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The geometric measure of entanglement of a pure quantum state is defined to be its distance
to the space of product (seperable) states. Given an n-partite system composed of subsystems of
dimensions d1, . . . , dn, an upper bound for maximally allowable entanglement is derived in terms of
geometric measure of entanglement. This upper bound is characterized exclusively by the dimensions
d1, . . . , dn of composite subsystems. Numerous examples demonstrate that the upper bound appears
to be reasonably tight.

I. INTRODUCTION

The physical realization of quantum computing calls
for a hierarchical quantum network. The bottom level
is the one- and two-qubit regime, where a photon inter-
acts with matter (e.g., a trapped ion). In this regime,
precise control must be exerted. Going one level up we
enter the regime of quantum logic gates where typically
ten or more qubits operate. One level further up is the
fault-tolerant quantum error correction (QEC) architec-
ture regime where hundreds of qubits reside. The final
level is the algorithms regime. Being an essential re-
source for quantum computing, entanglement propagates
over the dynamic quantum network to fulfil desired quan-
tum computing tasks. A fundamental quantum naturally
arises: how much entanglement can a quantum network
encode?

If a quantum network is composed of qubits, that is,
each particle lives in a two-dimensional Hilbert space,
we end up with a multipartite qubit system. When re-
stricted to the pure state case, the 2-qubit entanglement
is well-understood. For the 3-qubit case, it is well-known
that the GHZ state [1] is the most entangled state in
terms of entanglement entropy and its degree of entan-
glement can also be easily computed by means of many
other measures of entanglement. On the other hand, it
has been reported [2] that the 3-qubit W-state [3] is more
entangled than the 3-qubit GHZ state in terms of geo-
metric measure of entanglement [4]. In fact, it is gener-
ally agreed that the characterization and quantification
of entanglement of n-qubit systems for n > 3 is a difficult
task. In addition to qubits, for a typical quantum net-
work, there may also exist other finite-level units, see sev-
eral recent experimental set-up in e.g., [5–8]. For such a
hybrid quantum network, namely a heterogeneous multi-
partite system, it is unclear how much entanglement can
be allowed, not to mention how to quantify it efficiently.
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A fundamental problem in quantum physics and also
an important problem in quantum information science is
to detect whether a given state is entangled, and if so,
how entangled it is. Several measures of quantum en-
tanglement have already been proposed in the literature,
e.g., Schmidt rank [9, Section 2.5], von Neumann entropy
[9, Section 11.3], entanglement of formation [10], quan-
tum concurrence [11, 12], the Peres-Horodecki criterion
[13, 14], Schmidt measure (also called Hartley entropy)
[15] based on Candecomp/Parafac (CP) decomposition
of tensors [16, 17], relative entropy [18], negativity [19],
the geometric measure of entanglement, [4, 20–28]. More
can be found in the survey papers [29–31]. For the bi-
partite pure state case, a state is maximally entangled
in terms of one measure is often also maximally entan-
gled in terms of another measure. In this sense, different
measures give consistent prediction. This is not true for
multipartite cases. For a multipartite system, it is typ-
ical that two different measures attain their maxima at
different quantum states [3, 32].

In this paper we are interested in the following prob-
lem: Given an n-partite system which can be either
homogeneous or heterogeneous, how entangled can its
states be? We will use the geometric measure to quan-
tify the degree of entanglement. We show that an upper
bound can be derived for entanglement content allowed.
Moreover, the upper bound is given exclusively in terms
of dimensions of the composite subsystems. Not sur-
prisingly, the upper bound can always be reached in the
case of bipartite systems. Interestingly, various examples
demonstrate that upper bounds appear to be reasonably
tight for many multipartite systems.

II. GEOMETRIC MEASURE OF
ENTANGLEMENT (GME)

For a quantum n-partite system, a pure state |Ψ〉 is an
element in the tensor product Hilbert space H = H1 ⊗
· · · ⊗ Hn ≡ ⊗nk=1Hk. For each k = 1, . . . , n, denote the
dimension of the composite subsystem Hk by dk and the

orthonormal basis by {|e(k)
ik
〉}. (For ease of presentation

This is the Pre-Published Version.https://doi.org/10.1016/j.physleta.2018.04.007

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:maqilq@polyu.edu.hk
mailto:magzhang@polyu.edu.hk
mailto:guyan-ni@163.com


2

and without loss of generality, it is assumed in this paper
that d1 ≤ d2 ≤ · · · ≤ dn.) Then, a pure state |Ψ〉 ∈ H is
of the from

|Ψ〉 =
∑

āi1···in |e
(1)
i1
〉 ⊗ · · · ⊗ |e(n)

in
〉, (1)

where āi1···in ∈ C (the “bar” stands for the complex
conjugation). The normalization condition of |Ψ〉 is∑
i1,··· ,in |ai1···in |

2 = 1. A state |Φ〉 ∈ H is said to be
separable if it is a product state

|Φ〉 = |φ(1)〉 ⊗ · · · ⊗ |φ(n)〉, (2)

where

|φ(k)〉 =
∑

u
(k)
ik
|e(k)
ik
〉 ∈ Hk, ∀k = 1, . . . , n. (3)

If a state is not separable, then it is called an entangled
state.

Next, let us briefly review the geometric measure of
entanglement. Denote the set of all separable pure states
in H as Separ(H). For a general n-partite state |Ψ〉 ∈ H,
the geometric measure of its entanglement content can
be defined as its distance to the space of separable states
Separ(H), [4, 27], i.e.,

d , min {‖|Ψ〉 − |φ〉‖ : |φ〉 ∈ Separ(H)} . (4)

Since the minimization in (4) is taken with a continuous
function on a compact set Separ(H) in a finite dimen-
sional space H, the minimizer does exist and is denoted
by |φΨ〉 ∈ Separ(H). Clearly, |φΨ〉 is the separable state
which is closest to |Ψ〉.

For convenience, as in [4, 27], instead of computing (4)
directly, we study

d2 = ‖|Ψ〉 − |φΨ〉‖2

= min
{
‖|Ψ〉 − |φ〉‖2 : |φ〉 ∈ Separ(H)

}
. (5)

Note that

‖|Ψ〉 − |φ〉‖2 = 2− 〈Ψ|φ〉 − 〈φ|Ψ〉.

Thus the minimization problem in (5) is equivalent to
the following maximization problem:

max
〈φ(k)|φ(k)〉=1,k=1,··· ,n

{
〈Ψ| ⊗nk=1 |φ(k)〉+⊗nk=1〈φ(k)|Ψ〉

}
.

(6)
Introducing Lagrange multipliers λk, k = 1, · · · , n, and

applying complex differentiation [33] to get

〈Ψ| ⊗nj=1,j 6=k |φ(j)〉 = λk〈φ(k)|,

and

⊗nj=1,j 6=k〈φ(j)|Ψ〉 = λk|φ(k)〉.

Therefore,

λk = 〈Ψ|φ〉 = 〈φ|Ψ〉, k = 1, . . . , n

is a real number in the interval [−1, 1]. The maximal
overlap is, [4],

〈Ψ|φΨ〉 , max{|〈Ψ|φ〉| : φ ∈ Separ(H)} (7)

and the geometric measure of entanglement of |Ψ〉, de-
fined in (4), is hence

d =
√

2− 2〈Ψ|φΨ〉. (8)

Clearly, the smaller the maximal overlap 〈Ψ|φΨ〉 is, the
bigger the distance d between |Ψ〉 and the set of separable
states.

Next, we represent the geometric measure of entan-
glement by means of tensor (also called hypermatrix)
[16, 17]. For the pure state |Ψ〉 in (1), we define an asso-
ciated tensor AΨ by AΨ = (ai1···in) ∈ Cd1×···×dn . That
is, we store all the probability amplitude of the state |Ψ〉
into a multi-array. Similarly, we associate each |φ(k)〉 in
(3) with a column vector u(k) ∈ Cdk , k = 1, . . . , dn. Then
we define a c-number

AΨu
(1) · · ·u(n) ,

∑
ai1···inu

(1)
i1
· · ·u(n)

in
. (9)

The inner product between |Ψ〉 in (1) and |Φ〉 in (2) can
be re-written as

〈Ψ|Φ〉 = AΨu
(1) · · ·u(n). (10)

Denote the spectral radius of the tensor A by

σ(AΨ) , max
‖u(k)‖2=1, k=1,··· ,n

{
|AΨu

(1) · · ·u(n)|
}
. (11)

Then the largest overlap in (7) can be expressed as

〈Ψ|φΨ〉 = σ(AΨ). (12)

As a result, the geometric measure of entanglement of
the multi-partite state |Ψ〉 is

d =
√

2− 2σ(AΨ). (13)

In the literature of tensor optimization, several algo-
rithms have been developed for computing the spectral
radius of a given tensor A. When A is symmetric, it
can be proved that the spectral radius can be obtained
when u(1) = · · · = u(n), [34]. In particular, if further A
is real and with all nonnegative elements, then the spec-
tral radius is given by its largest Z-eigenvalue [27, 35]. In
general, the spectral radius of a symmetric tensor A is
its largest unitary symmetric eigenvalue (US-eigenvalue)
[25]. An algorithm has been developed to find the largest
US-eigenvalue of a given symmetric tensor [36, Algorithm
4.1]. When A is non-symmetric, its spectral radius is its
largest unitary eigenvalue (U-eigenvalue) [25]. The algo-
rithm proposed in [36] can be modified to find the largest
U-eigenvalue of a given non-symmetric tensor, see the al-
gorithm in Appendix. All the examples in this paper are
computed using these two algorithms.
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III. THE THEORETICAL UPPER BOUND

In this section, a theoretical upper bound is proposed
for entanglement possibly allowed by a given n-partite
system.

Define

σ , min {〈Ψ|φΨ〉 : |Ψ〉 ∈ H, 〈Ψ|Ψ〉 = 1} , (14)

where |φΨ〉 is the the product state closest to |Ψ〉, as
defined in the paragraph below (4). Clearly, for any pure
state |Ψ〉 ∈ H, we have

‖Ψ〉 − |φΨ〉‖ ≤
√

2− 2σ. (15)

So,
√

2− 2σ is an upper bound of possible entanglement
allowed in an n-partite system. In what follows we give
an estimate of this upper bound.

For a given d1 × d2 × · · · × dn tensor A, by fixing the
first n−2 indices i1, · · · , in−2, we end up with a dn−1×dn
matrix Ai1···in−2

≡ (ai1···in−2jk). According to (11),

σ(Ai1···in−2
) ≤ σ(A). (16)

Let ‖A‖ and ‖Ai1···in−2‖ be the Frobenius norm of A and
Ai1···in−2 respectively, i.e.,

‖A‖ =

√ ∑
i1,··· ,in

|ai1···in |2,

and

‖Ai1···in−2‖ =

√ ∑
in−1,in

|ai1···in |2.

By singular value decomposition (SVD), for the matrix
Ai1···in−2

defined above, we have

‖Ai1···in−2
‖2 ≤ dn−1σ(Ai1···in−2

). (17)

Since 〈Ψ|Ψ〉 = 1, we have ‖A‖ = 1. Putting all of these
together, we get

1 = ‖A‖2 =
∑

i1,··· ,in−2

‖Ai1···in−2
‖2

≤
∑

i1,··· ,in−2

dn−1σ(Ai1···in−2
)2

≤
∑

i1,··· ,in−2

dn−1σ(A)2

= d1 · · · dn−1σ(A)2.

That is,

σ(A) ≥ 1/
√
d1 · · · dn−1. (18)

Because this is true for all A with ‖A‖ = 1, by the defi-

nition of σ, we have σ ≥ 1/
√
d1 · · · dn−1. Therefore, the

upper bound is

d ≤
√

2− 2/
√
d1 · · · dn−1. (19)

In particular, for an n-qubit system, namely dk = 2 for
all k = 1, . . . , n, (19) reduces to

d ≤
√

2− 2/
√

2n−1. (20)

IV. EXAMPLES

In the previous section, a theoretical upper bound has
been proposed for entanglement possibly allowed in any
given n-partite system. A natural question is: Given a
multi-partite system, can the upper bound be reached?
If yes, how to find the state that gives the maximal en-
tanglement? If the upper bound cannot be reached, how
tight is it?

When n = 2, namely the bipartite case, the tensor
A reduces to a d1 × d2 matrix A = (aij). By (18),

σ(A) ≥ 1/
√
d1. Then by (19), d ≤

√
2− 2/

√
d1, i.e.,

the geometric measure of entanglement of bipartite pure

states is no large than
√

2− 2/
√
d1. It is well-known

that this upper bound can always be reached. In fact, let
ajj = 1/

√
d1 and aij = 0 if i 6= j. Clearly σ(A) = 1/

√
d1,

which is attended by the pure state

|φΨ〉 =
1√
d1

d1∑
i=1

|e(1)
i 〉 ⊗ |e

(2)
i 〉.

Readers may have recognized that the above procedure
is essentially the Schmidt decomposition [9], [37].

Next, we look at several examples for various multi-
partite cases, which indicate that the proposed theoreti-
cal upper bounds are often reasonably tight.
Example 1: 3-qubit system. Given an n-qubit

Greenberger-Horne-Zeilinger (GHZ) state, [1]

|nGHZ〉 =
|0〉⊗n + |1〉⊗n√

2
,

it is well-known that its geometric measure of entangle-

ment is
√

2− 2/
√

2, see e.g., [4, 27]. Clearly,

√
2− 2/

√
2 ≤

√
2− 2/

√
2n−1 (21)

for all n ≥ 2. Notice that the inequality (21) is tight
for n = 2, the 2-qubit case. When n = 3, namely
the 3-qubit case, the geometric measure of entanglement
of the |3GHZ〉 state is strictly smaller than the upper
bound which is 1 in this case. This means that the up-
per bound is not tight for this particular state. However,
although |3GHZ〉 is maximally entangled in terms of 3-
tangle [12], it is not the maximally entangled 3-qubit
state in terms of the 2-tangle or the persistency of en-
tanglement [3, 38]. A similar statement can be made
for the geometric measure of entanglement. In fact, as
shown in [4, 27], the geometric measure of entanglement
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of the |3GHZ〉 is
√

2− 2/
√

2 ≈ 0.7654, while the geomet-

ric measure of entanglement of the W state [3]

|W 〉 = (|100〉+ |010〉+ |001〉)/
√

3 (22)

is
√

2− 2 ∗ 2/3 ≈ 0.8165 with the closest symmetric
product state

|φΨ〉 = |φ〉 ⊗ |φ〉 ⊗ |φ〉 ,

where

|φ〉 = (−0.7885 + 0.2119i) |0〉+ (0.4996 + 0.2894i) |1〉 .

In fact, it is shown in [2] that the W state is the most
entangled 3-qubit pure state in terms of the geometric
measure of entanglement.

Example 2: 4-qubit system. In this case, the theoretical
upper bound is 1.1371. It is found that the GME of the
state |Ψ〉 = 1√

6
(|0011〉+ |1100〉+e2iπ/3(|0101〉+ |1010〉)+

e4iπ/3(|0110〉+ |1001〉)) is 1.0282 with the closest product
state

|φΨ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ⊗ |φ4〉 ,

where

|φ1〉 = (−0.3674 + 0.3830i) |0〉 − (0.6813− 0.5042i) |1〉 ,
|φ2〉 = (−0.9955− 0.0569i) |0〉 − (0.0418 + 0.0629i) |1〉 ,
|φ3〉 = (0.5210 + 0.2240i) |0〉 − (0.7665− 0.3013i) |1〉 ,
|φ4〉 = (0.6323− 0.0502i) |0〉 − (0.3042 + 0.7107i) |1〉 .

Example 3: 5-qubit system. In this case, the theoretical
upper bound 1.2247. It is found that the GME of the
following 5-qubit absolutely maximally entangled state,
[32, (37)],

|Ψ〉 =
1

2
√

2
(|00000〉+ |00011〉+ |01100〉 − |01111〉

+ |11010〉+ |11001〉+ |10110〉 − |10101〉)

is 1.1291 with the closest product state

|φΨ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ⊗ |φ4〉 ⊗ |φ5〉 ,

where

|φ1〉 = (−0.7060 + 0.5388i) |0〉+ (0.4556 + 0.0612i) |1〉 ,
|φ2〉 = (0.3766 + 0.8043i) |0〉+ (0.4322 + 0.1566i) |1〉 ,
|φ3〉 = (0.7843 + 0.4166i) |0〉+ (0.1346 + 0.4395i) |1〉 ,
|φ4〉 = (0.5652 + 0.6850i) |0〉 − (0.4576 + 0.0439i) |1〉 ,
|φ5〉 = (0.2449 + 0.8536i) |0〉+ (0.2228− 0.4021i) |1〉 ,

Example 4: 6-qubit system. In this case, the theoretical
upper bound 1.2831. It is found that the GME of the 6-
qubit state in Equation (5) of Reference [39] is 1.1927.
Remark 1. The results in Examples 1-4 are summa-

rized in Table I. It can be seen that at least for n ≤ 5,
there exists a state for an (n + 1)-qubit system, whose

TABLE I.

n-qubit theoretical upper bound best GME found
2-qubit 0.7654 0.7654
3-qubit 1 0.8165
4-qubit 1.1371 1.0282
5-qubit 1.2247 1.1291
6-qubit 1.2831 1.1927

GME can be very close to (slight higher or lower than)
the theoretical upper bound of entanglement possibly al-
lowed by any n-qubit system.
Example 5: 3-qutrit system. In this case, the theoret-

ical upper bound is 1.1547. It can be verified that the
GME of the 3-qutrit GHZ state

|Ψ〉 =
1√
3

(|000〉+ |111〉+ |222〉)

is 0.9194 with the closest product state |φΨ〉 = |000〉.
On the other hand, the GME of the 3-qutrit Dicke state
|Ψ〉 = 1√

6
(|012〉+ |021〉+ |102〉+ |120〉+ |201〉+ |210〉) is

1.0282 with the closest product state

|φΨ〉 = |φ〉 ⊗ |φ〉 ⊗ |φ〉 ,

where |φ〉 = (|0〉 + |1〉 + |2〉)/
√

3. Notice that this 3-
qutrit Dicke state has the same entanglement content as
the 4-qubit state in Example 2.
Example 6: 4-qutrit system. In this case, the theoreti-

cal upper bound 1.2709. The GME of the following state,
[40, (B1)],

|Ψ〉 =
1

3
(|0000〉+ |0112〉+ |0221〉+ |1011〉+ |1120〉

+ |1202〉+ |2022〉+ |2101〉+ |2210〉)

is 1.1547 with the closest product state

|φΨ〉 = |φ〉 ⊗ |φ〉 ⊗ |φ〉 ⊗ |φ〉 ,

where |φ〉 = (|0〉+ |1〉+ |2〉)/
√

3.
Example 7: 4-ququart system. In this case, the theo-

retical upper bound is 1.3229. The GME of the following
3-uniform state, [41, (B4)],

|Ψ〉 =
1

4
(|0000〉+ |0123〉+ |0231〉+ |0312〉

+ |1111〉+ |1032〉+ |1320〉+ |1203〉
+ |2222〉+ |2301〉+ |2013〉+ |2130〉
+ |3333〉+ |3210〉+ |3102〉+ |3021〉)

is 1.2247, with the closest product state

|φΨ〉 = |φ〉 ⊗ |φ〉 ⊗ |φ〉 ⊗ |φ〉 ,

where |φ〉 = −(i |0〉+i |1〉+ |2〉−|3〉)/2. Interestingly, the
GME of this 4-ququart system is the same as the theo-
retical upper bound of entanglement possibly allowed by
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all 5-qubit systems. It should be noted that the pure
state |Ψ〉 is not symmetric. Intuitively, the closest prod-
uct state should also be non-symmetric. Interestingly, for
this state, the largest U-eigenvalue can be obtained with
the above product state |φΨ〉 which is symmetric. The
same is true for Example 6.

Remark 2. The results in Examples 2 and 6-7 are sum-
marized inTable II. From Table II we can see that the
theoretical upper bound of entanglement allowed in all
4-qubit systems can be overpassed by the GME of a par-
ticular 4-qutrit state, and the theoretical upper bound
of entanglement allowed in all 4-qutrit systems can be
approached by the GME of a particular 4-ququart state.

TABLE II.

4-party theoretical upper bound best GME found
4-qubit 1.1371 1.0282
4-qutrit 1.2709 1.1547

4-ququart 1.3229 1.2247

Example 8: 2 × 2 × 3 system. For this example, the
first two particles are qubits whereas third one is a qutrit.
The theoretical upper bound is 1. It can be verified that
the GME of the following 1-uniform state, [41, (A2)],

|Ψ〉 =
1√
6

(|000〉+ |110〉+ |011〉+ |101〉+ |002〉 − |112〉).

is 0.9194 with the closest product state

|φΨ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ,

where

|φ1〉 = (0.2887 + 0.1283i) |0〉+ (−0.1999− 0.9275i) |1〉 ,
|φ2〉 = (−0.0366− 0.3138i) |0〉+ (−0.6964 + 0.6443i) |1〉 ,
|φ1〉 = (0.5420− 0.2983i) |0〉+ (−0.4013− 0.1367i) |1〉

+(−0.5 + 0.4331i) |2〉 .

Example 9: 2 × 3 × 3 system. In this case, the theo-
retical upper bound is 1.0879. It can be verified that the
GME of the symmetric pure state

|Ψ〉 =
1√
6

(|000〉+ |101〉+ |012〉+ |110〉+ |021〉+ |122〉)

is 0.9194 with the closest product state

|φΨ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ,

where

|φ1〉 = (0.5021− 0.4979i) |0〉+ (0.1802 + 0.6838i) |1〉 ,
|φ2〉 = (0.5208− 0.2491i) |0〉+ (−0.4762− 0.3265i) |1〉

+(−0.04464 + 0.5756i) |2〉 ,
|φ3〉 = (0.1944 + 0.5437i) |0〉+ (0.3736− 0.4401i) |1〉

+(−0.5680− 0.1035i) |2〉 .

Example 10: 2 × 2 × 4 system. In this case, the theo-
retical upper bound is 1. It can be verified that the GME
of the following pure state

|Ψ〉 =
1

2
(|000〉+ |011〉+ |102〉+ |113〉)

is 1 with the closest product state

|φΨ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ,
where

|φ1〉 = (0.0969− 0.7218i) |0〉+ (0.4724− 0.4964i) |1〉 ,
|φ2〉 = (0.4498 + 0.0562i) |0〉+ (0.8197 + 0.3501i) |1〉 ,
|φ3〉 = (0.0842 + 0.3192i) |0〉+ (0.3321 + 0.5578i) |1〉

+(0.2404 + 0.1967i) |2〉+ (0.5610 + 0.2416i) |3〉 .
The theoretical upper bound is reached by this particular
state.
Remark 3. The results in Examples 8-11 are summa-

rized in Table III. It is clear that, by adding one or two
qubits in a right way, the degree of entanglement might
be significantly increased. More discussions on the en-
tanglement structure of 2 ×m × n systems are given in
[42]. A more detailed discussion of the structure of mul-
tipartite entanglement can be found in, e.g., [43].

TABLE III.

3-party theoretical upper bound best GME found
2 × 2 × 2 1 0.8165
2 × 2 × 3 1 0.9194
2 × 3 × 3 1.0879 0.9194
2 × 2 × 4 1 1

Example 11: 3× 3× 3× 3× 3× 2 system. In this case,
the theoretical upper bound is 1.3575. The GME of the
following 2-uniform state, [41, (31)],

|Ψ〉 =
1

3
√

2
(|000000〉+ |001121〉+ |010220〉

+ |012011〉+ |021210〉+ |022101〉
+ |111110〉+ |112201〉+ |121000〉
+ |120121〉+ |102020〉+ |100211〉
+ |222220〉+ |220011〉+ |202110〉
+ |201201〉+ |210100〉+ |211021〉)

is 1.2364 with the closest product state

|φΨ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ⊗ |φ4〉 ⊗ |φ5〉 ⊗ |φ6〉 ,
where

|φ1〉 = (−0.99876− 0.0497913i) |1〉 ,
|φ2〉 = (−0.956069− 0.293143i) |0〉 ,
|φ3〉 = (0.413005− 0.910729i) |0〉 ,
|φ4〉 = (−0.739477 + 0.673182i) |2〉 ,
|φ5〉 = (−0.99998 + 0.00639697i) |1〉 ,
|φ6〉 = (0.028172 + 0.999603i) |1〉 .
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From the above, it is fair to say that the upper bound
of entanglement for this class of heterogeneous systems
is reasonably tight.

V. CONCLUDING REMARKS

In this paper we have been concentrated on the pure-
state setting. This is without loss of generality, as a
mixed state is a convex combination of pure states, the
largest distance, in terms of geometric measure of entan-
glement, is always achieved by pure states.

The problem of computation of the geometric mea-
sure of entanglement is equivalent to the problem of best
rank-one tensor approximation. Many algorithms in the
literature of tensor computation have been proposed, see,
e.g., [25, 27, 36, 44, 45], and Matlab toolboxes [46, 47].

In the literature, several theoretical upper bounds for
entanglement in terms of various measures have been de-
rived. For example, for any n-partite system whose sub-
systems being m ≥ 2 levels each, it is found [37] that each
pure state can be associated to a tensor with at most
mn − nm(m− 1)/2 nonzero elements. Based on this, an
upper bound of entanglement of this class of multipar-
tite systems in terms of Schmidt measure (the Hartley
entropy) has been proposed in [32]. However, the tight-
ness of the upper bound is not discussed. Upper bounds
for local entanglement has been discussed in [48]. To
be more specific, given an n-partite system, localizable
entanglement Eloc(A,B) between subsystems A and B
quantifies the maximal amount of entanglement between
A and B after performing all possible measurements on
the other n− 2 subsystems. An upper bound for localiz-
able entanglement Eloc(A,B) is given in [48] for a 4-qubit
system by means of entanglement of assistance. Finally,
for a spin-1/2 chain, let Cij be the quantum concurrence
of the subsystem composed of spins on sites i and j, and
let τ1,i be the one-tangle of the spin on site i. Then
the monogamy inequality

∑
C2
ij ≤ τ1,i has been proved.

[12, 49]. In particular, the equality holds for the 3-qubit
W state (22).
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APPENDIX

Given a non-symmetric pure state |Ψ〉 ∈ Cd1 ⊗ · · · ⊗
Cdn , denote the corresponding tensor by A, as given in
(1). As discussed in the paper, the maximal overlap
〈Ψ|φΨ〉 in (7) is equal to the largest U-eigenvalue of the
non-symmetric tensor A. The following algorithm can be
used to find the largest U-eigenvalue [25]. In fact, this
algorithm computes the U-eigenvalue of Ā, namely, the
complex conjugate of the tensor A. But this is not a
problem as A and Ā have the same U-eigenvalues.

Step 1 (Initial step): Choose a starting point x
(i)
0 ∈

Cdi with ||x(i)
0 || = 1, i = 1, 2, · · · , n. Choose a positive

real number α. Let λ0 = Āx(1)
0 x

(2)
0 · · ·x

(n)
0 , where the

operation between the tensor A and the vectors x
(i)
0 has

been defined in (9).
Step 2 (Iterating step): for k = 1, 2, · · · , do

for i = 1, 2, · · · , n, do

x̂
(i)
k = λk−1Ax̄(1)

k−1 · · · x̄
(i−1)
k−1 x̄

(i+1)
k−1 · · · x̄

(n)
k−1 + αx

(i)
k−1,

and

x
(i)
k = x̂

(i)
k /||x̂(i)

k ||.

end for i
λk = Āx(1)

k x
(2)
k · · ·x

(n)
k .

end for k
Step 3 (Return):

U-eigenvalue λ = |λk|
U-eigenvector u(i) = ( λλk

)1/dix(i), i =
1, · · · , n.
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