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Abstract
Decoupling is an important tool used to prolong the coherence time of quantum
systems. However, most decoupling schemes have assumed selective controls on
the system, and it is believed that with global pulses one can only decouple
systems with certain coupling terms like secular dipole-dipole coupling. In this
article, we show that with global pulses it is possible to reduce the coupling
strength of other types of coupling, which we demonstrate with Ising coupling.
The complexity of such pulses is independent of the size of the system.

Keywords: global pulse, decoupling, quantum control

1. Introduction

Quantum systems suffer from decoherence due to interactions with environments. The task of
decoupling is to remove unwanted couplings between systems and environments [1, 11, 12].
Many decoupling schemes have been proposed and demonstrated in experiments
[2–7, 9, 10, 19, 21–28]. For example, randomized dynamical decoupling [19] uses randomly
selected pulses at regular intervals, Uhrig dynamical decoupling (UDD) [2] can cancel
dephasing of a single qubit up to order n by using a minimal number of n pulses, and
concatenated dynamical decoupling (CDD) constructs decoupling pulse sequences recursively
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[6]. There are also studies on using pulses to remove the internal couplings of quantum systems
[21, 29, 37] and to engineer Hamiltonians [13, 14].

A common feature of these decoupling schemes is that they all assume selective controls
on the system. For many quantum systems, selectively addressing each qubit could be very
demanding, especially of those systems whose environment consists of the same physical
objects as the system. For example, in some solid state devices, the system and the environment
can be the spin of the same nuclear species. For such systems, selectively controlling the system
is very hard, as the pulses usually affect all the spins, which means the pulses will be global.
The known examples of decoupling with global pulses are WAHUHA [27], MREV-8, and
MREV-16 [28, 29] in nuclear magnetic resonance, which exploit the symmetry of homonuclear
secular dipole-dipole coupling to decouple the system. Such decoupling schemes rely on the
symmetry of secular dipole-dipole coupling and therefore do not apply to other types of
coupling. Recently, applications of global pulses in Hamiltonian engineering were also studied
[15]. In this paper, we examine the use of global pulses to decouple the system with Ising
coupling between the qubits, and show that, contrary to existing beliefs, it is possible to
decouple systems with couplings other than secular dipole-dipole coupling. The advantage of
global pulses is that the number of pulses needed for decoupling will be independent of the
number of qubits (i.e., the complexity of global pulses is O (1)).

2. Average Hamiltonian

The principle of decoupling can be illustrated by the average Hamiltonian theory [32, 33]. That
is, the propagator can be written as a single exponential relying on some average Hamiltonian,
H , which has the same effect as a time-varying Hamiltonian. The full advantage of this theory
is often realized in an interaction frame of a period and cyclic Hamiltonian. Assume that in an
appropriate interaction frame, the Hamiltonian is piecewise constant, …H H H, , m1 2 , in
corresponding time intervals, …t t t, , , m1 2 . Then,

= ⋯− − −e e e .iH t iH t iH tm m 1 1

Here, ⋯H Hm1 are Hamiltonians transformed from the physical Hamiltonian by applying pulses
on the system (i.e., =H U HUi i i

† , where Ui represents the propagator generated by the pulses).
The first few orders of the average Hamiltonian are
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A global pulse transforms an initial Hamiltonian, H, to

= ⊗ ⊗ ⋯ ⊗ ⊗ ⊗ ⋯ ⊗H U U U HU U U( ) ,i
†

where ∈U SU (2) represents the propagator generated by the global pulse on each qubit. Global
pulses have been used to decouple systems with secular dipole-dipole coupling. In this case, the
coupling Hamiltonian takes the following form:

∑= − −( )H d I I I I I I2 . (2)dd

jk

jk
jz kz jx kx jy ky1

Here, ⎜ ⎟
⎛
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2
are the Pauli spin matrices, and we

denote νIℓ as the operator that acts as νI on the ℓth spin (see [34]).
Applying a global πx( )

2
pulse and πy( )

2
pulse on the system, one gets

∑

∑
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It is easy to see that averaging these three Hamiltonians decouples the dipole-dipole
coupling; that is,

=δ δ δ δ− − − −e e e e ,iH t iH t iH t i tH3dd dd dd
1 2 3

where =H 0. This is the basic building block of WAHUHA, MREV-8, and MREV-16 [26],
and the effectiveness of such a decoupling scheme has been experimentally demonstrated [30].
However, this decoupling scheme only works for systems with coupling α β γ+ +I I I I I Ix x y y z z,
where α β γ+ + = 0.

3. Reduce Ising coupling with global pulses

At first look, it may seem impossible to decouple Ising coupling with global pulses, as global
pulses cannot change the signs of Ising coupling. We will show that it is indeed possible by
extending our previous study on homonuclear decoupling [31].

Consider a system consisting of N qubits connected by Ising coupling. The coupling
topology can take various shapes. For example, it can be a spin chain or spin lattice, as shown in
figure 1. A gradient magnetic field is added to the system, which induces Zeeman splitting on
the qubits. The magnetic field and its gradient are large enough that the differences of Zeeman
splitting between coupled qubits are much larger than the coupling strength between the qubits.
Under such a gradient magnetic field, the Hamiltonian of the system takes the form

Figure 1. Spin topology: (a) linear chain, (b) square lattice.
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∑ ∑ω= +
= ∈

H I J I I (4)
j

N

j jz

jk G

jk jz kz

1 ( )

where ⃗ ⃗ω μ= − B·j j, ⃗μ is the magnetic moment and Bj indicates the magnetic field at site j. G
is a graph indicating the coupling topology of the system (i.e., if the edge ∈jk G( ) , then the
qubits at site j and k are coupled). We assume ω ≫ Ji jk, ω ω− ≫ ∀J i j k| | , , ,j k jk .

We will first use a two-qubit system to illustrate the decoupling strategy, then generalize it
to N qubits with various coupling topologies.

For a two-qubit system, the Hamiltonian takes the form

ω ω= + +H I I JI I . (5)z z z z0 1 1 2 2 1 2

The basic pulse sequence consists of four periods; within each period it evolves according
to the following Hamiltonians:

ω ω

ω ω

ω ω

ω ω
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z z z z x x
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3 1 1 2 2 1 2 1 2

4 1 1 2 2 1 2 1 2

where H1 is obtained simply by applying a magnetic field in x direction with effective amplitude
A, H2 is obtained from H1 by conjugating a π-pulse along the x direction (i.e.,

= π π+ − +H e H ei I I i I I
2

( )
1

( )x x x x1 2 1 2 ), H4 and H3 are obtained with a control field along the −x
direction, and conjugation with π-pulses along the x direction. The π-pulses here are assumed to
be infinitely narrow pulses.

Each of the four Hamiltonians is maintained for a period of Δt. To keep the terms up to the
second order of the average Hamiltonian theory, we obtain the following average Hamiltonian
over an interval of Δt4 :

Δ ω ω Δ

Δ ω ω Δ Δ

= + + + +

+ + + − + ( )

( ) ( )

( )( )

H JI I
A t

I I A tJ I I I I

A t
I I A t J I I I I O A t

2

( )
2

4
3

( ) ( ) . (7)

eff z z y y y z z y

z z y y z z

1 1 2 1 1 2 2 1 2 1 2

2

1 1 2 2
2

1 2 1 2
3

Next, we apply π pulses along y direction to flip the signs of the third and fourth terms in
H eff1 . The pulse sequence is shown in figure 2.

As a consequence, we create H eff2 such that

=Δ Δ π Δ π− − + − − +( ) ( )e e e e e . (8)iH t iH t i I I iH t i I I8 4 4eff eff y y eff y y2 1 1 2 1 1 2

It is straightforward to see that

θ ω ω θ θ= + + + − + ( )( ) ( )H I I JI S J I I I I O
2

4
3

. (9)eff y y z z y y z z2 1 1 2 2
2

1 2 1 2
3

Here we denote θ Δ= tA and choose Δt such that θ ≪ 1, but θ ω ω− ≫ J| |1 2 . The newly
created Zeeman-like terms along the y direction are orthogonal to the Ising coupling terms.
Since we have θ ω ω− ≫ J| |1 2 , we can use rotating wave approximation to reduce the
effective Hamiltonian to

4
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θ ω ω θ θ= + + + ( )( )H I I JI I O
2

4
3

. (10)eff y y y y3 1 1 2 2
2

1 2
3

That is, if we repeat the procedure k times such that Δ ≫
ω ω−k t8 1

1 2
,

then =Δ Δ− −e e[ ]iH t k iH k t8 8eff eff2 3 .
Compared with the original Hamiltonian, H0, we have effectively reduced the coupling

strength by a factor of θ4

3
2. If we can create ω ω− ≈ J| | 101 2

3 , then θ can be taken ≈ 1

20
, so in

this case θ ≈4

3
2 1

300
(i.e., the coupling strength is reduced by ≈300 times). Further reduction of

the coupling strength can be achieved by more iterations of the above procedure. Note that the
local terms, such as ω ω+θ I I( )y y2 1 1 2 2 , can be canceled by Hahn echo pulses (i.e., inserting π-
pulse along the x direction) [35].

This decoupling strategy can be generalized to N qubits with various coupling topologies,
which can be easily seen by substituting the Hamiltonian for the N-qubit system in equation (6):
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Again by inserting π-pulses along σy direction and using rotating wave approximation, we
create an effective Hamiltonian:

∑ ∑θ ω θ θ= + +
= ∈

( )H I J I I O
2

4
3

. (12)eff
N

j

N

j jy

jk G

jk jy ky

1

2

( )

3

The subsequent steps are similar to the ones outlined in the case of a two-qubit system.
Since at every step of the analysis the precise knowledge of the coupling strength is not

required as long as it is small compared to the Zeeman splitting, this decoupling scheme is
actually robust against random fluctuation of the coupling strength, Jjk. For example, on the

Figure 2. Basic pulse sequence for decoupling.
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two-qubit system, the coupling strengths during the four periods of the basic pulse sequence in
equation (6) can be fluctuating. We assume the fluctuation has a steady distribution and in each
period the coupling strength is constant drawn from steady distribution. This assumption holds
when the frequency of fluctuation is small compared to

Δt

1 . In this case, the basic pulse sequence
becomes

ω ω

ω ω

ω ω

ω ω

= + + + +

= − − + + +

= − − + − +

= + + − +

( )
( )
( )

( )
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H I I J I I A I I

H I I J I I A I I

,

,

,

. (13)

z z z z x x

z z z z x x

z z z z x x

z z z z x x

1 1 1 2 2 1 1 2 1 2

2 1 1 2 2 2 1 2 1 2

3 1 1 2 2 3 1 2 1 2

4 1 1 2 2 4 1 2 1 2

By keeping the terms up to the second order of the average Hamiltonian theory, we obtain
the following average Hamiltonian over an interval of Δt4 :

⎜ ⎟⎛
⎝

⎞
⎠

Δ ω ω

Δ Δ ω ω

Δ

Δ

′ =
+ + +

+ +

+
+ + +

+ + +

+
+ + +

+
− − +

−

+ ( )

( )

( )

( )

( )( )

H
J J J J

I I
A t

I I

A t J J J J
I I I I

A t
I I

J J J J J J J J
A t I I I I

O A t

4 2
3 3

8
( )

2

3 4
( )

( ) , (14)

eff z z y y

y z z y z z

y y z z

1
1 2 3 4

1 2 1 1 2 2

1 2 3 4
1 2 1 2

2

1 1 2 2

1 2 3 4 1 2 3 4 2
1 2 1 2

3

which reduces to equation (7) when the four coupling strengths are the same. Again, by
inserting π pulses along y -direction, we can flip the signs of the third and fourth terms in ′H eff1 ,
and create an effective Hamiltonian:

′ = ′ ′Δ Δ π Δ π− − + − − +( ) ( )e e e e e . (15)iH t iH t i I I iH t i I I8 4 4eff eff
y y

eff
y y

2 1
1 2

1
1 2

Here, the two ′H eff1 may have different coupling strengths. Assume the coupling strengths
for the four periods of basic pulse sequences for each ′H eff1 are J J J J, , ,1 2 3 4 and J J J J, , ,5 6 7 8,
respectively. Then

θ ω ω

θ

θ

Δ

′ =
+ + + + + + +

+ +

+
+ + + − − − −

+

+
+ + + + + + +

−

+ ( )

( )

( )

( )

H
J J J J J J J J

I I I I

J J J J J J J J
I I I I

J J J J J J J J
I I I I

O A t

8 2
3 3 3 3

8
7 7 7 7

24

( ) , (16)

eff z z y y

y z z y

y y z z

2
1 2 3 4 5 6 7 8

1 2 1 1 2 2

1 2 3 4 5 6 7 8
1 2 1 2

1 2 3 4 5 6 7 8 2
1 2 1 2

3

where θ Δ= A t. Similar to the case with constant coupling strength, we choose Δt such that
θ ω ω− ≫ J| | i1 2 . By rotating wave approximation, the yz zy, , and zz couplings are effectively
averaged out, as they do not commute with ω ω+I Iy y1 1 2 2 . Only the yy coupling remains, whose
strength is reduced by the order of θ2 compared to the original coupling strength. The
generation to N-qubit system is straightforward, similar to the case with constant coupling
strength.
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This decoupling pulse sequence can also reduce the dephasing effect caused by the
environment. Suppose each qubit in the system is coupled to the environment where the
coupling Hamiltonian is modeled as σ= ∑ +H g b g b( ),SB k z k k k k

† † where b b,k k
† are bosonic

operators for the kth field mode of the environment, characterized by a generally complex
coupling parameter, gk [1]. The π pulses along the x and y directions in our decoupling scheme
also average out the net effect of HSB.

Finally, we present a numerical simulation to illustrate the effects of our decoupling
strategy. As shown in figure 3, the simulation was done with four spins on a square lattice, with
one iteration of the pulses. We simulate the unitary evolution of the system without and with the
global pulses, and see how it deviates from the identity operator. The vertical axis represents the
fidelity of U with respect to the identity operator, where fidelity measurement between two
unitary operators, U1 and U2, is defined as

ϕ =
)

( )
( ) ( )

tr U U

tr U U tr U U
. (17)

1 2
† 2

2 2
†

1 1
†

Other fidelity measures (for example, the average gate fidelity [36, 37]) can also be used,
which is equivalent in our case. Assume the lattice is put at a vicinity of a dysprosium micro
magnet with a length of 400 μm, a width of 4 μm, and a height of 10 μm, which can generate a
field gradient of μ∂ ∂ = −B z T1.4 m 1 [38]. In addition, a large homogeneous field, B0 of ∼7 T, is
superposed. The distance of two neighboring nuclei spin is ∼1 nm; for the simulation we take
the distance as 1 nm and the nuclear spin as 29Si [38]. If the magnetic field gradient is put along
the direction of =y x3

3
, then the Zeeman splittings for the four spins are 62.8 kHz, 95.9 kHz,

Figure 3. (Color online) The simulation was on a square lattice with four qubits. The
coupling strengths between these qubits fluctuate at each instant of time. The coupling
strengths between neighboring qubits have means equal to =J [17.3, 17.9, 18.5, 19.2]
Hz, and variances equal to =J̄ 9 Hz. The coupling strengths between diagonal qubits
have means equal to =J [6.1, 6.6] Hz, and variances equal to 3 Hz. The Zeeman
splittings of the four qubits are [62.8, 95.9, 120.1, 153.18] kHz, respectively.
Δ = −t 10 7, θ = 1

20
, and π≈ × =A kHz2 8 10 83 . The initial state of the qubit is

〉 + 〉|0 |1

2
. The blue line shows the fidelity without the global pulses; the red circles show

the fidelity with the application of the decoupling pulses.
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120.1 kHz, and 153.18 kHz, respectively. The secular component of the dipolar Hamiltonian
which couples the ith spin to the jth spin is written as [39]

μ
π

γ
θ

=
−

=H
r

I I J I I
4

1 3 cos
,ij

ij

ij
z
i

z
j

ij z
i

z
j0 2 2

2

3

where rij is the length of the vector connecting the spins and θij is its angle with the applied
field. With chosen parameters, the coupling strengths between adjacent spins are ∼17.3 HZ, and
∼6.1 Hz between diagonal spins. Due to the vibration of the atoms, the couplings strength can
fluctuate, so we assume that the coupling strengths at each instant of time follow independent
normal distributions with mean values =J [17.3, 17.9, 18.5, 19.2, 6.1, 6.6] Hz and variances
equal to 10 Hz for the couplings between adjacent spins and 5Hz for the couplings between
diagonal spins. Δt is taken to be 10−7s and ≈A 8 kHz, θ = 1

20
. One can see that the global

pulses reduce the decoherence rate by about two orders of magnitude in one iteration. Note that
the results do not depend much on precise numerical values, as long as the condition ω ≫ Ji jk,
ω ω− ≫ ∀J i j k| | , , ,j k jk is satisfied.

4. Conclusions

We presented a method that reduces the Ising coupling strength of register qubits using global
pulses. This method can be used to reduce the residual coupling of quantum memories, where
selective addressing may be difficult or undesirable. The advantage of these global pulses is that
the number of pulses does not grow with the number of qubits (i.e., the complexity of these
pulses is only O(1)). This opens new directions for using global pulses for decoupling.
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