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Effect of Multiple Factors on Foam 
Stability in Foam Sclerotherapy
Taoping Bai1, Wentao Jiang   1, Yu Chen1, Fei Yan1,2,3, Zhi Xu1,2,3 & Yubo Fan4

Foam sclerotherapy is a widely used treatment for varicose veins. However, complications caused 
by poor foam stability still remain. Most studies ignore multiple influencing factors and only study a 
single factor. Furthermore, a stable foam preparation using different preparation conditions has not 
been developed. This study aimed to explore the changing laws of foam stability under multifactorial 
conditions, and to determine the influence of various factors and optimal preparation conditions on the 
half-life of foam. A two-level orthogonal test was conducted using four factors (syringe size, surfactant, 
preparation temperature, and pump speed). Classifications were established as follows: syringe sizes, 
2.5 mL and 5 mL; surfactant concentrations, 6% and 0%; preparation temperatures, 20 °C and 10 °C; 
and pump speeds, 250 mm/s and 125 mm/s, respectively. Eight experimental group (EG) multi-factor 
combinations were tested. Half-life and drainage time were recorded for analysis. The initial drainage 
time was within 200 s, but the difference between the groups was also about 200 s. The drainage rate 
curves of all EGs gradually increased over time. Conversely, the foam half-life extended by about 10 
times for the four factors. In addition, the analyses revealed that the order of influence was surfactant 
>temperature >pump speed >syringe size. The most stable foam preparation was determined. 
Syringe size, surfactant, temperature, and pump speed had markedly observable influences on foam 
half-life. A combination of multiple factors can be used to prepare a more stable foam in clinical 
scenarios and to suitably superimpose favorable conditions to avoid unfavorable conditions.

Varicose veins are high-incidence venous diseases1,2. Foam sclerotherapy is being gradually accepted as a treat-
ment modality for varicose veins, as it is a simple, minimally invasive operation with good efficacy. The sclerosing 
drug in a liquid form is mixed with a gas to produce foam which is immediately injected into the varicose vein. 
The sclerosant foam occludes the varicose veins for therapeutic purposes3. In addition, the safety of this therapy 
for elderly patients has been established4. Foam sclerosing agents are also used in other tissue closure procedures5.

However, foam sclerotherapy can lead to complications such as pulmonary embolism, deep vein thrombosis, 
phlebitis, visual disorders, and stroke6–8. A major reason is poor foam stability, which causes the decaying foam 
to be easily diluted, allowing dissemination through the body. These limitations have attracted the attention of 
several researchers. Rial and Ceulen studied the effects of the concentrations of gases and drugs on foam stabil-
ity9–12. Previous studies reported that the optimal pump speed of Tessari’s method was highly advantageous for 
foam stability13. A smaller syringe size and a lower temperature are factors that contribute to greater stability of 
the foam14,15. Furthermore, the addition of certain surfactants can also enhance foam stability16. However, to the 
best of our knowledge, studies examining the effect of multiple factors on foam stability are lacking. The degree of 
influence of each of these factors on foam stability has not been evaluated, and stable foam preparation using dif-
ferent preparation conditions has not been accomplished. As a result, therapeutic strategies based on the current 
research on sclerosant foam stability is less applied in clinical settings. This has directly hindered the development 
and application of foam sclerotherapy and foam improvement. A combination of these factors can provide clin-
ically important information regarding foam decay under the influence of various conditions. Concurrently, we 
propose a multi-factor correlation judgment equation to provide theoretical support for multi-factor research.
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Materials and Methods
Sodium morrhuate (0.1 g in 2 mL injection) was chosen as the experimental drug due to its good stability. The gas 
used was CO2, and the liquid to gas ratio was 1:4. Tessari’s method was used to prepare the foam. This method 
uses two syringes of the same type; one syringe contains one part of the drug and the other contains four parts 
of CO2. The syringes are then connected to a medical three-way valve at an angle of 90° with each other. After 10 
rounds of push and pull, the three-way switch is turned off. Then, the syringes are pushed 10 times to complete 
the foam preparation. The prepared foam is immediately removed and placed on a horizontal desktop. In our 
study, this whole process was video-recorded for later observation (Fig. 1). The stability of the foam was quantita-
tively analyzed using stability parameters.

Determination of optimal pushing speed of the 2.5 mL syringe during foam preparation.  To 
ensure a constant pump speed and cycling rate, we used a laboratory-made automatic device for preparing the 
sclerosing foams (Fig. 2)17. When comparing the average speed of the device during actual operation with the set 
one, the maximum error was only 2.95%17. This confirmed that the device met the research needs and was suitable 
for foam preparation using the Tessari method under the specified speed conditions.

In the experiment, 2.5 mL syringes (Jiangxi Hongda Medical Equipment Group Co., Ltd.) were used to prepare the 
foam in the preparation machine. The optimal injection speed required was determined separately. Therefore, eight 
pump speeds (100, 200, 250, 300, 325, 350, 375, and 400 mm/s) were selected for the stability experiments to determine 
the best pump speed for 2.5 mL syringes.

Figure 1.  Data records of experimental.

Figure 2.  Sclerosing foam preparation machine.
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The experiments with the 2.5 mL syringes showed that the drainage time and half-life changed with the pump 
speed used (Fig. 3a,b, respectively). The drainage time curve showed that the range was between 100 s and 200 s. 
When the pump speed was 100 mm/s, the drainage time was the shortest. When the speed was higher, the drain-
age time initially increased and eventually decreased. The longest drainage time (about 190 s) was at a speed of 
250 mm/s. The half-life curve shows that the variation range was between 350 s and 475 s. The maximum half-life 
was approximately 450 s, which was also observed when the injection rate was 250 mm/s. This phenomenon 
was similar to the results of a previous study13. Therefore, the optimal pump speed of the 2.5 mL syringe was 
250 mm/s, and a pump speed of 125 mm/s was chosen as the control speed.

Surfactant selection.  The foaming properties of five excipients (propanediol, Tween 80, macrogol 4000, 
lecithin, and poloxamer 188) were tested at different concentrations. The experimental methods and groups are 
described in detail in our previous paper18. The experimental results of surfactant influence show that the addi-
tion of the surfactant can significantly enhance the stability of the foam. Different surfactants show a significant 
difference with respect to foam stabilization. Among them, the effect of poloxamer 188 was the most appar-
ent; a high-stability foam can be obtained at room temperature with poloxamer 188. Moreover, the half-life of 
the foam was enhanced ten-fold. In the experimental concentration range, the longest half-life had a 16-fold 
increase. Based on the previous experimental results, the surfactant selected in this experiment was poloxamer 
188. Additionally, in accordance with drug safety guidelines for humans, 6% g/mL of poloxamer 188 was used.

Overall experimental design.  To investigate the multifactorial effects, the syringe size, surfactant, prepara-
tion temperature, and pump speed were considered for orthogonal experiments. The smaller the syringe size, the 
more stable was the foam under the same conditions; hence, 2.5 mL and 5 mL syringes were chosen. The clinical 
preparation of the foam was completed at a temperature of 20 °C, and 10 °C was chosen as the control temperature. 
The four-factor and two-level orthogonal experimental group (EG) designs are shown in Tables 1,2, respectively.

The samples for the various EGs were simultaneously fabricated under the same conditions; none of the foam 
preparation parameters was altered. The number of pump cycles and pump speed also remained fixed, and each 
set of experiments was repeated five times. All the experimental apparatuses and drugs were maintained at 25 °C 
for 30 min before the start of the experiments, and all the experiments were performed at approximately 1,650 ft. 
above sea level. In addition, the height of the camera and its focal length were carefully adjusted. The recorded 
data included: (1) drainage rate, defined as drainage water divided by drug volume, and duration of foam drain-
age; and (2) foam half-life (T), defined as the time at which the foam drainage rate was 50%. Half-life is a key 
factor in describing the foam decay process and is also representative of foam stability.

Results
The overall drainage curve of the multivariate experiment is shown in Fig. 4, with EG5 having the lowest drainage 
curve and a total water withdrawal time within 250 s. EG8, EG7, and EG2 had a total water withdrawal time of 
up to approximately 2,700 s, 2,200 s, and 1,500 s, respectively. The overall initial drainage time was within 200 s; 
however, the differences between the groups were also approximately 200 s. The rate curves of all EGs gradually 
increased over time, and the rate of growth was markedly observable.

Figure 3.  Drainage time (a) and half-life (b) curves from the 2.5 mL pump speed experiment.

Classification Syringe Size A Surfactant B Prepare Temperature C Pump Speed D

1 5 ml 0% 10 °C 125 mm/s

2 2.5 ml 6% 20 °C 250 mm/s

Table 1.  Groups of multi-factor experiments.
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The half-life histogram for the multivariate orthogonal experiment is shown in Fig. 5. EG5 had the least 
half-life (41.2 s), whereas EG8 had the highest half-life (650.3 s), which was approximately 600 s longer than that 
recorded for EG5.

Figure 3 confirms the influence of pump speed on foam stability, suggesting that the optimal injection speed 
was 250 mm/s when a 2.5 mL syringe was used for preparing the foam at 20 °C. Moreover, EG2, EG4, EG7, and 
EG8 foams were more stable than the EG5 foam, and the stability of the foam greatly improved. EG8 yielded a 
14-fold improvement in foam stability relative to EG5.

The results from this experimental design for the multifactorial analysis are shown in Table 3. The order of 
influence for the four factors was: surfactant >temperature >pump speed >syringe size. The best combination 
of the four factors and two levels was B2C1D2A2., that is, the most stable foam was obtained when the syringe size 
was 2.5 mL, the appropriate surfactant was added, the preparation temperature was 10 °C, and the injection speed 
was 250 mm/s. Table 3 shows that the synergistic effect of surfactants with other parameters was remarkable.

EG8 comprised adjusted preparation temperature, syringe size, pump speed, and surfactant, which extended 
the half-life of sodium morrhuate foams to approximately 10 min. During clinical treatment with foam sclero-
therapy, the occlusion time of the blood vessel is approximately 10 min. Therefore, the foam prepared using EG8 
conditions was the ideal preparation and can be applied in clinical settings.

Discussion
In this study, multifactorial experiments incorporating various syringe sizes, surfactants, preparation tempera-
tures, and pump speeds were conducted, and some valuable laws were identified. The potential side effects of the 
deposition of the foam and liquid at other parts of the body cannot be underestimated. Therefore, the unavaila-
bility of a method for preparing a uniform and stable foam has been a deterrent for the clinical use of foam scle-
rotherapy. Many improvements have occurred with respect to the conditions for foam preparation, but there has 
been no comprehensive research regarding the multiple factors involved in the preparation. The current available 

Grouping Factors Syringe Size Surfactant Prepare Temperature Pump Speed

EG 1 1 1 1 1

EG 2 1 1 1 2

EG 3 1 2 2 1

EG 4 1 2 2 2

EG 5 2 1 2 1

EG 6 2 1 2 2

EG 7 2 2 1 1

EG 8 2 2 1 2

Table 2.  L8 (24) Orthogonal experiment table.

Figure 4.  Overall drainage rate curve by experimental group.
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studies do not discuss foam preparation involving multiple factors; therefore, the clinical effect cannot be properly 
assessed, and this has hampered the development of sclerotherapy.

The energy of the foam is high; hence, the foam is very unstable. The effects of multiple parameters on foam 
stability are demonstrated in the difference in foam preparation and the different environments in which the 
decay occurs. The stability of the foam is determined by foam decay, which is demonstrated by gas diffusion and 
gravity induced inflow. The pressure differences and surface tension between the bubbles are the main causes of 
decay. The pressure inside the small foam is high and will spread to the big bubble. The uniformity of the foam 
directly affects the rate of diffusion between the bubbles. The viscosity and surface tension of the liquid may 
induce a change in the inflow velocity.

Small syringe sizes will result in more uniform foam, when pushed back and forth14. Therefore, gas diffusion 
slows down. This only changes the foam decay for a few seconds. Further, the impact of the syringe size is small 
(Table 3). For parameter B, surfactants can markedly change the surface tension of the solution, and the surface 
tension affects the pressure differences between the bubbles, thereby, changing the gas diffusion rate from begin-
ning to end. Figure 5 and Table 3 also show that the addition of a surfactant can greatly affect the foam stability. 
Hence, focus should be given to the addition of surfactants and other optimal preparation conditions to provide 
a stable foam for clinical use. However, surfactants generally have a critical micellar concentration and cannot 
be used at high concentrations. Surfactants have been widely used in the manufacture of industrial foams. The 
poloxamer 188 in this study has been shown to be feasible for intravenous injection, but animal experimentation 
must be done to ensure further applications.

As parameter C, preparation temperature is the temperature at which the foam is formed and can affect the 
surface tension of the foam. At the same time, the temperature can change the viscosity of the liquid, causing the 
internal flow rate to change. It has a greater impact on the decay process (Fig. 5 and Table 3). Therefore, the effect 
of temperature on foam stability is significant. The faster the pushing speed (parameter D), the more uniform 
the foam, and the smaller the diameter, the lower the rate of foam diffusion. However, as the speed increases, the 
solubility of carbon dioxide increases. This causes a decrease in the amount of gas, an increase in the humidity of 
the formed foam, and an increase in the internal flow. The curve in Fig. 3 illustrates the effect of the entire pushing 
speed. Therefore, there is a need to determine the optimal speed for foam formation.

The overall result of multiple parameters (Fig. 5) is EG8, which increases the half-life by more than 10 times. 
The enhancement effect on stability is obvious. However, the value of EG8 is not a superposition of the individual 

Figure 5.  Half-life histogram by experimental groups.

Syringe Size Surfactant
Prepare 
Temperature Pump Speed

K1 755.20 605.20 1466.05 665.20

K2 1316.45 1465.65 605.60 1406.45

K1 188.80 151.30 366.51 166.30

K2 329.11 366.41 151.40 351.61

R 140.31 215.11 215.11 185.31

Order B > C > D > A

Excellent level A2 B2 C1 D2

Excellent combination B2C1D2A2

Table 3.  Orthogonal Experimental Results Analysis Table.
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effects of each parameter. It is possible that their superposition will weaken to some extent, which may be because 
the changes in the internal mechanisms of the various parameters are not linear.

The purpose of an orthogonal experimental design is to use the minority experiment to determine the law of 
multiple factors in order to obtain the best combination of programs. Eq. 1 in the appendix can be widely used 
to meet the multifactor superposition for the orthogonal experiment. In combination with the previous result19, 
the influence of many factors is basically a linear superposition of each half-life increment. Therefore, the foam 
half-life and the impact of multifactor law function are roughly:

Δ = Δ + Δ + Δ + ΔT v n T V k T v k T n k T T k T V( , , , ) ( ) ( ) ( ) ( ) (1)v ump n urf T mb V yr1/2

where T1/2 is the foam half-life. Tump(v) is a function regarding pump speed (v), which characterizes the half-life 
prepared in different v (Fig. 3b). Turf(n) is a function regarding surfactant concentration (n), while Tmb(T) is a 
function regarding preparation temperature (T), and Tyr(V) is a function regarding syringe size (V). kv, kn, kT, and 
kV are overlay coefficients. According to the results of the multivariate experiments, the Tump(v), Turf(n), Tmb(T), 
and Tyr(V) functions have maximum values. Therefore, this results in a maximum value for ΔT1/2. By taking into 
account the value of kci, the final half-life is estimated. For parameters that satisfy Eq. 1, the kci values are approxi-
mately 1. On the contrary, it is less than 1. For more cases, more experimental verification is needed to determine 
the K value. This will provide the basis for the development of foam in various fields.

The time taken for the blood vessels to fibrose is between a few minutes and ten minutes. The current half-life 
of sclerosing foam is less than two minutes. Before vascular fibrosis, we should try to ensure that the foam is sta-
ble, not diluted, and does not flow to other parts. Therefore, it is still necessary to increase the stability of the foam 
as much as possible. We can greatly improve the half-life of the foam through comprehensive consideration of 
multiple factors. This result is desirable in a clinical scenario. However, the influence of other factors in this exper-
iment was not considered, and their influencing parameters must be further explored. More research is warranted 
to determine the influence of various factors.

Conclusions
Foam stability is a key issue in foam sclerotherapy, which is not only associated with patient safety, but also with 
potential improvements in foam sclerotherapy. In this study, the best pump speed was 250 mm/s for a 2.5 mL 
syringe. Four factors (syringe size, surfactant, preparation temperature, and pump speed) promoted markedly 
observable foam half-life, with the surfactant being the most influential, and syringe size having the least influ-
ence. The best combination to achieve a stable foam was a syringe size of 2.5 mL, addition of an appropriate 
surfactant, a preparation temperature of 10 °C, and an injection rate of 250 mm/s. This study determined that it is 
appropriate to consider using a combination of multiple factors to prepare a more stable foam and achieve favora-
ble conditions, thereby avoiding unfavorable conditions in clinical settings. A half-life superposition formula was 
obtained which can guide subsequent foam stability studies. However, the superposition principle proposed in 
this work is expected to be the guiding theory for evaluating the influence of more factors on foam stability, which 
is also applied in other fields of engineering.

Data Availability
All data generated or analyzed during this study are included in this published article.
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