the water salinity in previous time steps, as
well as the river flow (in the case), were applied to forecast
the salinity in t, t+ 1 and t+ 2. Table 4 gives the results
of the different models including and excluding the river
flow up to 2 h ahead.

Results presented in Table 4 suggest that the models
including the river flow slightly outperform the mod-
els without the flow inputs. Higher values of correlation,
lower values of RMSE and also uncertainty band indicate
the superiority of the models in which gain the flow data
in their input structures. The forecasted time series of the
ANNmodels during the test period are plotted versus the
real values in Figure 7.
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Table 4. Results of machine learning models for the salinity.

ANN ELM SVR

Time −Q +Q −Q +Q −Q +Q

t RMSE 1.299 1.275 1.29 1.28 1.296 1.288
R2 0.90 0.903 0.90 0.902 0.9 0.902

1.96Se 2.539 2.493 2.528 2.497 2.535 2.515

t+ 1 RMSE 1.812 1.789 1.821 1.783 1.816 1.794
R2 0.805 0.815 0.806 0.817 0.806 0.807

1.96Se 3.549 3.463 3.537 3.432 3.54 3.48

t+ 2 RMSE 1.856 1.815 2.09 2.02 2.082 2.031
R2 0.75 0.76 0.748 0.767 0.746 0.763

1.96Se 4.053 3.934 4.046 3.87 4.063 3.96

According to Figure 5, the model provided a good
forecast for all range of the salinity data. A high cor-
relation can be found and all the points converge the
trend line. For the other times, there are some points dis-
tracted from the line. However, the general performance
of the models regardless of the time horizon is accept-
able. Results related to the RMSE and uncertainty band
of the forecasted target variable during the test period are
presented in Figure 8.

Figure 8 reveals that the models with the flow have
lower values of RMSE and uncertainty. The models’
performance deteriorates as the time horizon grows.
However, the forecasts for times t+ 1 and t+ 2 are still
reliable. Generally, it can be found that the machine

learning models such as ANN, ELM, or SVR have a suit-
able capability to forecast water salinity in coastal and
estuarine waters several hours ahead.

3.3. Surface water temperature

According to correlation analysis, the surface tempera-
ture in the current hour (t) is mostly correlated to the
temperature in the preceding time steps. However, its
relation with the river flow is not very high. The main
reason for this inverse correlation can be lower, colder
temperature of the river compared with warmer the estu-
arine water. The low correlation may be due to the fact
that the amount of river flow entering in the estuary is
not remarkable in comparison to the estuarine water vol-
ume. As this study is concentrated on the river-induced
impacts, two sets of models including and excluding the
flow as input parameter have been constructed. There-
fore, the input structure of the forecasting models for
temperature consists of its values in preceding hours (t–1,
t–2, t–3) and flow time series from the current time
(t) up to 2 h ago (t–2) (in case of including model) are
considered. The results are given in Table 5.

Regarding Table 5, the surface water temperature can
be efficiently forecasted for several hours ahead. The

Figure 7. Scatterplots of salinity for the ANNmodels.

Figure 8. RMSE and uncertainty band of salinity forecast during test period.
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Table 5. Results of machine learning models for the surface
temperature.

ANN ELM SVR

Time −Q +Q −Q +Q −Q +Q

t RMSE 0.289 0.286 0.287 0.289 0.288 0.287
R2 0.95 0.951 0.95 0.95 0.95 0.95

1.96Se 0.563 0.559 0.562 0.564 0.564 0.58

t+ 1 RMSE 0.356 0.35 0.401 0.399 0.347 0.352
R2 0.903 0.905 0.903 0.905 0.928 0.927

1.96Se 0.783 0.776 0.784 0.777 0.677 0.681

t+ 2 RMSE 0.47 0.46 0.468 0.464 0.47 0.466
R2 0.868 0.873 0.867 0.873 0.87 0.878

1.96Se 0.912 0.898 0.916 0.9 0.914 0.899

relatively high coefficient of determination, low values
of RMSE and uncertainty confirm good agreement of
the forecasted values against the real values. The results
show that for time t, the uncertainty in temperature fore-
casting is about 0.5C in which it indicates the reliabil-
ity and efficiency of the models. Moreover, the models
can predict the temperature for 2 h ahead with adequate
accuracy and reliability. The uncertainty band for time
t+ 2 is less than unity which confirms high performance
of the applied models for temperature forecasting. The
results are promising for water temperature monitoring
and environmental management in coastal and estuarine

waters. Figure 9 illustrates the scatterplots of the ANN
models for temperature for the test dataset.

In Figure 9, there is a high similarity between fore-
casted and observed values of surface temperature for
all three times under consideration. The forecasts are
roughly close to 1:1 line which indicates the accuracy of
the models. For more illustrations, Figure 10 presents the
results for RMSE and width of uncertainty band of the
forecasting models during the test period. In the figure,
the RMSE and 1.96Se have relatively low values which
imply the accuracy and reliability of the developed mod-
els for temperature forecasting. Moreover, the models
including the river flow have a bit better performance
than those of excluding the flow as an input variable.
However, the difference is negligible. The point is that it
takes more time for heat transfer among the water layers
in the ocean and coastal waters. Moreover, the amount of
the water released by the river flow in compare with such
a huge water body is not remarkable.

In general, this study shows that the machine learn-
ing models can be successfully applied to forecast the
water quality parameters in coastal and estuarine water
up to a few hours ahead. Comparing the results of dif-
ferent variables demonstrate that temperature can be
forecasted with higher accuracy than the salinity and tur-
bidity. The Hilo Bay water quality buoy is moored within

Figure 9. Scatterplots of surface temperature for the ANNmodels.

Figure 10. RMSE and uncertainty band of temperature forecast during test period.



820 M. J. ALIZADEH ET AL.

1 m of the surface in one location within a small trop-
ical estuary, and consequently the salinity measured by
HBB is affected by freshwater inputs to Hilo Bay from
theWailuku River and submarine groundwater discharge
(Mead & Wiegner, 2010; Paquay, Mackenzie, & Borges,
2007) as well as by tides (2-week Spring-Neap cycle).
Storm events that result in elevated Wailuku River flow
occur aperiodically and can depress salinity for several
days (Mead&Wiegner, 2010); Paquay et al. (2007). How-
ever, the effect ofWailuku discharge and the Spring-Neap
tide cycle on temperature is relatively smaller– while a
strong storm can depress salinity 10–20 ppt, storm flows
only affect temperature 2–4°C. On the other hand, tur-
bidity is affected by the river flow with higher intensity,
especially, in the case of storm flow, the sediments and
other SSs increase the turbidity of the coastal waters. As
the elevated temperature is an important factor in coral
bleaching (Couch et al., 2017; Jokiel & Brown, 2004),
accurate forecasts of local temperature in areas such as
Hilo Bay where corals live is an important tool in under-
standing and managing coral bleaching. In general, the
findings of this study are in a good accordance with the
physics of the phenomena and characteristics of thewater
quality variables in the study area.

Wailuku River flow has a dominant influence on sev-
eral biogeochemical processes and water quality parame-
ters inHilo Bay. Paquay et al. (2007) concluded that pCO2
in Hilo Bay was largely driven by Wailuku R. flow con-
ditions and its influence (along with the Wailuku R.) on
the salinity gradient leading out of the bay. Mead and
Wiegner (2010) showed that the surface water metabolic
balance shifts from net autotrophy during low flow con-
ditions to net heterotrophy during high flow conditions.
Water quality parameters including nutrient concentra-
tions and turbidity (Wiegner, Mead, & Molloy, 2013), C-
source quality (Atwood, Wiegner, & MacKenzie, 2012),
andmicrobial pollutants (Wiegner et al., 2017) have been
shown to be related to storm vs. base flow river condi-
tions in Hilo Bay. The models produced in the present
study demonstrate the capability to model the influ-
ence of Wailuku river flow on these and other impor-
tant parameters of Hilo Bay and perhaps other tropical
estuarine systems.

Results of this study demonstrate that the river flow
depleting in estuarine and coastal waters can affect water
quality there. Moreover, it takes the coastal and estuar-
ies some hours to recover themselves from the changes
made by the flow. This study was carried out for deplet-
ing a freshwater and roughly clean water into the coastal
waters. However, for rivers conveying industrial and
domestic wastes, the problem is more serious, and the
flow can degrade the water quality of that water body

Table 6. Time and space complexity analysis of the procedure.

ANN ELM SVR

−Q +Q −Q +Q −Q +Q

Time (s) 14.01 14.20 6.83 7.00 21.89 22.39
Space usage (%) 39 40 38 38 55 56

with frequently higher intensity. Especially, the prob-
lem would be worse when the river flow is released in
smaller water bodies such as lakes and lagoons. There-
fore, employing the proposed approach in this study can
be helpful for the water quality monitoring and manage-
ment. Moreover, a quantitative assessment of the river
water quality and its impacts on the water quality it is
depleted can be of great interest.

3.4. Time and space complexity of themodels

Dealing with big data and machine learning models, it is
of great interest to know about time and space complexity
of the models. In other words, runtime and required
memory for implementation of the models can be con-
siderable to select the suitable model. In this regard, this
study provides a relative comparison for the three mod-
els. The results in terms of run time and memory space
usage in percentile are given in Table 6. As the consuming
time for models

As observed, the ELM models require less computa-
tional time and memory space. On the other hand, SVR
models havemore complexity in terms of time and space.
The models including and excluding the river flow as
input variables roughly show the same characteristics in
terms of time-consuming and space usage. However, it
should be noticed that these values are strongly depen-
dent on the specifications of the processors, data size, a
number of input elements, programming language or the
software capability, transfer functions, data format, etc.
Providing more sophisticated analysis for time and space
complexity of the machine learning models can be the
direction of future studies.

4. Conclusions

The current research was aimed to investigate the effect
of theWailuku River flow on the water quality of the Hilo
Bay. Moreover, an attempt was made to achieve models
with acceptable performance for water quality parameter
forecasting in the upcoming hours. The correlation anal-
ysis between the river flow and the water quality indica-
tors showed that turbidity in time t ismostly depended on
the flow in time t–1. However, temperature and salinity
showed a higher correlation with the flow with more lags
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(t–2). This issue reflects the fact that turbidity is immedi-
ately affectedwhen the river flow enters the Bay.However,
it takes some hours for salinity and temperature to be
affected by the flow probably because of stratification and
time-consuming heat transfer between layers. It is note-
worthy that the highest correlation and lowest correlation
between the river flow with the water quality parame-
ters were related to turbidity (R2 =0.67) and temperature
(R2 =–0.29), respectively. The inverse correlation (nega-
tive values) of flow with salinity and temperature denotes
release of fresh and colder water of the river flow into
saline and warmer coastal waters.

Results of this study revealed that including the river
flow data in the input structure of the models improve
the accuracy and reliability of the forecasts. Its influence
on the water quality variables varies from the remark-
able effect on turbidity to negligible effects on the surface
water temperature. For example, the ANN models for
turbidity improves the model performance in average
about 11%, 5.5%, and 10% in terms of RMSE, R2, and
width of the uncertainty band respectively. In a simi-
lar way, these results for temperature decreases to 1.6%,
0.3%, and 1.1%. The river flow and especially the storm
flow can intensify turbidity by conveying sediments and
making turbulence. Moreover, they can depress salinity
depending on the flow discharge.

Comparing the performance of the ANN, ELM and
SVR models demonstrated that all of them can pro-
vide reliable estimates of the water quality parameters.
Moreover, their forecasts for different variables and times
do not differ significantly, even though the SVR models
require much longer execution time. The error measures
(coefficient of determination, RMSE and width of the
uncertainty band) for these models are roughly in the
same range. The accuracy of the models deteriorate with
an increase in forecasting time horizon. It happens with
a higher rate of turbidity rather than salinity and temper-
ature that implies turbidity may be prone to immediate
change from different oceanic phenomena and storm
flow compared with the other water quality variables.
Evaluating performance of the models for different vari-
ables indicates that water temperature can be forecasted
with higher accuracy than salinity and turbidity. The
models provide forecasts of temperature in times t, t+ 1,
and t+ 2 with R2 >0.85 and 0.286 < RMSE < 0.92 in
which they confirm high accuracy for the forecast. Inter-
estingly, the width of uncertainty band with 95% confi-
dence level does not exceed the unity (1°C) for 2 h ahead
forecasting. The uncertainty band is narrower for shorter
times (t, t+ 1). For salinity and turbidity, the uncertainty
band is in a range of 2.5–4 (ppt or NTU).

Findings of this study are promising to developmodels
for water quality monitoring and beforehand forecasting.

Conducting similar studies for rivers depleting industrial
and domestic wastes in inland waters or coastal seas is
essential. According to the results of this study, acceptable
forecasts of the water quality indicators in a few hours
ahead can be achieved in which it can be used as an
early-stage alarms to prevent more damages to aquatic
hydro-environment. In this study, only the river flow
data were included in model development while know-
ing more details about the river flow such as its physical
and chemical components can be helpful to improve the
models’ efficiency. For regions which are prone to con-
tinuous inputs of sewage and effluent, the inclusion of
details of the river flow (e.g. contaminant measurements)
in the forecasting models is essential to achieve models
with higher accuracy and reliable estimates. Moreover,
applying sophisticated models to analyze the computa-
tional time and space complexity of themachine learning
models can be the direction of future studies.
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