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In view of the intergroup structural relationships involved with the complex mega infrastructure projects (MIP), we develop a
periodic collaboration and coexistence model that can efficiently curb the risk of infection and ensure normal, orderly progress.
We conduct a systematic analysis of the periodic collaboration and the coexistence process for mega infrastructure projects. The
results suggest that when a complex major engineering project develops the risk of infection and one group keeps expanding,
assimilation or disappearance of the other group may occur, impeding the normal project construction process. If a disruption
occurs, it is difficult to resume construction, and substantial economic losses can result. Furthermore, the periodic collaboration
and coexistence management model with the oscillation effect can effectively prevent the risk of problems from spreading
among groups. By doing so, the model stabilizes the intergroup structural balance in a complex major engineering system. In
summary, our model and analysis help, to some extent, to elucidate the critical mechanisms influencing the risk of infection in
engineering collaborative management and explain the collaboration and coexistence rules for a complex mega infrastructure
project that may risk spreading infection to other parts of the project. The research findings, while further verifying and
supplementing relevant theories, also provide beneficial references for collaborative management practices.

1. Introduction

Major infrastructure construction engineering is a general
term for government-oriented large-scale complex engineer-
ing projects with a vital influence on economic and social
development [1]. Driven by growing market demand, deep-
ening global cooperation, government support, and huge
capital input, complex engineering systems have not only
profoundly changed production and lifestyle but also brought
new challenges and opportunities to themanagement ofmega
infrastructure projects [2]. Most scholars focus on how to
reduce construction engineering costs, accelerate the progress
of construction engineering projects, and guarantee smooth
construction engineering [3, 4]. In addition, attention has
gradually been paid to the risk of infection via the “butterfly
effect,” and efforts are being made to find an innovative

theoretical method to assist in managing complex engineer-
ing projects (the risk of infection refers to the risk incurred
by personality, emotion, and awareness factors, such as
counterproductive work behavior, antisocial behavior, altru-
istic behavior, and conflicts among groups or individuals,
which can influence the overall engineering interests; the
risk of infection can induce other risks in a complex major
engineering system or even trigger risks with more expansive
and continuous influences).

1.1. Complexity of Engineering Management. Research into
the complexity of engineering management originates from
the complexity of engineering itself. Along with greater inter-
national cooperation, the increases in engineering quantity
and complexity present huge challenges to decision-makers
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to improve the effectiveness of their decisions [5]. In
response to this dilemma, theoreticians have started studying
the complexity of mega infrastructure projects and have pro-
posed new and systematic scientific methods to address the
related issues [6]. Academic and engineering circles have
gradually realized that the previous engineering management
theories cannot effectively address the challenges brought by
the complexity of mega infrastructure projects. A pioneering
scholar, Ottino [7] found that engineering management
personnel should be able to comprehend and tackle this com-
plexity but that the ability to do so relies on the examination
of many complex phenomena not within the sphere of engi-
neering projects. Sauser and Boardman [8] also noted that
knowledge management, an aspect of engineering manage-
ment, has failed to catch up with the increasing complexity
and integration of projects.

Humans drive the operation of engineering management
systems. Therefore, research into the operation rules of these
systems cannot be separated from the analysis of individuals
and groups participating in engineering management [9]. To
this end, Du and El-Gafy [10] examined the influence of the
interplay between organizational and human factors using
agent-based modelling (ABM). As one of the critical factors
influencing engineering management, agent behavior arises
from the interplay among certain psychological processes,
psychological status, and personality psychology and is also
subject to external environmental factors, such as culture
and society [11]. Thus far, the behaviors of engineering man-
agement agents have been mainly investigated at the group
and individual levels. The major influencing factors can be
grouped into three categories, namely, psychological, behav-
ioral, and cultural (see Table 1).

1.2. Risk of Infection in Mega Infrastructure Projects.
Research into the risk of infection dates back to the 19th cen-
tury, when Thornton [17] described the concept of the “risk
spillover effect.” Since then, many scholars have applied the
idea to different research fields, including finance, insurance,
information networks, and biomedicine. These works have
indirectly enriched the research into the risk of infection,
making it an emerging interdisciplinary research field. Unfor-
tunately, there has not yet been any specific research on infec-
tion risk management for mega infrastructure projects.

Almeida et al. [18] noted that managing risk in mega
infrastructure projects has become an increasing concern to
stakeholders. “Man,” “technology,” and “external environ-
ment” constitute three critical factors influencing major engi-
neering risks. To start with, the agent behaviors of “man” are
influenced by personality psychology, psychological pro-
cesses, and psychological status. Human factors influencing
engineering risks include personality, emotion, motive, and
consciousness [19]. Second, technological factors also influ-
ence the risk factors. Katalin et al. [20] theorized that engi-
neering risk management and decision-making rely, to a
large extent, on the strategy adopted to reduce risks. Cheng
and Ding [21] described how to coordinate complexity
through the establishment of clear boundaries. Finally,
among external environmental factors influencing the risk
of infection in engineering projects, the realization of

external collaboration rests on the interaction between rele-
vant agents, and intergroup collaboration is considered an
effective approach to improving efficiency [22]. Horst [23]
argued that homogeneity can contribute to the stability of
the correlation system, while differentiation is attributable
to the risk of infection. The infection effect first affects a
minority and then spreads to the whole system through the
interconnected relationship chain.

1.3. Collaborative Management of Complex Engineering
Projects. The engineering system for a major project is a com-
plex system with multiple departments involved in contrast
to a simple physical facility construction [24]. Successful col-
laborative management is mainly determined by the interac-
tions between the organizations and other relevant agents
[25]. Engineering collaborative management can be defined
as a cross-organizational collaboration process integrating
multiple resource elements. In engineering collaborative
management, efficient cooperative relationships among dif-
ferent groups and methods that can promote engineering
efficiency and innovation are of equal importance. Some
scholars have developed methods to improve organizational
performance through structured system analysis and interac-
tive management [26]. Therefore, an essential approach to
improving complex engineering management is to improve
the efficiency of the intergroup collaborative management.

Understanding the intergroup interactive complexity
during the engineering collaborative management process,
especially research on collaborative management mecha-
nisms, such as intergroup interface and boundaries, is
important [27]. In recent years, a few scholars have made
preliminary investigations. For example, Antoniadis et al.
[27] deemed that the key to successful implementation of
an organizational engineering project lies in establishing a
favorable communication and coordination mechanism
across functional departments and creating a cohesive part-
nership. Senescu et al. [28] deepened the understanding of
the correlation between project complexity and communi-
cation through in-depth analysis, and his work laid the
foundation for the development of communication tools
for more effective project management. Pauget and Wald
[29] observed, after studying the relationship among mem-
bers of research projects, that cooperative relationships
between different groups or different individuals can influ-
ence the organizational network stability of mega infra-
structure projects.

In summary, with the risk of infection, collaborative
management of complex mega infrastructure projects is a
top priority for engineering management research. However,
the existing research mainly focuses on expounding on the
importance and correlation of engineering management
research. Based on previous engineering collaborative man-
agement research findings [30], and on life cycle theory and
oscillation and dynamic behavior, this study is a pioneering
work that, for the first time, defines the risk of infection in
engineering projects, carries out in-depth analytical research
into group collaboration within a complex engineering sys-
tem under the influence of the risk of infection, and provides
valuable insights.
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We make the following major research contributions in
this study: We (1) observe the periodic characteristics and
group member characteristics of complex engineering pro-
jects through experiments and define relevant concepts con-
cerning the risk of infection in complex engineering projects,
(2) establish a periodic collaboration and coexistence model
with the vibration effect and conduct empirical analysis of
the model based on the theory of oscillation and using math-
ematical derivation, (3) reveal that when a complex major
engineering project develops the risk of infection and one
group keeps expanding, it might result in assimilation or dis-
appearance of the other group or impede the major engineer-
ing project fromnormal construction, after which it is difficult
to resume production, causing immeasurable economic
losses, and (4) ascertain the conditions for the outbreak of
infection and observe that the periodic collaboration and
coexistence management model with the oscillation effect
can effectively avoid the spread of infection between groups
and guarantee a stable structure between groups in a complex
major engineering system.

2. Hypotheses

Based on the characteristics of complex engineering systems,
combining the theories of dynamics, oscillation, and life
cycle, and in an environment of impending risk of infection,
we observe that the engineering personnel density in the ini-
tial period of a complex major engineering project is rela-
tively low, and there are structurally balanced resources for
allocation. The numbers of personnel in different types of
groups grow steadily along with the progress of the project
construction period, but all these groups are still developing
in independent environments [31].

As the initial period gradually moves into the maturity
period, the engineering personnel density rises and there
are fewer structurally balanced resources for allocation. In
this period, different groups within the complex major engi-
neering systemmight compete for their interests and attempt
to increase their influence to occupy more resources. Conse-
quently, the intergroup personnel relative density changes.
On-site data of mega infrastructure projects suggests that
“natural, small teams” exist in most major engineering con-
struction groups. The “teammates” are either from the same
area, have worked together for years, or are relatives. If
adverse language and behavior occur in a teammate or sev-
eral teammates, the connection between the personnel might
cause conflict. In addition, if a group carrying or possessing
the risk of infection is in a dominant position, then the

infection influencing forces will grow and eventually assimi-
late or eliminate personnel in the other groups, thus decreas-
ing the latter’s personnel density (see Figure 1).

When the risk of infection is spread to a subsidiary engi-
neering project, a construction period, or a department, the
risk cannot be immediately classified when effective segrega-
tion measures are adopted. Under this condition, high-
pressure strategies are often adopted, which can damage the
interests of irrelevant groups or force them to suspend work
or even leave. In addition, high-pressure strategies can
destroy the structural balance between the groups within an
organization. Due to structural defects or the imbalance of
major engineering personnel, the engineering project might
come to a halt partially or completely, different engineering
links will have difficulty in integrating with one another,
and production cannot be resumed, resulting in serious eco-
nomic losses and public security threats.

Therefore, regarding the periodic characteristics of major
engineering systems, as well as the occurrence of traditional
risks, we adopt an intergroup collaboration and coexistence
mechanism through the risk infection medium (major engi-
neering personnel group). Assuming and building a more
practical periodic collaboration and coexistence model with
the oscillation effect, we attempt to demonstrate and
expound upon the role of the model in preventing the risk
of infection from spreading among the groups involved in
complex mega infrastructure projects.

3. Modelling and Demonstration

The structural interaction of different groups in a complex
engineering system is usually subject to environmental influ-
ences, both internally and externally. When the risk of infec-
tion occurs, or is about to occur, some personnel in the group
associated with the risk are, in the traditional approach, sep-
arated from the rest or directly expelled. However, based on
the above discussion and existing theories, we adopt the peri-
odic collaboration and coexistence management model to not
only avoid triggering the risk of infection but also free the
nonaffected groups from the influence of the risk, ensuring
the smooth progress of the engineering project. To this end,
we build the basic model, denoted as Model (1), as follows:

β t = β t y1 t − x11 t β t − x12 t λ t −D1 β t ,

λ t = λ t y2 t − x21 t β t − x22 t λ t −D2 λ t ,
1

Table 1: Factors influencing individual and group behaviors in mega infrastructure projects.

Individual [12–14] Group [15, 16]

Psychology Personality, emotion, motive, and consciousness Trust, cohesion, and commitment

Behavior
Authorization, leadership, organizational citizen behavior

(OCB), counterproductive work behavior, altruistic behavior,
and reciprocal behavior

Transactive memory system, shared mental model, conflict,
decision-making behavior, cooperation behavior, and

learning behavior

Culture Job satisfaction, motive, and leadership Learning, trust, learning, and conflict
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where D1 β t denotes the influence of oscillatory collabo-
rative management on the group β t and D2 λ t denotes
the influence of oscillatory collaborative management on
the group λ t . Model (1) assumes that the collaborative
management behavior is continuous. However, in reality,
the occurrence of the risk of infection is periodic in major
engineering management practices. This condition results
in discreteness of infection risk prevention and control. In
addition, considering the influence of the enrollment rates
and turnover rates of different groups within the life cycle
of mega infrastructure projects, as well as periodic changes,
the traditional continuous, large-scale management methods
to curb the risk of infection might be effectively replaced by
collaborative management featuring discrete oscillation.

Based on the above argument, we develop the T-period
collaboration and coexistence model with the oscillation
effect as follows:

β t = β t y1 t − x11 t β t − x12 t λ t , t ≠ τk, k ∈N ,

λ t = λ t y2 t − x21 t β t − x22 t λ t , t ≠ τk, k ∈N ,
β τ+k = 1 + hk β τk , t ≠ τk, k ∈N ,
λ τ+k = 1 + gk λ τk , t ≠ τk, k ∈N ,

2

where yi t and xij t i, j = 1, 2 constitute a continuous
T-period function and meet the condition xij t ≥ 0 i, j = 1,
2, i ≠ j , xii > 0, and N = 1, 2,… . Assume that hk and
gk k ∈N are constants, and there exists an integer q > 0 such
that hk+q = hk, gk+q = gk, and τk+q = τk + T . In view of real
practice, there are natural restrictions that 1 + hk > 0 and
1 + gk > 0 if k ∈N . τ denotes the period when oscillation
collaboration is implemented. In other words, the moment
of collaboration occurs at the discrete point t = nτ n = 0,
1, 2,… ; in an oscillating style, the n time can be written
as t = nτ+.

Model (2) attempts to prevent and control the risk of
infection and considers the influence of collaborative man-
agement adopted by internal management personnel on the

number of group members. In a complex major engineering
system, there are different types of groups. In this study, we
use Model (2) only to describe collaborative management
between two group structures. hk and gk, where hk < 0 and
gk < 0, represent the oscillation collaboration degree between
the engineering personnel group β and the engineering per-
sonnel group λ, respectively.

From the life cycle perspective, the sustainable use of one
resource (such as human resources) means the resource is
never exhausted. In particular, the continuity of project con-
struction usually indicates the resistance of a complex major
engineering system to the risk of infection or an ability to
quickly resume construction.

3.1. Continuous Existence of the System. Model (2) at β, 0
must have a semitrivial periodic solution within the value
y1 > 1/T ln q

k=1 1/1 + hk , which can be simplified as
(θ y1,x11 , 0). Similarly, Model (2) at 0, λ must have a semitri-

vial periodic solution within the value y2 > 1/T ln q
k=1 1/

1 + gk , which can be simplified as 0, θ y2,x22 . Furthermore,
the necessary and sufficient conditions can be expressed as
θy1 ≔ θ y1,x11 and θy2 ≔ θ y2,x22 , respectively. Through deduc-
tion, we obtain the following equations:

y1 =
1
T

ln
q

k=1

1
1 + hk

+ x11θy1 ,

y2 =
1
T

ln
q

k=1

1
1 + gk

+ x22θy2

3

In the following, we examine the situation when Model
(2) does not allow coexistence whereby one side is fully
assimilated or disappears. In other words, we seek to deter-
mine the conditions under which asymptotic steadiness of
the trivial periodic solution 0, 0 and the semitrivial periodic
solutions θy1 , 0 and 0, θy2 are achieved. We state and
prove the following hypothesis.

Hypothesis 1.

(i) The trivial solution 0, 0 is linear and unsteady
when Model (2) has a semitrivial periodic solution,
that is, if and only if

y1 >
1
T

ln
q

k=1

1
1 + hk

or y2 >
1
T

ln
q

k=1

1
1 + gk

4

(ii) If y1 > 1/T ln q
k=1 1/1 + hk , then θy1 , 0 is lin-

ear and unsteady when y2 > 1/T ln q
k=1 1/1 +

gk + x21θy1 and is linearly steady when y2 < 1/T
ln q

k=1 1/1 + gk + x21θy1 .

(iii) If y2 > 1/T ln q
k=1 1/1 + gk , then 0, θy2 is lin-

ear and unsteady when y1 > 1/T ln q
k=1 1/1 +
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Figure 1: Changes in group personnel densities and resources in
different periods of the life cycle.
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hk + x12θy2 , and is linearly steady when y1 < 1/T
ln q

k=1 1/1 + hk + x12θy2 .

Proof 1. The equation can be used to study the asymptotic
steadiness of Model (2)’s periodic solution β t , λ t . After
conversion by β t , λ t = β t + a t , λ t + b t , we
have

a t

b t
=Φ t

a 0
b 0

, 5

where Φ t meets the condition

dΦ t
dt =

y1 − 2x11β − x12λ −x12β

−x21λ y2 − x21β − 2x22λ
Φ t ,

6

and Φ 0 = I is the unit matrix.

a τ+k

b τ+k
=

1 + hk 0
0 1 + gk

a τk

b τk
, 7

is given by the oscillation condition of Model (2).
Hence, if themodule of the two eigenvalues of the following

monodromy matrix

M =
q

k=10
1 + hk 0

0 q

k=1
1 + gk

Φ T , 8

is smaller than one, then the T-periodic solution is locally
steady.

(i) The asymptotic steadiness of the trivial solution 0, 0 .

The fundamental solution matrix of the trivial solution
0, 0 is

dΦ t
dt =

y1 0
0 y2

Φ t , 9

so its monodromy matrix is

M =
q

k=1
1 + hk ey1T 0

0 q

k=1
1 + tk ey2T

10

This proves that the trivial solution has two multipliers at
the point 0, 0 : β1 =

q
k=1 1 + hk ey1T and β2 =

q
k=1 1 + gk

ey2T . Therefore, the conclusion stated in (i) is correct.

(ii) The linear steadiness of the semitrivial periodic
solution.

Corresponding to every semitrivial solution θy1 , 0 is

dΦ t
dt =

y1 − 2x11θy1 −2x12θy1
0 y2 − x21θy1

Φ t 11

Therefore, the fundamental solution matrix of the semitrivial
solution is as follows:

Φ t =
exp

t

0
y1 − 2x11θy1 ds ∗

0 exp
t

0
y2 − 2x21θy1 ds

12

Since the following computing process does not rely on
(∗), there is no need to provide its exact formula. The steadi-
ness of the semitrivial solution θy1 , 0 is confirmed by the
two eigenvalues of the following monodromy matrix

M =

q

k=1
1 + hk 0

0
q

k=1
1 + gk

Φ T 13

where

β1 =
q

k=1
1 + hk exp

T

0
y1 − 2x11θy1 ds

=
q

k=1
1 + hk exp

T

0
y1 − x11θy1 ds −

T

0
x11θy1ds

=
q

k=1
1 + hk exp ln

q

k=1

1
1 + hk

exp −
T

0
x11θy1ds

= exp −x11θy1T = exp −T y1 −
1
T

ln
q

k=1

1
1 + hk

,

14

and

β2 =
q

k=1
1 + gk exp

T

0
y2 − x21θy1 ds

=
q

k=1
1 + gk exp y2 − x21θy1 T

15

If y1 > 1/T ln q
k=1 1/1 + hk , then β1 < 1 and the lin-

ear steadiness of the semitrivial solution θy1 , 0 is confirmed

by y2 − 1/T ln q
k=1 1/1 + gk − x21θy1 . If y2 > 1/T ln

q
k=1 1/1 + gk + x21θy1 , then β2 > 1 and the unsteady man-

ifold of the semitrivial solution θy1 , 0 is one-dimensional. If

y2 = 1/T ln q
k=1 1/1 + gk + x21θy1 , then θy1 , 0 features

neutral steadiness. If y2 < 1/T ln q
k=1 1/1 + gk + x21θy1 ,

then β2 < 1 and θy1 , 0 is linearly steady.
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(iii) The linear steadiness of the semitrivial periodic
solution.

Similarly, the linear steadiness of the semitrivial periodic
solution 0, θy2 is confirmed by y1 − 1/T ln q

k=1 1/1 +
hk + x12θy2 .

The steadiness of the semitrivial periodic solutions θy1 ,
0 and 0, θy2 suggests that when the risk of infection occurs,
one personnel group in a major engineering system might be
fully assimilated or disappear and the other personnel group
might expand. Therefore, to guarantee equilibrium steadi-
ness of the groups in a complex major engineering system,
a necessary condition for coexistence of the two kinds of per-
sonnel is that the following two equations exist. If one group
is fully infected and thus becomes fully assimilated or disap-
pears, the engineering construction might be unable to carry
on normally and it is difficult to resume construction, result-
ing in tremendous economic losses. In other words, all the
trivial periodic solutions and semitrivial periodic solutions
are linearly unsteady, that is,

y1 >
1
T

ln
q

k=1

1
1 + hk

+ x12θy2 ,

y2 >
1
T

ln
q

k=1

1
1 + gk

+ x21θy1

16

In the following section, we examine how to achieve
sustainable coexistence and avoid the occurrence of the risk
of infection when the personnel groups are structurally stable
in the major engineering system. We write Model (2) under
the condition of coexistence as follows:

Assume that there exist a constant m (M > 0) and a finite
time T0, which are independent of the system’s initiative
values, and make all the initiative values of Model (2) as the
solution ai t of ai 0+ > 0. When t > T0, then m < ai t <
M i = 1, 2 and Model (2) is coexisting. Here, T0 depends
on the initial value ai 0+ .

Hypothesis 2. If the following inequalities are valid,

y1 >
1
T

ln
q

k=1

1
1 + hk

+ x12θy2 ,

y2 >
1
T

ln
q

k=1

1
1 + gk

+ x21θy1 ,
17

then Model (2) suggests that the two kinds of engineering
personnel groups coexist and collaborate with each other in
a complex major engineering system. Based on Model (2),
when t is sufficiently large, we have

β t ≤ β t y1 t − x11 t β t , t ≠ τk, k ∈N ,
β τ+k = 1 + hk β τk , t = τk, k ∈N ,

18

where β t ≤ θy1 . Similarly, when t is sufficiently large, we
have λ t ≤ θy2 . Then, there exists a constant T1 > 0 such that

when t ≥ T1, then β t ≤ θy1 and λ t ≤ θy2 . Thus, when t >
T1, we have

β t ≥ β t y1 t − x12 t θy2 − x11 t β t , t ≠ τk, k ∈ Z+,

β τ+k = 1 + hk β τk , t = τk, k ∈ Z+,
19

and, when t is sufficiently large, we have β t ≥ θ y1−x12θy2 ,x11
> 0. Similarly, when t is sufficiently large, we have λ t ≥
θ y2−x21θy1 ,x22

> 0. Hence, there exists a constant T > T1 such

that when t ≥ T , then β t ≥ θ y1−x12θy2 ,x11
and λ t ≥

θ y2−x21θy1 ,x22
. Assume that

ρ = inf θ y1−x12θy2 ,x11
t , θ y2−x21θy1 ,x22

t : t ∈ 0, T , 0 < ρ <∞,

σ = sup θy1 t , θy2 t ∈ 0, T , ρ ≤ σ <∞

20

Then, when t ≥ T , we have ρ ≤ β t ≤ σ and ρ ≤ λ t ≤ σ.

3.2. Bifurcation of the Solution. In this study, we use bifurca-
tion theory to discuss the bifurcation of Model (2) near the
semitrivial periodic solutions θy1 , 0 and 0, θy2 . To validate
the analytical findings of this study, first examine the two
results of the linear oscillation periodic equation.

Hypothesis 3. Assume that cij ∈ PCT .

(i) If c11 ≠ 1/T ln q
k=1 1/1 + ck and c22 ≠ 1/T ln

q
k=1 1/1 + dk , then the periodic linear homoge-

neous oscillation equation can be written as follows:

b1 t = c11b1 t + c12b2 t , t ≠ τk, k ∈N ,

b2 t = c22b2 t , t ≠ τk, k ∈N ,
b1 τ+k = 1 + ck b1 τk , t = τk, k ∈N ,
b2 τ+k = 1 + dk b2 τk , t = τk, k ∈N

21

On PCT × PCT , there is no nontrivial periodic solution.
Under this condition, if f1, f2 ∈ PCT × PCT , we write the
nonhomogeneous oscillation equation as follows:

z1 t = c11z1 t + c12z2 t + f1, t ≠ τk, k ∈N ,
z2 t = c22z2 t + f2, t ≠ τk, k ∈N ,

z1 τ+k = 1 + ck z1 τk , t = τk, k ∈N ,
z2 τ+k = 1 + dk z2 τk , t = τk, k ∈N

22

The T-periodic solution is exclusive and z1, z2 ∈ PCT ×
PCT . Furthermore, the operator L PCT × PCT → PCT ×
PCT , defined by z1, z2 = L f1, f2 , is linear and relatively
compact.

6 Complexity



(ii) If c22 = 1/T ln q
k=1 1/1 + dk and c11 ≠ 1/T ln

q
k=1 1/1 + ck are valid, then (22) has only one

T-periodic solution on PCT × PCT .

Proof 1.

(i) Since

b2 t =
0≤τk<t

1 + dk b2 0 exp
T

0
c22 s ds, 23

c22 ≠ 1/T ln q
k=1 1/1 + dk suggests b2 ∉ PCT

unless b2 = 0. Similarly, since

b1 t =
0≤τk<t

1 + ck b1 0 exp
T

0
c11 s ds, 24

c11 ≠ 1/T ln q
k=1 1/1 + ck suggests b ∉ PCT

unless b1 = 0. Under the condition

z2 t = c22z2 t + f2, t ≠ τk, k ∈N ,
z2 τ+k = 1 + dk z2 τk , t = τk, k ∈N ,

25

there is only one T-periodic solution, and L2 PCT
→ PCT is defined by z2 = L2 f2 and is linear and rela-
tively compact. Furthermore, when f3 = c12L2 f2 + f1
∈ PCT , the equation

z1 t = c11z1 t + f3, t ≠ τk, k ∈N ,
z1 τ+k = 1 + ck z2 τk , t = τk, k ∈N ,

26

has only one T-periodic solution, and z1 = L1 f3
defines a linear and relatively compact operator L1
PCT → PCT . Therefore, (22) has only one T-peri-
odic solution determined by z1, z2 = L f1, f2 and
is the only solution on PCT × PCT , where

L f1, f2 = L1 c12L2 f2 + f1 , L2 f2 27

(ii) Under the hypothesis, the solution adopting a ran-
dom b2 0 as the initial value is a T-periodic solution
and is given by (23). If c11 ≠ 1/T q

k=1 1/1 + ck ,

then b t = c11b t does not have a nontrivial peri-
odic solution on PCT . Then, we have

b1 t = c11b1 t + c12
0≤τk<t

1 + dk b2 0

exp
t

0
c22 s ds, t ≠ τk,

b1 τ+k = 1 + ck b1 τk , t = τk, k ∈N

28

On PCT , the T-periodic solution is exclusive. The
hypothesis is true.

Hypothesis 4.Assume that x ∈ PCT and x = 1/T q
k=1 1/1 +

ck , then

a = xa + f , t ≠ τk, k ∈N ,
a τ+k = 1 + ck a τk , t = τk, k ∈N

29

The necessary and sufficient condition for the T-periodic
solution x ∈ PCT is as follows:

T

0 0≤τk<t

1
1 + ck

exp −
t

0
x β dβ f dt = 0 30

Proof 1. The matrix of the linear homogeneous oscillation
equation is as follows:

a = ax, t ≠ τk, k ∈N ,
a τ+k = 1 + ck a τk , t = τk, k ∈N

31

The matrix is A t, s = s≤τk<t 1 + ck exp t
sx β dβ, −

∞ < s ≤ t <∞. Then, (31) is the exclusive multiplier

μ = A T , 0+ =
k=1

1 + ck exp
T

0
x s ds = 1 32

Hence, all the solutions of (31) are T-periodic solutions
and all the solutions of the adjoining equation

b = −xb, t ≠ τk, k ∈N ,

b τ+k = 1
1 + ck

b τk , t = τk, k ∈N ,
33

are also T-periodic. In particular, b = ψ t = 0≤τk<t 1/1 +
ck exp − t

0x β dβ is also a T-periodic solution of (27),
where ψ T+ = ψ 0+ = 1. The necessary and sufficient
condition for (29) to have only one T-periodic solution is
T
0ψ t f dt = 0, that is,

T

0 0≤τk<t

1
1 + ck

exp −
t

0
x β dβ f dt = 0 34

Assume y1 > 1/T ln q
k=1 1/1 + hk and regard y2 as

the bifurcation referential value. This condition suggests that
ξ∗ = 1/T ln q

k=1 1/1 + gk + x21θy1 is the bifurcation
value of the positive periodic solution bifurcated from the
semitrivial periodic solution θy1 , 0 . Assume that y2 t =
ξ + p2 t , where p2 = 0. Then,

a21 t =
0≤τk<t

1 + gk exp
t

0
p2 + ξ∗ − x21θy1 ds ∈ PCT

35

Assume a11 to be the only T-periodic solution of the fol-
lowing linear oscillation differential equation:
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a11 t = y1 − 2x11θy1 a11 t − x12 t θy1a21 t , t ≠ τk, k ∈N ,

a11 τ+k = 1 + hk a11 τk , t = τk, k ∈N
36

Then

a11 t = −
t

0
G t, s x12θy1a21 s ds, 37

where

G t, s

=
A t 1 − A t −1A−1 s ,  0 < s < t ≤ T ,
A t + T 1 − A T −1A −1 s ,  0 < t ≤ s ≤ T ,
G t − kT , s − jT ,  kT < t ≤ kT + T , jT < s ≤ jT + T , k ∈N , j ∈N ,

38

and A t = 0≤τk<t t + hk exp t
0 y2 − 2x11θy1 ds.

Note that a21 t > 0 exists if t > 0. Since
A t =

q

k=1
1 + hk exp

T

0
y1 − 2x11θy1 ds

=
q

k=1
1 + hk exp

T

0
y1 − x11θy1 ds exp

T

0
−x11θy1 ds = exp −

T

0
x11θy1ds < 1, G t, s > 0

39

Then, for any t, a11 t < 0.
Define ξ1 = x21a11 t + x22 t a21 t . The main conclu-

sions are stated in the following hypothesis.

Hypothesis 5. Assume yi t . xij ∈ PCT i, j = 1, 2 is valid in

terms of y1 > 1/T ln q
k=1 1/1 + hk and x21θy1 > 1/T

ln q
k=1 1 + gk . For any t > 0, there is xij t > 0. Then,

(i) If ξ1 > 0, then there exists a constant c0 > 0, which is
sufficiently small to ensure that, in terms of every
y2 t y2 t ∈ PCT existing under the restriction of
ξ∗ < y2 < ξ∗ + c0, Model (2) has a periodic solution
β, λ ∈ PCT × PCT , which can guarantee βt < θy1
and λ t > 0 as long as t > 0.

(ii) If ξ1 < 0, there exists a constant d0 > 0, which is
sufficiently small to ensure that, in terms of every
y2 t y2 t ∈ PCT existing under the restriction of
ξ∗ − d0 < y2 < ξ∗, Model (2) has a periodic solution
β, λ ∈ PCT × PCT , which can guarantee β t < θy1
and λ t > 0 as long as t > 0.

Proof 1. In Model (2), after conversion, we have a1 = β t −
θy1a2 = λ t . Then,

a1 t = y1 − 2x11θy1 a1 − x12θy1a2 + g1 a1, a2 , t ≠ τk, k ∈N ,

a2 t = y2 − x21θy1 a2 + g2 a1, a2 , t ≠ τk, k ∈N ,

a1 τ+k = 1 + hk a1 τk , t = τk, k ∈N ,
a2 τ+k = 1 + gk a2 τk , t = τk, k ∈N ,

40

where g1 a1, a2 = −x11a21 − x12a1a2 and g2 a1, a2 = −x21a1
a2 − x22a

2
2.

Define p2 t = y2 t − ξ, where ξ = y2. Then, y2 = p2 + ξ
and p2 = 0. Then, we write (40) as follows:

a1 t = y1 − 2x11θy1 a1 − x12θy1a2 + g1 a1, a2 , t ≠ τk, k ∈N ,

a2 t = p2 − x21θy1 a2 + ξa2 + g2 a1, a2 , t ≠ τk, k ∈N ,

a1 τ+k = 1 + hk a1 τk , t = τk, k ∈N ,
a2 τ+k = 1 + gk a2 τk , t = τk, k ∈N

41

Its linear homogeneous function can be written as
follows:

δ1 t = y1 − 2x11θy1 δ1 − x12θy1δ2, t ≠ τk, k ∈N ,

δ2 t = p2 − x21θy1 δ2, t ≠ τk, k ∈N ,

δ1 τ+k = 1 + hk δ1 τk , t = τk, k ∈N ,
δ2 τ+k = 1 + gk δ2 τk , t = τk, k ∈N

42

Noting that x21θy1 > 1/T ln q
k=1 1 + gk , we have

c22 = p2 − x21θy1 = −x21θy1 <
1
T

ln
q

k=1

1
1 + gk

, 43

and

c11 = y1 − 2x11θy1 = y1 − x11θy1 − x11θy1

= 1
T

ln
q

k=1

1
1 + hk

− x11θy1 ≠
1
T

ln
q

k=1

1
1 + hk

44

We apply (41) to obtain the relatively compact linear
operator L PCT × PCT → PCT × PCT . Based on L, we write
(41) as the following equivalent operator function

a1, a2 = ξL∗ a1, a2 +G a1, a2 , 45

where
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L∗ a1, a2 = L1 −x12θy1L2a2 , L2a2 46

and

G a1, a2 = L1 −x12θy1L2g2 a1, a2 + g1 a1, a2 , L2g2 a1, a2
47

Here, L ∗ PCT × PCT → PCT × PCT is linear and
relatively compact and G PCT × PCT → PCT × PCT is
quasi-equicontinuous and relatively compact and meets the
condition G = ∘ a1, a2 PCT when a1, a2 PCT → o.

Regard ξ in (45) as a real value parameter. As long as
ξ ∈ R, any nontrivial periodic solution a1a2 ≠ 0, 0 of
(45) on PCT × PCT can generate a periodic solution β, λ =
a1 + θy1 , a2 in the collaboration and coexistence model,
where y2 = ξ. Hence, the issue of whether the periodic solu-
tion of Model (2) exists reduces to the issue of bifurcation
of (45). Applying local bifurcation theory to (45), we see that
bifurcation occurs only when the linear equation

δ1, δ2 = ξL∗ δ1, δ2 , δ1, δ2 ≠ 0, 0 , ξ ∈ R 48
has a nontrivial solution.

Assume that if ξ ∈ R, δ1, δ2 ∈ PCT × PCT is a T-periodic
solution of (48). By the definition of L∗, δ1, δ2 is the solu-
tion to the following equation

δ1 t = y1 − 2x11θy1 δ1 − x12θy1δ2, t ≠ τk, k ∈N ,

δ2 t = p2 + ξ − x21θy1 δ2, t ≠ τk, k ∈N ,

δ1 τ+k = 1 + hk δ1 τk , t = τk, k ∈N ,
δ2 τ+k = 1 + gk δ2 τk , t = τk, k ∈N ,

49
and vice versa. Based on Hypothesis 3(i), if ξ = ξ∗, where

ξ∗ =
1
T

ln
q

k=1

1
1 + gk

+ x21θy1 , 50

(49) indicates that (45) has the only nontrivial T-periodic
solution on PCT × PCT . In view of Hypothesis 3(ii), (41)
has the only T-periodic solution on PCT × PCT and bifurca-
tion occurs only under the simple eigenvalue ξ∗. Then, bifur-
cation of the sectionally continuous periodic solution of (45)
can be obtained. Apart from ξ∗ ; 0, 0 , all the other solutions
are nontrivial.

The expanded form of ξ ; a1, a2 in the neighbourhood
of ξ∗ ; 0, 0 suggests that the periodic solution of (45) is
equivalent to the positive periodic solution of Model (2). In
fact, when ε is sufficiently small and aij ∈ PTT , then

ξ = ξ∗ + ξ1ε +⋯, ai = ai1ε + ai2ε
2 +⋯, i = 1, 2

51
Upon substituting the above equation into (41), and if the

coefficients ε and ε2 on both ends are the same, then

a11 = y1 − 2x11θy1 a11 − x12θy1a21, t ≠ τk, k ∈N ,

a21 = p2 + ξ∗ − x21θy1 a21, t ≠ τk, k ∈N ,

a11 τ+k = 1 + hk a11 τk , t = τk, k ∈N ,
a21 τ+k = 1 + gk a22 τk , t = τk, k ∈N ,

52

a12 = y1 − 2x11θy1 a12 − x12θy1a22 − x11a
2
11

− x12a11a21, t ≠ τk, k ∈N ,

a22 = p2 + ξ∗ − x21θy1 a22 + ξ1a21 − x21a11a21

− x22a
2
21, t ≠ τk, k ∈N ,

a12 τ+k = 1 + hk a12 τk , t = τk, k ∈N ,
a22 τ+k = 1 + gk a22 τk , t = τk, k ∈N

53
Hence, a11, a21 ∈ PCT × PCT is the solution of (48). A

special solution meeting the condition of a21 0 = 1 is

a21 t =
0≤τk<t

1 + gk exp
t

0
p2 + ξ∗ − x21θy1 ds > 0,

a11 t = −
t

0
G t, s x12θy1a21 s ds

54
Hence, in terms of t, a11 t < 0 is valid. Applying

Hypothesis 2 to the second equation in (53), we have
ξ = x21a11 + x22a21.

If ξ1 > 0, then there exists a bifurcation γ+ = ξ ; a1, a2
⊆ R × PCT × PCT , where ξ > ξ∗, and as long as t > 0, then
a1 t < 0 and a2 t > 0. When ξ becomes sufficiently close
to ξ∗, it is equivalent to the positive periodic solution of
Model (2). Therefore, there exists a c0 > 0 that is sufficiently
small to ensure that the bifurcation C+ = ξ ; β, λ ∈ R ×
PCT × PCT can be solved andmeets the condition, such that
when ξ∗ < ξ < ξ∗ + c0, if t > 0, then β t < θy1 and λ t > 0.
Since ξ∗ < ξ < ξ∗ + c0 is equivalent to ξ∗ < y2 < ξ∗ + c0,
Hypothesis 5(i) is valid. If ξ1 < 0, it is valid similarly that
there exists a constant d0 > 0 that is sufficiently small to
ensure that the solution β, λ ∈ PCT × PCT of Model (2)
meets the condition such that when ξ∗ − d0 < y2 < ξ∗, if t >
0, then β t < θy1 and λ t > 0. The proof is complete.

From Hypothesis 5, we note that ξ1 is a measure of the
probability that the two personnel groups coexist. ξ∗ is a
value of the positive periodic solution bifurcated from the
semitrivial periodic solution θy1 , 0 . If ξ1 > 0, then y2 > ξ∗.
From Hypothesis 1, we see that the unsteady manifold of
the semitrivial positive periodic solution θy1 , 0 increases
by one dimension. According to the steadiness exchange
principle, when ξ1 > 0, the periodic solution y2 ; β, λ
exhibits linear asymptotic steadiness. If ξ1 < 0, then the bifur-
cated periodic solution is unsteady.
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4. Application Examples

During the implementation process of complex mega infra-
structure projects, many factors, both internal and external,
can exert an influence. The engineering personnel groups
are not isolated from one another but coexist in a complex
engineering system. Once the risk of infection occurs, a chain
reaction will be triggered. Therefore, it is necessary to balance
the structure of the personnel groups and formulate targeted
strategic precautions. The periodic collaboration and coexis-
tence model with the oscillation effect introduced in this
study obtains three types of components, namely, a nonneg-
ative periodic solution, a trivial periodic solution 0, 0 , and
semitrivial periodic solutions θy1 , 0 and 0, θy2 . Based on
the nontrivial T-periodic solution bifurcated from the semi-
trivial periodic solution, the conditions necessary to maintain
stability of the trivial periodic solution and the nontrivial
periodic solution are obtained. In addition, the conditions
obtained suggest that all the trivial periodic solutions and
nontrivial periodic solutions are linearly unsteady. This indi-
rectly indicates that personnel groups in the complex major
engineering systems discussed in Model (2) can coexist
sustainably. The conditions of Hypothesis 2 imply that oscil-
lating periodic collaborative management can prevent one
engineering personnel group from being fully assimilated or
disappearing after the risk of infection occurs, guaranteeing
sustainable production of the major engineering project.

To prove that the internal positive periodic solution bifur-
cated from the semitrivial periodic solution is stable and
steady, we present the following examples and numerical sim-
ulation results.

We can use Model (2) to describe periodic collaborative
management of two coexisting personnel groups within a
complex major engineering system. Since the risk of infection
occurs on a discontinuous basis, Model (2) is reasonable. For
the convenience of discussion, we assume that an engineering
personnel group in any period (such as 1 year) is managed
for a finite time period independently. In the other case,
two coexisting engineering personnel groups are managed
collaboratively during the same period. We can express the
oscillation effect as follows:

β t = β t η + sin 2πt − x11β t − x12λ t , t ≠ τk, k ∈ Z+,
λ t = λ t ξ + cos 2πt − x21β t − x22λ t , t ≠ τk, k ∈ Z+,

β τ+k = 1 − p1 β τk , t = τk, τk =
1
2 2k − 1 , k ∈ Z+,

λ τ+k = 1 − p2 λ τk , t = τk, τk =
1
2 2k − 1 , k ∈ Z+,

55

where β t and λ t stand for the density of the two
coexisting engineering personnel groups at a certain time
point η, ξ and xij i, j = 1, 2 are positive constants, T = 1,
and 0 ≤ p1 < 1, 0 ≤ p2 < 1 represent the degrees of collabo-
ration between the two engineering personnel groups.
The two components of interest in this research are both

nonnegative solutions. The two engineering personnel groups
can coexist.

Assume that η = 1, ξ = 1, x11 = 0 4, x12 = 0 2, x21 = 0 5,
x22 = 0 3, and β 0+ , λ 0+ = 0 4, 0 5 . Set p1 and p2 as
control variables. System (55) has a semitrivial periodic solu-
tion with asymptotic stability when there is no management
collaboration p1 = p2 = 0 .

Figure 2 presents the time-sequence comparison chart of
the two groups in Model (55) under the condition of nonos-
cillating collaborative management. Figure 3 shows the time-
sequence comparison chart of the two groups in Model (55)
under the condition of oscillating collaborative management.
As observed from Figures 2 and 3, β is the dominant group.
If periodic collaborative management is pursued, that
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The time-sequence comparison chart of the two groups
without oscillating collaborative management

10 20 30 40 45

Group �훽

Group �휆

Figure 2: The time-sequence comparison chart of the two groups
without oscillating collaborative management.
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Figure 3: The time-sequence comparison chart of the two groups
under oscillating collaborative management.
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is, p1 = 0 3 and p2 = 0 15, then the conditions of Hypothe-
sis 2 η > ln 1/1 − p1 + x12/x22 1 − ln 1/1 − p2 , ξ >
ln 1/1 − p2 + x21/x11 η − ln 1/1 − p2 and the condi-
tions of Hypothesis 5 are valid. The two engineering person-
nel groups coexist in a steady periodic solution. Under the
condition and measure of the probability that the two per-
sonnel groups coexist, oscillating collaborative management
can stop group λ from being assimilated or disappearing. In
fact, when there is no oscillating collaboration and β is the
dominant group, and if p2 is relatively small, the influence
of β will decline with increasing p1. When the latter con-
tinues to increase to a certain extent, the two engineering per-
sonnel groups can coexist in a steady periodic solution,
fulfilling the management goal.

If p1 keeps increasing and when η < ln 1/1 − p1 + x12/
x22 1 − ln 1/1 − p2 , group β, as stated in Hypothesis
1(iii), tends to be assimilated or disappear, while group λ will
periodically oscillate. If the oscillating collaboration value is
large, excessive management might lead to the assimilation
or disappearance of both groups. Therefore, to guarantee
the coexistence of the two kinds of engineering personnel
groups, determining an appropriate collaboration and coex-
istence management strategy is vital.

5. Conclusions

Based on the structural characteristics of major engineering
personnel groups under the risk of infection, we consider
how to inhibit the risk of infection. Based on the theories of
dynamic, life cycle, and oscillation, we develop a periodic col-
laboration and coexistence management model with the
oscillation effect. We perform mathematical analysis to show
how periodic oscillating collaborative management prevents
the full assimilation or disappearance of one engineering per-
sonnel group when the risk of infection is triggered, and how
the personnel groups in a complex major engineering system
can remain balanced to guarantee the sustainability of project
construction. We derive the following findings: (1) When the
degree of oscillating collaboration is high, excessive manage-
ment might result in severe imbalance of the personnel struc-
ture and impede the complex major engineering project from
progressing normally. (2) When infection breaks out, the
dominant group will be weakened as collaborative manage-
ment of the group increases. In addition, when the degree
of collaboration reaches a certain degree, the two engineering
personnel groups can coexist over a steady period. (3) When
two engineering personnel groups exist in a steady period,
collaborative management under the oscillating model can
prevent the engineering personnel groups from being assim-
ilated or disappearing even under the risk of infection.

In summary, we do not only reveal the mechanism of
group collaboration in a complex major engineering system
under the risk of infection and enriches the major engineer-
ing collaborative management theory but also build a peri-
odic collaboration and coexistence management model with
the oscillation effect. The model can provide references for
the collaborative management of major engineering systems
under the risk of infection. More importantly, it can prevent
and curb the occurrence of large-scale infection risk, thus

safeguarding the structural stability of the complex major
engineering system. Taken together, our research findings
complement and supplement the pertinent theories and pro-
vide useful references for improving collaborative manage-
ment in complex mega infrastructure projects. However,
this study is in the theoretical research stage of mechanism
revelation and model establishment. We will continue to
enrich this theory in future research and try to do some
research on simulation and experiment.
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