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ABSTRACT A general framework of rough-fuzzy clustering based on two-stage three-way approximations
is presented in this paper. The proposed framework can deal with the uncertainties caused by the membership
degree distributions of patterns. In the first stage (macro aspect), three-way approximations with respect to
a fixed cluster can be formed from the global observation on data which can capture the data topology well
about this cluster. In the second stage (micro aspect), the fuzziness of individual patterns over all clusters can
be measured with De Luca and Termini’s method, based on which three-way approximations with respect
to the whole data set can be generated such that the uncertainties of the locations of individual patterns
can be detected. By integrating the approximation region partitions obtained in the two stages, i.e., using
the partition results obtained in the second stage to modify the partition results obtained in the first stage,
the misled prototype calculations can be verified and the obtained prototypes tend to their natural positions.
Comparative experiments on a synthetic data set and some benchmark data sets demonstrate the improved
performance of the proposed method.

INDEX TERMS Rough sets, rough-fuzzy clustering, three-way approximations, fuzziness, shadowed sets.

I. INTRODUCTION
Data daily clustering is an unsupervised learning technique.
It aims at partitioning a given data set with unlabeled patterns
D = {x1, x2, · · · , xN }, xj ∈ <M (j = 1, 2, · · · ,N ), into
homogeneous clusters {G1,G2, · · · ,GC }, such that the pat-
terns in the same cluster will have the highest similarities, and
the patterns between different clusters will have the highest
dissimilarities. Clustering techniques have been successfully
used in many fields, such as text mining, image segmentation,
fault diagnosis, power allocation, wireless sensor networks
and so on [1]–[4]. The revealed data structures by cluster-
ing methods can help human to recognize data and mine
knowledge. One of the challenges of clustering techniques
is how to deal with the uncertain information implicated
in the data sufficiently since there is no prior knowledge
beforehand, such as the distributions, densities or topologies
of data. In addition, the parameters involved in the clustering
models may produce new uncertainties since they affect the

results directly, and thus it is challenging to determine the
optimal parameters generally.

As one of the famous partitive clustering techniques, fuzzy
C-means (FCM) [5] utilizes a partition matrix U = {uij}
to reveal the membership degrees of patterns {xj} belonging
to clusters {Gi}, such that the overlapping structures can be
depicted quantitatively. Though the uncertainties arising in
the overlapping areas can be well described, the validity of
FCM will decrease when dealing with noisy environments.
Since the relative distances are involved to compute member-
ship degrees, a distant pattern may belong to a cluster with a
higher membership degree, and this pattern will contaminate
the prototype calculations [6].

Rough set theory proposed by Pawlak [7], an important
methodology for analyzing uncertain, incomplete, impreci-
sion information, has been developed rapidly in the last two
decades. The target concept (especially uncertain or fuzzy)
can be approximated by a pair of crisp sets, namely the lower
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and upper approximations, from the two sides of the concept.
By integrating the merits of rough sets, Lingras and West [8]
proposed a rough C-means (RCM) clustering method in
which all patterns are divided into three approximation
regions according to their individual absolute distances, and
the prototype calculations are only related to the patterns
in the core and boundary regions of this cluster, instead of
the whole patterns like in the FCM. Mitra et al. [9] fur-
ther proposed a rough-fuzzy C-means clustering (RFCM)
approach, in which individual membership degrees are used
instead of individual absolute distances when determining
the approximation regions. The key problem in the RCM or
RFCM is how to select the separation threshold for partition-
ing approximation regions. Unreasonable partition thresholds
will result in undesired results.

The separation threshold involved in RCM or RFCM is
often selected depending on subjective tuning in the available
studies [10], [11]. Maji and Pal [12] and Sarkar et al. [13]
chose this value as the average value and the median of
the difference between the highest and second highest mem-
bership degrees of all the patterns, respectively. However,
the same threshold is adopted for all clusters although the
sizes and the densities of clusters may be discrepant. The
concept of shadowed sets [14] is an example of three-
way, three-valued, or three-region approximations of a fuzzy
set and becomes a paradigm of granular computing [15].
It provides an automatic optimization mechanism to deter-
mine the separation threshold, and the corresponding fuzzy
set can be simplified to three values, namely, 0, 1, and
shadows, which can reduce the burden of numeric computa-
tions. By incorporating with shadowed sets, Zhou et al. [16]
introduced a shadowed set-based rough fuzzy clustering
approach (SRFCM), in which the partition threshold can be
selected automatically, and the three approximation regions
of each cluster are obtained independently.

Three-way approximations of fuzzy sets can be interpreted
in terms of the positive, negative and boundary regions within
the theory of three-way decisions proposed by Yao [17]–[19].
A fundamental issue of three-way approximation of fuzzy
sets is the interpretation and determination of separation
thresholds. The Pedrycz’s optimization model (the principle
of uncertainty invariance) [20] is only a specific case to
determine the threshold in which the formed shadows need to
be interpreted with good semantics. Some other optimization
principles to determine the partition thresholds can be speci-
fied from several aspects, such as the principle of retaining the
total amount of fuzziness of the fuzzy set [21], the principle
of minimum distance (including semantic distance) [22] and
the principle of least cost [22], [23]. The selected principle
should consider the characteristics of practical applications
which can be analyzed based on the methodology of three-
way decisions.

Under the framework of FCM, the membership degrees of
patterns with respect to a fixed cluster {uij} (j = 1, · · · ,N )
can be considered as a fuzzy set, and then three-way approx-
imation optimization methods can be used for this cluster

independently, no matter what the membership values with
respect to other clusters, namely, the fuzziness [21], [24] of
individual patterns which can measure the underlying vague-
ness are not considered. In this case, some abnormal circum-
stances will happen inevitably, such as the core region of one
cluster may have some patterns with higher fuzziness values.
Thereafter, the corresponding prototype calculation may be
distorted. Under this consideration, the patterns with higher
fuzziness values should be wiped off from the core or bound-
ary regions of clusters.

In this study, a rough-fuzzy clustering approach based on
two-stage three-way approximations is presented. Specifi-
cally, how to partition the approximation regions of each
cluster more precisely and guarantee the prototype calcula-
tions are not contaminated by uncertain patterns. The main
contributions of this paper include: (1) to optimize the parti-
tion threshold for each cluster independently based on three-
way approximation optimization mechanisms. In this stage,
the data topology with respect to a fixed cluster can be
captured well from the global observation on data; (2) to
capture the fuzziness of each pattern based on individual
information entropy, and then partition all patterns into three
approximation regions according to their fuzziness values.
In this stage, the uncertainties caused by pattern locations
can be detected. The patterns with lower fuzziness will locate
around the prototypes, and these patterns will be partitioned
into the core region with respect to the whole data set D.
On the contrary, the patterns with higher fuzziness will locate
far away from the prototypes or in the middle of different
clusters, and these patterns will be partitioned into the exclu-
sive region with respect to the whole data setD. (3) to modify
the partition results obtained in the first stage with respect to
a fixed cluster Gi independently by integrating the partition
results obtained in the second stage with respect to the whole
data set D based on the fuzziness of individual patterns. As a
result, the uncertainties implicated in the partition results
in the first stage can be reduced and the prototypes can be
computed more accurately.

The rest of this paper is organized as follows: the notion of
fuzzy C-means as well as some rough set-based partitive clus-
tering methods are briefly reviewed in Section II. The limita-
tions of available shadowed set-based rough-fuzzy clustering
are discussed in Section III. The fuzziness of individual pat-
terns based on information entropy is measured in Section IV,
based on which the three-way approximations with respect
to the whole data set can be generated. In Section V, a new
rough-fuzzy clustering approach based on two-stage three-
way approximations is introduced. Comparative experimen-
tal results are presented in Section VI. Some conclusions are
given in Section VII.

II. PRELIMINARIES
In this section, some partitive clustering algorithms will
be reviewed, including fuzzy C-means (FCM) [5], rough
C-means (RCM) [8], rough-fuzzy C-means (RFCM) [9]
and shadowed set-based rough fuzzy C-means [16].
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More detailed information about rough sets and shadowed
sets can be found in [25]–[29].

A. FUZZY C-MEANS
Suppose a data set with N patterns {x1, x2, · · · , xN },
that are defined over M -dimensional feature space, i.e.,
xj ∈ <M (j = 1, 2, · · · ,N ), will be grouped into C clusters
G1,G2, · · · ,GC . The corresponding prototypes for each
cluster are denoted as v1, v2, · · · , vC , vi ∈ <

M

(i = 1, 2, · · · ,C). In the fuzzy C-means method, the fol-
lowing objective function will be minimized:

JFCM (U ,V ) =
C∑
i=1

N∑
j=1

umij d
2
ij, (1)

uij ∈ [0, 1] for all i, j, and

0 <
N∑
j=1

uij ≤ N for all i = 1, 2, · · · ,C, (2)

C∑
i=1

uij = 1 for all j = 1, 2, · · · ,N . (3)

Where uij is a fuzzy membership value that measures the
degree of pattern xj belonging to the cluster Gi. m (m > 1)
denotes the fuzzifier in FCM which controls the shape of
membership degrees. In other words, when the value of m
is close to 1, it implies a Boolean nature of one cluster, i.e.,
the memberships are maximally hard. On the other hand,
it will result in spike-like membership functions when the
value increases. In this case, the memberships are maximally
fuzzy, and only the patterns that are located around the clus-
ter centers are assigned 1. dij denotes the absolute distance
between the pattern xj and the cluster with the prototype vi.

Approximate optimization of JFCM by the FCM method is
based on the iteration and satisfies the following necessary
conditions:

uij =
1

C∑
k=1

(
dij
dkj

) 2
(m−1)

, i = 1, 2, · · · ,C and

j = 1, 2, · · · ,N , (4)

vi =

N∑
j=1

umij xj

N∑
j=1

umij

, i = 1, 2, · · · ,C . (5)

If dij = 0, then set uij = 1 and ukj = 0 for ∀k 6= i. Although
FCM is a very useful clustering approach, it is sensitive to
noisy environments. The noises or outliers may have higher
membership degrees since the relative distances are involved
in the constraint (3).

B. ROUGH C-MEANS
By extending the notion of rough approximations, Lingras
and West [8] developed a clustering algorithm, called rough
C-means(RCM), in which all patterns are partitioned into

three regions, namely, core region (lower approximation),
boundary region and exclusion region for a fixed cluster. The
new prototype calculations are only related to the core and
boundary regions, not related to the all data patterns as that
of FCM. In this way, the influence on prototype calculations
caused by irrelevant patterns with respect to a fixed cluster
can be reduced.

Patterns in the core region of one cluster will belong to
this cluster certainly and patterns in the boundary region
will belong to this cluster possibly, i.e., with vagueness and
uncertainty. The rest in the exclusion region will not belong
to this cluster definitely. Generally, patterns in the core region
are important while patterns in the boundary region have less
contribution and patterns in the exclusion region almost have
no contribution to update prototypes.

According to RCM, the prototypes v1, v2, · · · , vC ,
vi ∈ <M are computed as follows:

vi =


wlA1 + wbB1 if RGi 6= ∅ ∧ RbGi 6= ∅
B1 if RGi = ∅ ∧ RbGi 6= ∅
A1 if RGi 6= ∅ ∧ RbGi = ∅.

(6)

Where A1 =

∑
xj∈RGi

xj

card(RGi)
, B1 =

∑
xj∈RbGi

xj

card(RbGi)
can be considered

as the contributions by the crisp core region and Boolean
boundary region, respectively. card(X ) means the cardinality
of set X . RbGi = R̄Gi − RGi denotes the boundary region
of cluster Gi, where RGi and R̄Gi are the lower and upper
approximations of cluster Gi with respect to feature set R,
respectively. wl(0.5 < wl ≤ 1) and wb = 1 − wl are the
weighted values that measure the contributions of the
core and boundary regions, respectively. According to the
Equation (6), the prototype calculations in rough set-based
clustering methods are only related to the patterns in the
core and boundary regions of clusters, instead of the whole
patterns like that in the FCM.

In order to determine the core region and boundary region
of each cluster, Lingras et al. utilized the principles as
follows:

If dqj − dpj ≤ 1, then xj ∈ RGp and xj ∈ RGq. In this
case, pattern xj cannot be partitioned into the core region of
any clusters. Otherwise, xj ∈ RGp. dpj is the minimum of xj
over all clusters and dqj is next to the minimum.

Incorporating with fuzzy membership degrees,
Mitra et al. [9] proposed the notion of rough-fuzzy
C-means (RFCM), in which the absolute distance dij is
replaced by a fuzzymembership degree uij when dividing pat-
terns into approximation regions. This adjustment enhances
the robustness of the clustering to deal with overlapping
situations. The prototype calculations are correspondingly
modified as follows:

vi =


wlA2 + wbB2 if RGi 6= ∅ ∧ RbGi 6= ∅
B2 if RGi = ∅ ∧ RbGi 6= ∅
A2 if RGi 6= ∅ ∧ RbGi = ∅.

(7)

VOLUME 6, 2018 27543



J. Zhou et al.: Rough-Fuzzy Clustering Based on Two-Stage Three-Way Approximations

Where A2 =

∑
xj∈RGi

umij xj∑
xj∈RGi

umij
, B2 =

∑
xj∈RbGi

umij xj∑
xj∈RbGi

umij
can be considered as

the contributions by the fuzzy core region and fuzzy boundary
region, respectively. The weighted values wl and wb have the
same meanings as that in RCM. uij denotes the membership
degree of pattern xj belonging to the cluster with prototype vi
which is computed as the same as in FCM.

To determine the approximation regions in the proce-
dures of RFCM, the following principles are exploited.
If upj − uqj ≤ 1, then xj ∈ R̄Gp and xj ∈ R̄Gq. In this
case, xj cannot be divided into the core region of any clusters.
Otherwise, xj ∈ RGp. upj is the maximum of xj over all
clusters and uqj is next to the maximum.

The threshold 1 is crucial in RCM and RFCM which
determines the approximation regions of each cluster directly.
This value should be selected circumspectly. The smaller
the threshold is, the more patterns will be divided into the
core regions. In this case, some noise patterns or overlapping
patterns may be divided into the core regions at the same
time. On the other hand, the larger the threshold is, the more
patterns will be divided into the boundary regions. In this
case, the representative capabilities of the core regions may
be lost. An unreasonable threshold will result in undesired
approximation region partitions and thenmisled the prototype
calculations.

C. SHADOWED SET-BASED ROUGH FUZZY C-MEANS
The partition threshold in RCM or RFCM is often selected
depending on subjective tuning and kept as a constant
for all clusters in all iterations. In this way, the cluster
discrepancies cannot be revealed very well, especially for
the clusters with different sizes and densities. By inte-
grating shadowed set theory and rough set-based cluster-
ing approaches, an improved rough-fuzzy C-means method
based on shadowed sets (SRFCM) is presented in [16],
in which the determination of approximation regions for each
cluster is transferred to an optimization process indepen-
dently and can be detected automatically during the clustering
processes. The principles for determining the approxima-
tion regions of each cluster based on shadowed sets can be
described as follows.

From the above Steps 1 to 3, the approximation region
partition threshold for each cluster is not user-defined before-
hand. It can be determined automatically during the iteration
procedures and can be optimized for each cluster indepen-
dently. Thereafter, the prototype calculations can be exe-
cuted with different forms, such as Equations (6) or (7). The
above Steps 1 to 3 provide a framework to partition approx-
imation regions for each cluster which can be adopted for
rough set-based clustering approaches. However, shadowed
sets are only the one way of three-way approximations of
fuzzy sets which keeps the uncertainty invariance. Another
optimization principles can also be formed for constructing
three-way approximations of a fuzzy set, such as retaining
the total amount of fuzziness of the fuzzy set, the principle

Algorithm 1 Shadowed Set-Based Approximation Region
Determination for Each Cluster
Step 1: Compute fuzzy partition matrix {uij} using

Equation (4);
Step 2: Generate optimal partition threshold αi for each

clusterGi independently based on shadowed sets:

αi = min
α
(Vi)

= min
α

∣∣∣∣∣∣∣∣
∑
j:uij≤α

uij +
∑

j:uij≥max
j
(uij)−α

(
1− uij

)

−card
({

xj|α < uij < max
j

(
uij
)
− α

})∣∣∣∣ . (8)

Step 3: According to αi, determine the core region and the
boundary region of each cluster Gi:

RGi =
{
xj|uij ≥ max

j
(uij)− αi

}
,

RbGi =
{
xj|αi < uij < max

j
(uij)− αi

}
. (9)

FIGURE 1. The schema of shadowed set construction in the rough-fuzzy
clustering.

of minimum distance (including semantic distance) and the
principle of least cost. More detailed information can be
found in [20]–[23].

III. THE LIMITATION OF AVAILABLE SHADOWED
SET-BASED ROUGH FUZZY C-MEANS
According to the schema of shadowed set-based rough fuzzy
clustering, all patterns will be divided into three approxi-
mation regions with respect to a fixed cluster which can be
depicted as follows.

In Figure 1, each row (with respect to a fixed cluster Gi)
of the partition matrix {uij} will be transferred to a shadowed
set independently, and then all patterns will be divided into
different approximation regions with respect to this fixed
cluster. During this partition procedure, only the membership
degrees of patterns belonging to this cluster are considered,
the membership degrees of patterns belonging to the other
clusters are not involved which may result in some unreason-
able situations.

Given a synthetic data set D32 with two clusters and some
noise data, as shown in Figure 2 and its details can be found
in the Appendix.
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FIGURE 2. Synthetic data set D32.

Intuitively, three patterns x30, x31 and x32 are far away from
the cluster centers. The membership degree distributions and
approximation region partitions based on shadowed sets with
respect to Cluster1 and Cluster2 can be found in Figure 3.

In Figure 3 (a), pattern x32 has a relative higher mem-
bership value belonging to Cluster1 (the right cluster) than
pattern x15 since the constraints (3) in FCM needs to be
satisfied. According to shadowed set-based rough-fuzzy clus-
tering method, pattern x32 will be divided into the core
region of Cluster1 (as shown in Figure 3 (b)), which dis-
torts the prototype calculation for Cluster1. Similarly, pattern
x30 is divided into the core region of Cluster2 (as shown
in Figure 3 (d)), which misleads the prototype calculation
for Cluster2. These unreasonable partition situations occur
because only the membership degrees with respect to a fixed
cluster (each row in the fuzzy partition matrix) are considered
independently. In this case, the fuzziness measures of individ-
ual patterns are not involved. In other words, the uncertainty
of membership degree distribution with respect to a fixed
pattern is not considered. If the membership degrees of one
pattern over all clusters are equal (like x15 and x30), it means
that the fuzziness of this pattern is the highest and this pat-
tern cannot be divided into any clusters certainly. On the
contrary, if the membership degrees of one pattern over all
clusters are discrepant, the fuzziness of this pattern should be
low due to the constraint (3) in FCM, and thus this pattern
can be divided into some approximation regions of clusters
definitely. Consequently, both the uncertainties caused by
the membership degrees in the fuzzy partition matrix with
respect to a fixed cluster (the row in the matrix) and a fixed
pattern (the column in the matrix) need to be considered as
partitioning approximation regions for each cluster.

IV. THE UNCERTAINTY MEASURE FOR THE FUZZINESS
OF INDIVIDUAL PATTERNS BASED ON
INFORMATION ENTROPY
Since the constraint (3) in FCM needs to be satisfied as
computing the fuzzy partition matrix, the fuzziness of one
pattern belonging to a specific cluster will be maximal if the
membership degrees of this pattern belonging to all clusters
are equal. Several measures of fuzziness have been proposed

FIGURE 3. The approximation region partitions with respect to a fixed
cluster. (a) The membership degrees and optimal separation value based
on shadowed sets for Cluster1; (b) The approximation region partitions
with respect to Cluster1; (c) The membership degrees and optimal
separation value based on shadowed sets for Cluster2; (d) The
approximation region partitions with respect to Cluster2.

in the literatures [30]–[32]. In this study, to measure the
fuzziness of individual patterns in the clustering iterations,
the following information entropy is utilized.
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FIGURE 4. The fuzziness measure function.

For ∀u ∈ [0, 1], De Luca and Termini’s measure [33] of
fuzziness is defined as :

ϕ (u) = {(u, f (u))} . (10)

Where:

f (u) = −u log (u)− (1− u) log(1− u). (11)

f (u) is a Shannon’s information entropy function and its
values with respect to u can be described in Figure 4. When
u = 0 or u = 1, the fuzziness of the corresponding fuzzy
set equals zero, that means without fuzziness. When u = 0.5,
the corresponding fuzzy set will have maximum fuzziness.

For each pattern in the fuzzy clustering, its fuzziness over
all clusters can be defined with De Luca and Termini’s mea-
sure according to its membership degrees over all clusters.
Specifically, for a fixed pattern xj (j = 1, 2, · · · ,N ), its
fuzziness over all clusters can be formulated as follows:

IEj =
C∑
i=1

f
(
uij
)

= −

C∑
i=1

(
uij log

(
uij
)
+
(
1− uij

)
log

(
1− uij

))
. (12)

The normalized fuzziness of individual patterns can be
further defined as:

NIEj =
IEj

N
max
j=1

{
IEj
} . (13)

The smaller the value of NIEj is, the lower the fuzziness
of xj will have. For a fixed pattern, if its membership degrees
over all clusters approach the same value, it will have a maxi-
mal fuzziness value. In this case, it is difficult to partition this
pattern to a specific cluster. If its membership degrees over
all clusters are very different, according to the constraint (3)
in FCM, its membership degree belonging to one of the
clusters will be large, and the membership degrees belonging
to other clusters will be small. In this case, the pattern has
a small fuzziness value and can be divided into a specific
cluster definitely.

{NIEj} can be considered as a series of uncertainty measure
for the fuzziness of individual patterns. Based on the above
discussions, the patterns with lower values of NIEj (lower
fuzziness) can be divided into a specific cluster to the greatest
extent, and the patterns with higher values of NIEj (higher
fuzziness) cannot be divided into a specific cluster certainly.
Under this circumstance, all patterns can be partitioned into
three approximation regions according to {NIEj} based on
three-way approximation optimization process, namely, pat-
terns with lower fuzziness, patterns with higher fuzziness and
the others. They are considered as the core region of the
whole data set D (denoted as PosNIE ), the exclusive region of
the whole data set D( denoted as NegNIE ), and the boundary
region of the whole data set D (denoted as BndNIE ).
The optimal separation threshold for partitioning {NIEj}

can be obtained as follows:

αNIE = min
α
(VNIE )

= min
α

∣∣∣∣∣∣∣∣
∑

j:NIEj≤α

NIEj +
∑

j:NIEj≥max
j
(NIEj)−α

(
1− NIEj

)

−card
({

xj|α < NIEj < max
j

(
NIEj

)
− α

})∣∣∣∣.
(14)

In the Equation (14), Pedrycz’s uncertainty invariance prin-
ciple is utilized to optimize the separation threshold. The
other three-way approximation optimization principles can
also be used similarly.

According to the value of αNIE ,PosNIE ,BndNIE andNegNIE
can be formed as follows:

PosNIE = {xj|0 ≤ NIEj ≤ αNIE }, (15)

BndNIE = {xj|αNIE < NIEj < max
j

(
NIEj

)
− αNIE }, (16)

NegNIE = {xj|max
j

(
NIEj

)
− αNIE ≤ NIEj ≤ 1}. (17)

Where PosNIE is composed of the patterns with the smaller
values of normalized fuzziness. It means that the member-
ship degree distributions of these individual patterns are dis-
crepant which is beneficial for classifying patterns. NegNIE is
composed of the patterns with the larger values of normalized
fuzziness. It means that the membership degrees of these
patterns over all clusters approach the same.

Taking the synthetic data set D32 as an example,
the optimal separation threshold is 0.432 according to the
Equation (14) and the partitioned three approximation regions
with respect to the whole data set is shown in Figure 5.

It can be found from the Figure 5 that three noise patterns
and some patterns located in the middle of two clusters are
divided into the exclusive region (NegNIE ) with respect to
the whole data set. These patterns cannot be partitioned into
a specific cluster certainly since their membership degrees
belonging to the two clusters approach 0.5. It is easy to
observe that the partition results in Figure 5 (b) are different
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FIGURE 5. The optimal partition threshold for normalized fuzziness
values and the corresponding approximation region partitions.
(a) The normalized fuzziness values and the optimal separation
value; (b) The approximation region partitions based on {NIEj }.

with the results in Figure 3 (b) and (d). The partition results
obtained based on the fuzziness of individual patterns {NIEj}
can be used to adjust or modify the unreasonable partition
results obtained for each cluster independently.

V. ROUGH-FUZZY C-MEANS BASED ON TWO-STAGE
THREE-WAY APPROXIMATIONS
A. A GENERAL ROUGH-FUZZY C-MEANS CLUSTERING
BASED ON TWO-STAGE THREE-WAY APPROXIMA-TIONS
The uncertainties caused by a specific pattern can be analyzed
from two sides. One is from the view of three-way approxi-
mations with respect to a fixed cluster. The other is from the
view of three-way approximations with respect to the whole
data set based on the fuzziness of individual patterns. There
are intersections between these two perspectives which can
be formed as follows:

The item (1, 1) in Table 1 means a pattern belongs to the
core region ofGi aswell belongs to thePosNIE . The item (1, 0)
means a pattern belongs to the core region of Gi, but belongs
to the BndNIE . Item (1, −1) means a pattern belongs to the
core region of Gi, but belongs to the NegNIE . The other items
in Table 1 can be interpreted similarly. Since the partition
results obtained based on the fuzziness of individual patterns
{NIEj} can be used to modify the unreasonable partition
results with respect to a fixed cluster Gi, and the core region
RGi and boundary region RbGi are involved for computing
the prototype of cluster Gi, only the items with grey shading

TABLE 1. The partitions of individual patterns under two kinds of
three-way approximations.

in the Table 1 need to be reconsidered. The principles of
approximation region modification can be drawn as follows:

P1: If a pattern is with the item (1, 0) or (1,−1), this pattern
will be moved from RGi to RbGi;
P2: If a pattern is with the item (0, -1), this pattern will be

moved from RbGi to RNGi, and thus this pattern will not be
involved for updating prototypes;

P3: The patterns with other items will not be changed.
According to the above principles, the core region and

boundary region of each cluster will be adjusted. Some pat-
terns in the core regions of clusters will be moved into the
boundary regions of these clusters if they are divided into the
boundary region or exclusive region with respect to the whole
data set D at the same time. Some patterns in the boundary
regions of clusters will be adjusted into the exclusive regions
of these clusters if they are divided into the exclusive region
with respect to the whole data setD. Consequently, the uncer-
tain patterns partitioned into the core regions or boundary
regions with respect to a fixed cluster can be wiped off and
the prototypes can be computed more precisely.

Taking the Cluster1 in data set D32 as an example. The
membership degrees of pattern x15 belonging to Cluster1
and Cluster2 are 0.5 and 0.5, and thus the pattern x15 will
be divided into boundary region of Cluster1 according to
the Equation (9). However, pattern x15 has the maximum
fuzziness, and it is partitioned into Neg_NIE according to the
Equation (17). Thus the pattern x15 is with the item (0, −1).
According to the principle P2, pattern x15 is moved from
the boundary region of Cluster1 to the exclusive region of
this cluster. Thereafter, pattern x15 has no contribution as
updating the prototype of Cluster1. The partitions of patterns
need to be modified with respect to Cluster1 can be found
in Figure 6 (a), and the new approximation region partitions
of Cluster1 are shown in Figure 6 (b). The patterns with blue
and green circles in Figure 6 (a) are adjusted according to the
principles P1 and P2, respectively.
Three-way approximations of membership degrees with

respect to a fixed cluster can capture the topology of data from
the global observation on data. Three-way approximations
of membership degrees based on the fuzziness of individual
patterns can detect the uncertainties of pattern locations. The
former and the later can be considered as the macro andmicro
analysis on data respectively. The micro analysis can be used
to modify the results obtained by the macro analysis, which
is described in Figure 7.
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FIGURE 6. The combination of two kinds of approximation region
partitions. (a) The partitions of patterns need to be modified with respect
to Cluster1; (b) The new approximation region partitions of Cluster1.

FIGURE 7. Two kinds of three-way approximations of membership
degrees.

By integrating the results of two kinds of three-way
approximations of membership degrees, a general rough-
fuzzy C-means algorithm based on two-stage three-way
approximations can be formed as follows:

Steps 2 to 3 can be considered as the first stage of three-
way approximations of membership degrees with respect to a
fixed cluster. Steps 4 to 5 can be considered as the second
stage of three-way approximations of membership degrees
with respect to the whole data set based on the fuzziness of
individual patterns. Step 6 is the most important step in the
algorithm in which the partition results obtained in the two
stages are combined, thus the unreasonable partitions of each
cluster in the first stage can be modified independently by
integrating the partitions results produced in the second stage.

The prototypes obtained by FCM, RFCM, SRFCM and
proposed algorithm ARFCM for D32 are shown in Table 2.

Algorithm 2 Rough-Fuzzy C-Means Based on Two-Stage
Three-Way Approximations (ARFCM)
Step 1: Assign initial prototypes vi(i = 1, 2, · · · ,C);
Step 2: Obtain the fuzzy membership degrees uij (i = 1, 2,

· · · ,Cj = 1, 2, · · · ,N );
Step 3: Compute the optimal partition threshold αi for each

clusterGi(i = 1, 2, · · · ,C), and according to αi,
determine the approximation regions RGi and
RbGi for each cluster Gi with respect to uij;

Step 4: Compute the fuzziness of each pattern, i.e., NIEj,
with Equation (13);

Step 5: Compute the optimal partition threshold αNIE , and
according to αNIE , determine the approximation
regions PosNIE ,BndNIE and NegNIE ;

Step 6: According to the principles P1 to P3, modify RGi
and RbGi for each cluster;

Step 7: Update the prototypes vi(i = 1, 2, · · · ,C) with
Equation (7);

Step 8: Repeat Step 2 to Step 7 until convergence
is reached.

TABLE 2. The prototypes obtained by different methods for D32.

From Table 2, it can be found that the prototypes obtained
by the proposed algorithm ARFCM are better than the
other methods. The deviation of the prototypes obtained by
ARFCM is minimum. It means that the prototypes in the
clustering iterations can be updated more precisely by using
the framework of two-stage three-way approximations of
membership degrees.

B. COMPLEXITY ANALYSIS
Assume the number of clusters is C , the number of patterns
is N , the number of features of each pattern isM, the number
of iterations is I , and the number of candidate threshold
values is S. The asymptotical time complexity for comput-
ing partition matrix is O

(
C2NM

)
and the computation for

selecting partition thresholds for all clusters in the first stage
is O (SCN ). The computation for obtaining the fuzziness
values of all patterns is O (CN ), and the computation for
selecting the partition threshold based on the fuzziness of
individual patterns is O (SN ). Subsequently, the computation
for dividing approximation regions isO (CN ) and the compu-
tation for prototypes is alsoO (CN ). Thus, the computational
complexity of the proposed method can be summarized as
O
(
I
(
C2NM + SCN + 3CN + SN

))
. Generally, if N � C

and N � I , the asymptotical time complexity of our pro-
posed method approaches toO (NM + SN ). Since no closed-
form solution can be drawn for optimizing the partition
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FIGURE 8. Synthetic data set D220.

thresholds, the enumerating method is often exploited. For a
practical problem with a big data set, if N � S and N � M ,
the computational complexity becomes O (N ).

VI. EXPERIMENTS
In this section, a synthetic data set and some data sets from
UCI repository [34] are used to compare the results obtained
by FCM [5], original RFCM [9], SRFCM [16] and the pro-
posed algorithm ARFCM.

The fuzzification coefficient is set asm = 2 for all methods
which is commonly used in the literatures [9], [10], [12], [16].
The weighted value that measures the importance of core
regions is set as wl = 0.95 and kept as a constant for
all data sets and all iterative runs. The maximum iteration
number is set as 100 and the convergence condition satisfies∥∥∥v(t+1)i − v(t)i

∥∥∥ < ε where t is an iterative step, ε is set
as 0.001 for all algorithms and ‖·‖ means the Euclidean
distance.

A. SYNTHETIC DATA SET
The synthetic data set D220 with a mixture of Gaussian dis-
tributions is shown in Figure 8. It has three clusters with 50,
100 and 70 data respectively. The means of three clusters are
[4, 3], [7, 9], [8, 3] respectively. The standard deviations of
three clusters are 0.5, 2 and 0.1 respectively. It can be found
from Figure 8 that the sizes and the densities of three clusters
are different. Intuitively, some patterns located in Cluster2 are
close to the Cluster1 or Cluster3. It is a challenging work to
partition these patterns into their natural groups.

The prototypes and partition labels obtained by the selected
clustering methods are shown in Figure 9, and the deviations
between the obtained prototypes and the natural means of
clusters are given in Table 3.

It can be found that the methods based on the notion of
three-way approximations of membership degrees, namely,
SRFCM and ARFCM, performs better than FCM and orig-
inal RFCM. It can be attributed to the approximation region
partitions for each cluster which can capture the data topology
from the global observation on data. Further, the prototypes
obtained by the proposed method ARFCM is better than
other available methods, in which only three patterns are

FIGURE 9. The prototypes and partition labels obtained by different
clustering methods. (a)FCM; (b)RFCM; (c)SRFCM; (d)ARFCM.

classified into wrong clusters, and the deviation value is min-
imum. The reason is that the mechanism of two-stage three-
way approximations in the proposed approach are developed.
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TABLE 3. The prototypes obtained by different clustering methods.

FIGURE 10. The optimal partition threshold based on normalized
fuzziness values and corresponding approximation region partitions with
respect to D220. (a) The normalized fuzziness values and optimal
separation value; (b) The approximation region partitions based on {NIEj }.

The approximation region partitions with respect to a fixed
cluster are modified by the results of approximation regions
generated based on the fuzziness of individual patterns.

The results of approximation region partitions generated
based on the fuzziness of individual patterns are shown
in Figure 10. Obviously, the important parts of each cluster,
i.e., the patterns around the cluster centers, are partitioned
into the core region with respect to the whole data set at the
same time. The representative capabilities of these patterns
to the corresponding clusters are higher than the other pat-
terns. Since the densities of Cluster3 is the highest, all of
the patterns in the Cluster3 are divided into the core region
although the size of Cluster3 is bigger than the Cluster1.
On the contrary, many patterns in the Cluster2 are divided into
the exclusive region with respect to the whole data set, since
most of them are located in the middle of different clusters.

The approximation region partitions with respect to a fixed
cluster can be modified by the results obtained based on

TABLE 4. The validity indices obtained by different methods for synthetic
data set D220.

TABLE 5. The comparative validity results of wine.

the fuzziness of individual patterns, which are illustrated
in Figure 11. The core region and boundary region of each
cluster are adjusted based on the principles P1 to P3
according to the results in Figure 10 (b). Taking Cluster1 as
an example, some patterns in Cluster2 are divided into the
boundary region of Cluster1, as shown in Figure 11 (a), and
these patterns are moved into the exclusive region of Clus-
ter1 after using the modification principle P2, as the green
circles in Figure 11 (b). In this way, the prototype calculation
for Cluster1 cannot be misled by these patterns. Some pattern
in Cluster1 that divided into the core region of Cluster1 in the
first stage, as shown in Figure 11 (a), are changed into the
boundary region of this cluster after using P1, as the blue
circles in Figure 11 (b). The importance of these patterns
will be reduced since these patterns are away from the cluster
centers.

To compare the selected methods comprehensively,
some clustering validity indices are used, including rela-
tive separation index (RS) [35], PBM-index (PBM) [36],
Davies-Bouldin index (DB) [37], normalized mutual infor-
mation (NMI) [38], [39], rand index (RI) [40] and classifi-
cation accuracy (ACC) [38]. The smaller the value of DB is,
or the higher the values of other validity indices are, the better
the clustering methods will be. Since the initialization affects
the clustering results directly, each method is executed for
ten times and the average index values are generated for
comparing. The obtained average values of validity indices
for synthetic data setD220 are given in Table 4. It can be found
that the proposed algorithm ARFCM performs the best over
all validity indices.

B. UCI DATA SETS
Eight benchmark data sets fromUCI storage [34] are selected
for experiments, including Wine, Banknote, Glass, Seeds,
Magic Gamma Telescope, Vertebral Column, Anuran Calls
and Cryotherapy. The validity indices of experimental results
are presented from Table 5 to Table 12.
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FIGURE 11. The original and modified approximation region partitions with respect to a fixed cluster.
(a) The original results of Cluster1; (b) The modified results of Cluster1; (c) The original results of
Cluster2; (d) The modified results of Cluster2; (e) The original results of Cluster3; (f) The modified
results of Cluster3.

TABLE 6. The comparative validity results of banknote.

From Table 5 to Table 12, the proposed method ARFCM
performs better than other rough-fuzzy clustering methods in
terms of the most validity indices. It has the best performance

TABLE 7. The comparative validity results of glass.

of classification accuracy (ACC) over all selected data sets.
The significant improvements of the proposed method can be
attributed to the following technologies:
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TABLE 8. The comparative validity results of seeds.

TABLE 9. The comparative validity results of magic gamma telescope.

TABLE 10. The comparative validity results of vertebral column.

TABLE 11. The comparative validity results of anuran calls.

TABLE 12. The comparative validity results of cryotherapy.

(1) In the first stage of the proposed algorithm ARFCM,
the three-way approximations of membership degrees with
respect to a fixed cluster can capture the data topology
from the global observation on data, which is considered
as macro analysis on data, rather than based on the abso-
lute distances or membership degrees of individual patterns.
The patterns in the core regions have the most representative
capabilities while the patterns in the boundary regions have

TABLE 13. The synthetic data set D32.

less representative abilities and exclusive regions have no
contributions as computing the prototypes.

(2) In the second stage of the proposed algorithm ARFCM,
the fuzziness of individual patterns over all clusters are mea-
sured by an information entropy function based on which
three-way approximations with respect to the whole data set
can be generated. In this way, the uncertainties of pattern
locations can be detected from the micro perspectives.

(3) By integrating the partition results in the two stages,
i.e., the partition results obtained in the second stage are used
to modify the partition results obtained in the first stage, the
unreasonable partition results in the first stage can be verified,
for example, some patterns with higher fuzziness that are
divided into the core regions of clusters can be adjusted to
the boundary regions of these clusters. Consequently, the pro-
totype calculations can be corrected and the obtained proto-
types tend to their natural positions.

VII. CONCLUSIONS
The validity of clustering models is directly influenced by
dealing with the uncertain information implicated in data.
A general framework of rough-fuzzy clustering based on
two-stage three-way approximations for membership degrees
are presented in this study, in which the data topology with
respect to a fixed cluster can be captured from the macro
aspect, and the fuzziness of individual patterns over all clus-
ters can be detected from the micro aspect. By integrating
the approximation region partition results obtained in the two
stages, the representative capabilities of the core and bound-
ary regions will be adjusted according to the characteristics of
data, such as the sizes and densities of clusters. The improved
performance of the proposed notion is illustrated by com-
parative experiments. The Pedrycz’s optimization principle is
adopted in this study to generate the optimal partition thresh-
olds in the two stages. As discussed before, the optimization
principles can also be formed from the other aspects, such
as the principle of retaining the total amount of fuzziness of
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the fuzzy set [21], the principle of minimum distance [22]
and the principle of least cost [22], [23]. Comparing different
optimization principles and different methods for measuring
the fuzziness of individual patterns under the schema of
rough-fuzzy clustering are our next works.

APPENDIX
See Table 13.
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