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Abstract: The integration of renewables is fast-growing, in light of smart grid technology
development. As a result, the uncertain nature of renewables and load demand poses significant
technical challenges to distribution network (DN) daily operation. To alleviate such issues,
price-sensitive demand response and distributed generators can be coordinated to accommodate the
renewable energy. However, the investment cost for demand response facilities, i.e., load control
switch and advanced metering infrastructure, cannot be ignored, especially when the responsive
demand is large. In this paper, an optimal coordinated investment for distributed generator and
demand response facilities is proposed, based on a linearized, price-elastic demand response model.
To hedge against the uncertainties of renewables and load demand, a two-stage robust investment
scheme is proposed, where the investment decisions are optimized in the first stage, and the demand
response participation with the coordination of distributed generators is adjusted in the second stage.
Simulations on the modified IEEE 33-node and 123-node DN demonstrate the effectiveness of the
proposed model.

Keywords: demand response; solar energy; wind power; uncertainties; distributed generator; active
distribution network

1. Introduction

Recently, the penetration of renewables increases constantly in the modern distribution network
(DN), due to their worldwide availability and sustainability [1–3]. In addition to the benefits of
conventional distributed generations, such as energy loss reduction and infrastructure upgrade
deferment [4], renewable energy sources also play significant roles in carbon emission reduction, energy
conservation, and the promotion of fossil fuel alternatives. Nevertheless, due to their intermittent and
variable nature, renewables, such as wind power and solar energy, are known as non-dispatchable
and uncontrollable sources. The expanding integration of renewables will introduce tremendous
difficulties in order to maintain power system reliability [5–7]. The bidirectional power flow that
emerges with renewables installation leads to either a rise or a drop in voltage, depending on the
output fluctuation of renewables. In addition, a large injection of renewables may lead to substations
being adversely overloaded and line congestion.

In order to ease these negative impacts, dispatchable distributed generator (DG) is usually
considered as an energy supplement and reserve, by reason of its controllability and small ramping
limit [4]. Demand response (DR) has been commonly known as an efficient approach in peak
load reduction [8]. Generally, the DR program is designed to adjust terminal customers’ electricity
consumption by offering financial incentives, or providing time-varying prices, in order to decrease
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electricity demand when the system operates at high-risk conditions [9,10]. By the reason of its successful
application in load profile reconstruction, DR also provides a promising alternative in helping renewable
energy accommodation [6,11–14]. The authors of [6] propose an coordinated operation strategy of
reserve and DR to cope with the uncertainty of renewable energy resources. Bitaraf and Rahman [11]
focus on wind power curtailment reduction via coordinated scheduling of DR and energy storage.
Zhao et al. [13] propose a multi-stage, unit commitment decision model in a transmission network,
wherein the DR program is considered as a reserve source to accommodate integrated wind farms.
A multi-period optimal power flow (OPF )problem, with flexible aggregated demand response and
renewable generation, is solved in [12]. In [14], a day-ahead DR scheduling decision, as well as
real-time micro-turbine and renewables operation strategy for a micro-grid is proposed. However,
from the perspective of DN operation and planning, the DG and DR should be coordinated to efficiently
fulfill the energy management problem. When the actual renewable energy is significantly redundant
or deficient, the system operation constraints are not guaranteed. Furthermore, the price-sensitive
load itself has uncertainties as well, and will considerably affect the optimization results. Hence,
the coordinated operation of DG and DR is necessary to achieve the overall economic cost, system
reliability, and environmentally benefits.

In the existing literature, DR is usually assumed to be a basic feature of a particular part of
demand [9,10,12–15]. However, to enable and support this feature, the demand should be installed
with specific equipment, such as a load control switch (LCS), and the conventional meters should be
upgraded to advanced metering infrastructure (AMI). Only with these demand response facilities
(DRFs) installed at the demand side can customer energy usage be measured and remotely controlled,
as well responding to real-time system operation requests [16–18]. As a result, many household
and commercial appliances, such as air conditioners, electric water heaters, and pool pumps, can
participate in the DR program [19]. Some reports and papers [16,20,21] have conducted cost-benefit
analyses of installing this equipment and DR program adoption. For example, report [16] gives
a general introduction to different types of DR, and the benefit or cost to install each kind of DR
is analyzed in U.S. In [20,21], a discussion about the capital return of the investment for DRFs in
Europe is presented, in which the financial reliability and social welfare benefits of DR are considered.
The conclusions in [16,21] indicate that the investment and operation cost for DR program should
contain not only procurement and installation costs of LCS and AMI, but also incentive payments
and education fees to customers. In particular, the investment cost for DG and DRFs will increase
when the renewables penetration becomes larger. Although these works demonstrate the importance
and necessity of optimizing DRF installation, they only give out a general discussion from economic
aspects. To the best knowledge of the authors, the DRF planning methodology in a distribution system
is not yet proposed. The DRF installation methodology that is able to accommodate the uncertainty
of renewable energies is in especially urgent demand. Hence, in this paper, an optimization model
for coordinated investment of DG and DRF, considering both demand and renewable uncertainty,
is proposed, to address aforementioned operational issues.

In this paper, we propose a two-stage, robust optimization-based model for coordinated
investment of DG and DRF, aiming at accommodating the uncertainties of renewables and load
demand. The investment framework is presented in Figure 1. The investment of DG and DRF are
optimized for cost minimization, so that the outputs of DG and DR can be coordinated and adjusted
for distribution network operation. Robust optimization is adopted to ensure the robustness to
uncertainties, by satisfying the DN operation limitation in a worst-case scenario. Wherein, the stepwise
linearization approximation (SLA) method is adopted in the modified price-elastic demand response
model, to describe the DR participation in DN operation. Finally, the column-and-constraint generation
algorithm (CCG), combined with the outer approximation (OA) linearization method, are implemented
to solve this optimization problem.

The rest of this paper is organized as follows. The demand response model is described in
Section 2. Section 3 presents the mathematic formulation and the dual problem, and the solution
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methodology is presented in Section 4. Case studies to verify the proposed model are analyzed and
discussed in Section 5. The conclusions are given in Section 6.
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2. Demand Response Model

In the proposed demand response model, we assume the load at each DR bus is divided into
inelastic and elastic parts. Considering the basic inelastic electricity consumption, only the part
of demand that is flexible in electricity usage is selected as the DR program by investing DRFs.
Other electricity demand, such as in schools and hospitals, is not affected by electricity price.
A linearized price-elastic demand response (PEDR) model is implemented in the second stage to
adjust the first-stage investment decisions. The power demand is usually modeled using a price-elastic
curve [13,14,22], the expression of which is given as below:

Pd
j,t = A

(
Prj,t

)γ (1a)

where Pd
j,t and Prj,t denote power demand and electricity price, respectively, A is the proportion and

index constant parameters given in [22], and γ is the price elasticity which describes the sensitivity
of load demand as to the change of price. For a given A and γ, the DN revenue from electricity
consumption is equal to the integral of the constant inelastic demand and the price-elastic curve
(present as rd

j,t), as shown in Figure 2.
Unfortunately, (1a) is non-convex. Thus, to remove nonlinear terms, the stepwise linearization

approximation (SLA) is adopted to estimate the grid revenue contributed by DR program, which is
modelled with the following auxiliary variables and constraints:

rd
j,t = ∑

k∈K
Prk

j,td
k
j,t (2a)

0 < dk
j,t < lk

j,t, ∀j ∈ J, ∀t ∈ T, ∀k ∈ K (2b)

where dk
j,t is the auxiliary variable recommended for demand at step k, lk

j,t is the kth step length of

the stepwise function, and Prk
j,t is the corresponding electricity price. It is noted that Prk

j,t stringently
decreases with k, so that the DR program constraints are given as

hd
j,t = D0Pd

j,t + ∑
k∈K

dk
j,t, ∀j ∈ J, ∀t ∈ T (3a)
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D0Pd
j,t ≤ hd

j,t ≤ D1Pd
j,t, ∀j ∈ J, ∀t ∈ T, ∀k ∈ K (3b)

where hd
j,t in (3a) donates the actual demand at DR node which is composed of constant inelastic

demand and elastic demand. Constraint (3b) gives the upper and lower bound of the elastic demand.Energies 2017, 10, x  4 of 18 
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3. Mathematical Formulation

3.1. Objective Function

The investment objective is to minimize the total cost, so as to find out the optimal allocation
location of the DRF and DG. The objective function is to optimize the total costs and revenues during
the whole planning horizon, which is formulated as:

minCinv + Cope + Cadn − Cearn + Cpena (4a)

Overall, the function includes five parts, which are investment costs (Cinv), operation and
maintenance costs for DGs (Cope), energy transaction cost (Cadn), DN revenue (Cearn), and penalty
costs for operation violation (Cpena).

Cinv = Cdr
inv + Cdg

inv (4b)

Cdr
inv = ε∑

j∈J
(αdr

j βdr
j pd,exp

j,peakCClcs+αdr
j CCami) + φ∑

j∈J
αdr

j (CCedu + CCinc) (4c)

Cdg
inv = ε∑

j∈J
∑
b∈B

α
dg
j β

dg
j,bτdgCCdg (4d)

Herein, the total investment cost is defined in (4b), which consists of the costs of DRFs and DGs,
respectively. The investment cost of the DRF defined in (4c) contains two terms. The first term is
the procurement and installation cost of LCS and AMI. The second term contains the education cost
and financial incentive cost paid to electricity users for DR promotion. The investment cost of DG is
defined in (4d). Notice that only the procurement and installation cost of LCS and DG has a linear
relationship with their capacity. The capital recovery factor ε in (4c) and (4d) is utilized to transform
the total investment cost into daily cost [23].

Cope = Com + C f u (4e)

Com = ∑
t∈T

(∑
j∈J

CCdg
omPdg

j,t + ∑
n∈Nwt

CCwt
omPwt

n,t + ∑
n∈NPV

CCpv
omPpv

n,t) (4f)
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C f u = ∑
t∈T

∑
j∈J

CCdg
f uPdg

j,t (4g)

Equations (4e)–(4l) give the detailed expression of the operation costs and revenues, which contain
the operation and maintenance cost of the DG, wind turbine (WT), and photovoltaic generator(PV),
respectively; the fuel cost of DG; the energy transaction cost with the main-grid; and the revenue
by selling electricity to customers. The operation and maintenance cost for WT and PV in (4f) are
normally considered as the regular refurbishment and maintenance cost arisen from the depreciation
with daily operation [24]. Additionally, the fuel cost of DG is dependent on the total energy generation,
as illustrated with equation (4g).

Cadn = ∑
t∈T

(PrinPin,t − ProutPout,t) (4h)

Cearn = Cdr + Ccon + Cunc (4i)

Cdr = ∑
t∈T

∑
j∈J

rd
j,t (4j)

Ccon = ∑
t∈T

∑
j∈J

(1− (1− D0)ηj)Pd,exp
j,t Prt (4k)

Cunc = ∑
t∈T

∑
j∈J

(1− (1− D0)ηj)Pd,exp
j,t Rd

j,tPrt (4l)

The electricity exchange between DN and the main grid is presented as (4h). Considering the
uncertain load demand, the DN revenue in (4i) is divided into three parts: the revenue from DR-enabled
demand in (4j), the expected revenue from DR-not-enabled demand in (4k), and the uncertain revenue
that is violated from its expected value in (4l).

Cpena = Cvol
pena + Cline

pena + Csub
pena (4m)

Cvol
pena = ∑

t∈T
∑
j∈J

CCpena(Slv
j,t + Suv

j,t ) (4n)

Cline
pena = ∑

t∈T
∑

i∈Ωj

CCpena(S
lcap
i,t + Sucap

i,t ) (4o)

Csub
pena = ∑

t∈T
CCpena(Slsub

t +Susub
t ) (4p)

In Equations (4m)–(4p), the penalty costs are expressed as constraint violations of voltage
fluctuation, line congestion, and substation overload, which are computed by multiplying slackness
variables with their penalty fees.

3.2. Constraint

The economic and technical constraints describing the investment and daily operation are listed
in this subsection:

(1) The physical and technical constraints that describe the limitation of investment decision. The
limitation of maximum number of DRF and DG investment locations is given in (5a) and (5b). The
limitations of DG and DR capacities under a DN node are given in (5c) and (5d). In order to reduce the
non-linearity and computing burden of the problem, the bilinear terms αdr

j βdr
j and α

dg
j β

dg
j,b are replaced

by the auxiliary variables ηdr
j,t and γj,b, which are defined and limited by constraints (5e)–(5h). In

addition, the capital recovery factor is defined in (5j).

∑
j∈J

αdr
j ≤ Nj (5a)
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∑
j∈J

α
dg
j ≤ Nj (5b)

0 ≤ β
dg
j,b ≤ Bmax

j , ∀j, b (5c)

0 ≤ βdr
j ≤ 1, ∀j (5d)

ηdr
j = αdr

j βdr
j , ∀j (5e)

0 ≤ ηdr
j ≤ αdr

j , ∀j (5f)

γj,b = α
dg
j β

dg
j,b, ∀j, b (5g)

0 ≤ γj,b ≤ α
dg
j Bmax, ∀j, b (5h)

αdr
j , α

dg
j ∈ {0, 1} , γj,b, β

dg
j,b ∈ Z+, ∀j, b (5i)

ε = φ
z(1 + z)l

(1 + z)l − 1
(5j)

(2) The physical and technical constraints describing the DR-enabled DN operation. The branch
flow model (BFM) proposed in [25,26] is further simplified for distribution network modeling [27],
which is described with constraints (6a)–(6c). Equation (6d) fixes the voltage at the substation as V0.
Constraints (6e)–(6j) are the linearized PEDR model, in which the uncertainty of the load demand
is considered by introducing the deviation rate Rd

j,t from expected value. Constraints (6k) and (6l)
guarantee the energy consumption with DR investment is no smaller than original consumption, and
the electricity bill for consumers with DR investment is no larger than the original bill. The constraints
(6m)–(6n) express the energy exchange between DN and main grid, where Pin represent power
purchase from the main grid, and Pout means DN sells energy to the main grid. Constraint (6o) gives
the substation capacity limitation. The output limitation of DG and local reactive compensation devices
are presented in constraints (6p)–(6q). Constraint (6r) is to guarantee that the power supply can satisfy
the total demand with reserve factor θ. Constraint (6s) gives the voltage fluctuation limitations, and
constraint (6t) guarantees the active power flow within the line capacity. It is worth noting that the
operation constraints in (6o), (6s)–(6t) are relaxed, with positive variables Suv

j,t , Slv
j,t, Susub

t , Slsub
t , Sucap

ii,t ,

and Slcap
ii,t , so that the penalty cost for operation violation can be computed.

Pj,t = ∑
i∈Ωj

Pi,t + hd
j,t − ∑

n∈Nwt

Pwt
n,t− ∑

n∈Npv

Ppv
n,t−∑

j∈J
Pdg

j,t , ∀j, t (6a)

Qj,t = ∑
i∈Ωj

Qi,t + Qd
j,t − ∑

sv∈Nsv

Qsvc
sv,t, ∀j, t (6b)

Vj,t = Vi,t +
rijPi,t + xijQi,t

V0
, i ∈ Ωj, ∀j, t (6c)

Vj,t = V0, j = 1, ∀t ∈ T (6d)

rd
j,t = ∑

k∈K
Prk

j,td
k
j,t, ∀k, j (6e)

hd
j,t = D0Pd,exp

j,t (1 + Rd
j,t) + ∑

k∈K
dk

j,t, ∀k, j, t (6f)

D0Pd,exp
j,t (1 + Rd

j,t) ≤ hd
j,t ≤ D1Pd,exp

j,t (1 + Rd
j,t), ∀j, t (6g)

0 < dk
j,t < lk

j,t, ∀k, j, t (6h)
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Qd
j,t = Qd,exp

j,t (1 + Rd
j,t), ∀j, t (6i)

µd
low,j,t ≤ 1 + Rd

j,t ≤ µd
up,j,t, ∀j, t (6j)

∑
k∈K

dk
j,t ≥ ∑

t∈T
∑
j∈J

(1− D0)ηjP
d,exp
j,t (1 + Rd

j,t), ∀j, t (6k)

∑
t∈T

∑
j∈J

rd
j,t ≤ ∑

t∈T
∑
j∈J

(1− D0)ηjP
d,exp
j,t (1 + Rd

j,t)Prt, ∀j, t (6l)

Pj,t = Pin,t − Pout,t, j = 1, ∀t (6m)

Pin,t ≥ 0, Pout,t ≥ 0, ∀t (6n)

Psub
min − Slsub

t ≤ Pj,t ≤ Psub
max + Susub

t , j = 1, ∀t (6o)

0 ≤ Pdg
j,t ≤ γj,bτdg, ∀j, t (6p)

0 ≤ Qsvc
sv,t ≤ Qsvc

max,sv,t∀sv, t (6q)

∑
t∈T

(∑
j∈J

∑
b∈B

γj,bτmt + ∑
n∈Nwt

Pwt
up,n,t + ∑

n∈Npv

Ppv
up,n,t) ≥ θ ∑

t∈T
∑
j∈J

Pd,exp
j,t (6r)

1− σ− Slv
j,t ≤ Vj,t ≤ 1 + σ + Suv

j,t , ∀j, t (6s)

− Pcap
ij − Slsub

ij,t ≤ Pi,t ≤ Pcap
ij + Susub

ij,t , i ∈ Ωj, ∀j, t (6t)

Suv
j,t , Slv

j,t, Susub
t , Susub

t , Sucap
i,t , Slcap

i,t ≥ 0, i ∈ Ωj, ∀j, t (6u)

3.3. Uncertainty Set

In this paper, three polyhedral uncertainty sets are defined for the wind power, solar energy,
and the load demand, respectively, given as follows,

Uwt =
{

Pwt
n,t :

Γwt
low ≤

∑
t∈T

∑
w∈W

Pwt
n,t

∑
t∈T

∑
w∈W

Pwt
mean,n,t

≤ Γwt
up, (7a)

µwt
up,n,tP

wt
mean,n,t ≤ Pwt

n,t ≤ µwt
low,n,tP

wt
mean,n,t, n ∈ Nwt, ∀t}

Upv =
{

Ppv
n,t : .

Γpv
low ≤

∑
t∈T

∑
n∈NPV

Ppv
n,t

∑
t∈T

∑
n∈NPV

Ppv
mean,n,t

≤ Γpv
up, (7b)

µ
pv
up,n,tP

pv
mean,n,t ≤ Ppv

n,t ≤ µ
pv
low,n,tP

pv
mean,n,t, n ∈ Npv, ∀t}

Ud =
{

hd
j,t : .

Γd
low ≤ 1 +

∑
t∈T

∑
j∈J

Rd
j,t

ntnj
≤ Γd

up, (7c)

µd
low,j,t ≤ 1 + Rd

j,t ≤ µd
up,j,t, ∀j, t}

In (7a) and (7b), we assume that the wind power and solar energy outputs are within an interval
where Pwt,pv

mean,n,t represents the mean value of their outputs. This interval can generated through
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µ
wt,pv
low,n,t/µ

wt,pv
up,n,t. The actual hourly output Pwt,pv

n,t is allowed to be any value in the given range [28].

The uncertainty set for load demand in (7c) is expressed as the deviation rate Rd
j,t from expected value.

Likewise, the upper and lower bounds µd
low,j,t/µd

up,j,t indicate the lower and upper interval of the
uncertain load demand for each single hour. Furthermore, the uncertainty budgets are enforced to all
the uncertainty set in (7a)–(7c), with Γlow/Γup to quantify temporally and spatially aggregated values.
These budgets are to control the robustness of the proposed model. They can be adjusted according to
the system planner’s attitude towards practice application.

With the consideration of uncertain variables, the two-stage optimization objective (4a) can be
rewritten as follows:

min
a,β

Cinv + max
Pwt ,Rd

min
P,Q,V,Pdg

Cope + Cadn + Cpena − Cearn (8)

In (8), the first term is the minimum investment cost of DRF and DG, while the second term is the
minimum the other costs and revenues from DN operation. The worst-case scenario is first formed in
search of the uncertain variables in the uncertainty set, and then the operation variables are optimized
within the operation constraints to obtain minimal corresponding costs in this scenario, which makes
the “max-min” bi-level problem in (8). From this feature of robust mathematic model, the first-stage
variables serve as “here and now” decisions; meanwhile, the operation variables work as adjustable
“wait and see” decisions. Hence, the optimal solution is able to hedge against any possible scenario,
as well as ensure every operation constraint is satisfied in all possible uncertainty case.

4. Solution Algorithm

4.1. Compact Formulation and Duality

The compact form of the proposed model is written as below:

min
x

aTx + max
u

min
y,s

bTy + eTs + cTu (9a)

Ax ≤ d, x ∈ {0, 1} (9b)

By + Fs ≤ h (9c)

Gy + I(u)x ≤ ν (9d)

Qy + K(u)x + Du =ω (9e)

u ∈ U (9f)

According to their specialty, all the binary variables are grouped in x (i.e., x = {αj, βj}).
Moreover, the second-stage variables are divided into operation variable y and slack variable
s. Operation variables include DGs and Static Var Compensators (SVCs )outputs Pdg and Qsvc,
adjusted DR program participation dk

, and uncontrollable BFM variables P, Q, V. The uncertain
variables, including wind power, PV outputs Pwt,pv

n,t , and deviation rate Rd
j,t of load demand are

expressed as u. Otherwise, the constraints (5a)–(5h) and (6t) for x can be grouped into (9b), and the
operation constraints (9c)–(9e) can account for (6a)–(6s) and (6u)–(6w). It is noted the I(u) and K(u) are
the coefficient matrix of x, and include the uncertainty variables according to (6a)–(6q). The uncertainty
sets (7a)–(7c) are sorted in (9f).

The optimization problem (9a)–(9f) can be divided into two stages. Mathematically, with a given
u* generated from sub-problem, the master problem can be driven from (9) and become a mix-integer
linear program (MILP), which can be directly solved by a commercial solver. Hence, an optimal
solution (x*, λ*) can be obtained, in which λ* denotes the value of second-stage objective function value.
With these decision variables x*, the sub-problem becomes a “max-min” bi-level program, which is
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noted as O(u, x*) in this paper. Due to its strong duality, O(u, x*) is equivalent to the dual problem
as follows:

S(u, x∗) = max
φ1,φ2,φ3,u

hTφ1 + (ν− I(u)x∗)T
φ2 + (ω−K(u)x∗ −Du)T

φ3 + cTu (10a)

ΦDC =
{

BTφ1 + GTφ2 + QTφ3 ≥ b. (10b)

FTφ1 ≥ eT (10c)

φ1,φ2 ≥ 0} (10d)

u ∈ U (10e)

where {φ1,φ2,φ3} are the dual variable vectors for constraints (9c)–(9e).

4.2. Algorithm

The CCG algorithm is an efficient decomposition algorithm for two-stage robust optimization [29].
Thus, a two-level algorithm is proposed in this subsection, in which the CCG algorithm is adopted
in the outer level and the inner level uses an OA algorithm [30] to solve the bilinear problem in (10).
The procedure of the proposed algorithm is given in following steps, with a defined convergence
index ε:

The outer CCG algorithm is given as:

(1) Initialize LBccg = −∞, UBccg = +∞, g = 0 and set the sub-problem solution set soa = ∅.
(2) Solve the master problem, obtain the optimal solution (x∗g+1, λ∗g+1), and let LBccg = max{LBccg,

aTx∗g+1 + λ∗g+1}

(3) Solve the sub-problem with fixed first stage decision variables and add u∗g+1 to soa. Update UBccg

= min{UBccg, aTx∗g+1 + O(u∗g+1, x∗g+1)}

(4) Check the convergence index. Return x∗g+1 and stop if (UBccg − LBccg)/LBccg ≤ ∆. Otherwise, let
g = g + 1 and go to step 2.

The inner OA algorithm is given as,

(1) Initialize LBoa = −∞, UBoa = +∞, m = 1. Fix the first-stage decision variables. Find an initial u∗i
(2) Solve the OA sub-problem S(u∗m, x∗), Let {φ∗1,m,φ∗2,m,φ∗3,m} be the optimal solution. Set LBoa =

S(u∗m, x∗)
(3) Linearize the bilinear terms at (u∗m,φ∗1,m,φ∗2,m,φ∗3,m), as follows:
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φ∗2 + (−K(u∗)x∗−Du∗)T
φ3

+(K(u∗)x∗+Du∗−K(u)x∗−Du)T
φ3

(11)

(4) Solve the OA master problem, which is the linearized version of the second stage problem,
defined as below:

Z(u∗m,φ∗1,m,φ∗2,m,φ∗3,m) = max
φ1,φ2,φ3,u

hTφ1 + νTφ2 + wTφ3 + cTu + ω (12a)

s.t. ω ≤
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χ(u,φ1,φ2,φ3), ∀χ = 1, . . . , m (12b)

u ∈ U (12c)

φ1,φ2,φ3 ∈ ΦDC (12d)

Let
{

u∗m+1,φ∗1,m+1,φ∗2,m+1,φ∗3,m+1} be the optimal solution. Set LBoa = Z(u∗m+1,φ∗1,m+1,φ∗2,m+1,φ∗3,m+1)
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(5) Check the inner-level convergence. Return u∗m+1 and stop if (UBoa − LBoa)/LBoa ≤ ∆. Otherwise,
let m = m + 1 and go to step 2.

The general framework of the algorithm is described in Figure 3.Energies 2017, 10, x  10 of 18 
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5. Case Studies

In this section, the proposed framework and methodology were tested on the modified IEEE
33-node distribution system. All the computational tasks were implemented with a Yalmip toolbox in
MATLAB (R2016a, MathWorks, Natick, MA, USA) on a 2.4 GHz personal computer with 8 GB of RAM,
using Gurobi as the MILP solver (7.0.1, Gurobi Optimization, Inc., Houston, TX, USA). The optimality
gap was set as 10−3.

5.1. Modified IEEE 33-Node Distribution Network

The dataset of the modified test system can be obtained from [31].The total peak load demand and
capacity of lines were five times of their original given values. The required voltage violation range ε

was set as 0.05 (p.u.). The 24-h load demand profile (percentages of daily peak load, shown in Figure 4)
were obtained from [32], and they were multiplied by the peak load to determine the expected daily
load demand profile. In addition, the electricity price (Prj,t) was assumed to be time-varying, following
the change of a 24-h load demand profile, with its peak value set as 50$/MWh. The price to purchase
energy from the main grid (Prin) was assumed to be equal to Prj,t, and the price to sell energy to the
main grid (Prout) was set as 20% of Prin. Other parameters for describing the renewables and SVCs are
listed in Table 1.
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Table 1. Simulation data for WT, PV and SVC.

Location
Capacity

WT (MW) PV (MW) SVC (MVar)

17 3.675 1.125 3.250
19 2.625 1.575 3.250
24 2.625 0.675 3.250
33 1.575 1.125 3.250

In this paper, electricity price was linearized stepwise, with ten-piece segments used in [13]
to approximate the price elastic demand curve in (2a). Furthermore, the inelastic demand at each
node was set as 80% of the actual demand, and the upper bound of total demand was equal to 120%.
Accordingly, Table 2 shows the parameters for various costs in this case study, which were obtained
from [16,33]. The discrete increment of DG was set to be 10 kVA in this case study. The interest rate z
was set as 3%, and the planning horizon was set as 20 years, respectively.

Table 2. Parameters for corresponding costs.

Parameter Value Parameter Value

CClcs 96$/KWh Com
pv 0.006$/KWh

CCami 100$ C f l
dg 0.33$/KWh

CCdg 2293$/KWh CCinc 9.6$/unit
Com

dg 0.02$/KWh CCedu 9.6$/unit
Com

wt 0.008$/KWh CCpena 1000$/p.u.

5.2. First-Stage Co-Investment Scheme in a Different Uncertainty Set

We set Case 1 as the base case, in which the uncertainty budget is given in Table 3. To comprehensively
illustrate the co-investment scheme in different uncertain budgets of renewable energy, three cases were
defined with different Γ

wt,pv
low /Γ

wt,pv
up . Table 4 depicts the investment of DG in each case. It can be observed

that the locations of DGs are similar, but the sizes installed in the particular locations are relatively different.
That is mainly because the DG location depends on the topology, which remains unchanged for all cases,
but the DG size depends on the severity of DN operation violation, which is further affected by the
uncertainty budget. Figure 5 shows the results of DR investment in three robust optimization-based cases,
and one deterministic optimization-based case. It can be observed the DR program investment increases
when the uncertainty budget is broadened. Furthermore, Table 5 presents the corresponding investment
cost of each case. It is worth noticing that the investment costs for DGs are almost invariant, while the DR
investment cost is enlarged with different renewables’ uncertainty budgets. However, considering that
DR investment holds a small proportion of the co-planning cost, a slight increase of total investment cost
can help the system to hedge against variation of renewable energy sources, which reveals the economic
benefit of the DR program investment.

Table 3. Uncertainty set budget.

Budgets µlow µup Γlow Γup

WT 0.20 1.80 0.90 1.10
PV 0.20 2.00 0.90 1.10

Load demand 0.90 1.10 0.98 1.02
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Table 4. Distributed generators’ deployments in different cases.

Case Γ
wt,pv
low Γ

wt,pv
up Size (MW) Location (Node)

1 0.90 1.10

1.00 25
1.10 9
1.50 32
2.50 12, 14, 24, 29, 33

2 0.80 1.20

0.90 24
1.15 9
1.55 29
2.50 13, 14, 25, 30, 33

3 0.70 1.30

0.12 31
0.47 25
0.50 10
2.50 12, 13, 24, 29, 30, 32

Deter. - -

0.35 32
0.81 10
1.84 25
2.50 13, 29, 30

Table 5. Investment cost for a co-planning scheme in different cases.

Case Cdr ($) Cdg ($) Cinv ($)

1 185.72 6796.82 6982.55
2 214.12 6796.83 7010.94
3 317.83 6788.38 7106.21

Deter. 135.01 4432.71 4567.22
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5.3. Second-Stage Operation Result

After the first-stage optimal DR and DG allocation location is given, the worst-case scenario is
found based on the second-stage operation strategy. The total hourly DG output and the hourly energy
transaction with the main grid in Case 1 are presented in Figure 6. It can be clearly seen that the DG
outputs are high during period from 8:00 to 9:00 and from 19:00 to 23:00. According to the daily load
profile shown in Figure 4, this is mainly because the electricity consumption is high and renewable
energy is low at these time periods. Specifically, the generation of DGs reach their maximum output
between 19:00 and 20:00, when the load demand hits its peak value and renewables reach their lower
bound. In this situation, the energy provided by all the DGs and the energy reduced by DR program
combined is not sufficient to fulfill the peak load, and thus the DN needs to buy energy from external
grid. Besides, during the period from 24:00 to 6:00 and from 13:00 to 16:00, when the wind and solar
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energy is supposed to be abundant and the load demand is low and stable, the DN sells energy to the
main grid and the DGs are not committed on.

Figure 7 displays the load shifting under DR-enabled nodes in Case 1, where the load shifting
is defined as the difference between DR load and expected demand. It can be seen that the load
demand is enlarged between 14:00 and 15:00, when electricity price is low but the wind power and
solar energy are more than enough to supply the low power demand. Similarly, the DR is also fitted
up to augment the electricity consumption between 24:00 and 6:00, due to the abundant wind power
and low energy price. When the wind energy generation is insufficient, and the energy purchased
from external grid is expensive, the electricity consumption is reduced from 8:00 to 9:00 and 18:00 to
22:00, respectively. Thus, it can be found that the coordinated operation of DR program and DG can
effectively accommodate the uncertainties of renewables and load.
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5.4. Voltage Profile with Different Demand Response Ability

To verify the robustness in maintaining system security, the worst-case scenario obtained in Case
1 is implemented, using both the proposed model and the deterministic model. Figure 8 depicts the
24-h voltage profit for the critical node in the test system. It can be observed that severe voltage issues,
including voltage over-drop and over-rise, emerge in deterministic results at 15:00 and from 19:00 to
21:00, which leads a large penalty cost. Nevertheless, with the co-investment decision in Case 1 and the
proposed operation strategy, the voltage fluctuations in the worst-case scenario are maintained within
the acceptable range and the voltage violations are significantly diminished. Again, the proposed
co-planning scheme and operation strategy is proved to be able to accommodate the renewable energy
both economically and robustly.
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5.5. Statistical Feasibility Check

To verify the robustness in addressing various scenarios, the proposed model was tested with
1079 scenarios, randomly generated from a three-year dataset of wind power, PV, and load demand
in [32,34,35]. The deterministic model was also implemented as benchmark. Table 6 shows the statistic
results of the simulations. As seen from the results, the merits and the defects of the proposed model
were validated from different aspects. The average operation cost of the proposed model at $28,420.20
was larger than that of deterministic model, at $26,478.56. Using the proposed model, more DGs were
invested, and thus the fuel cost increased accordingly. However, the average energy transaction cost
was considerably reduced. The DN revenue in the proposed model slightly decreased as more demand
load joined the DR program. Besides, the average maximal voltage violation rate was significantly
reduced, from 7.546% to 0.006%. As a result, the average penalty cost was also considerably reduced.
It should be noticed that the probability that the proposed model outperforms the deterministic model
in total second-stage cost and voltage security is 95.85% and 98.99% respectively, which indicates the
robustness of proposed model in maintaining the DN operations.

Table 6. Statistical feasibility check results.

Case Cavr
ope ($) Cavr

and ($) Cavr
rev ($) Cavr

pena($) Rv,avr
max (%) Rc

beat (%) Rvmax
beat (%)

1 28420.20 4137.84 338.00 19.74 0.006
95.89 98.99Deter 26478.56 4472.54 341.06 290607.84 7.546

Cavr
ope: Average operation cost Cavr

adn: Average energy transaction cost. Cavr
rev : Average revenue; Cavr

pena: Average penalty
cost. Rv,avr

max : Average maximal voltage violation rate; Rc
beat: Rate of proposed model beat Deter in total second-stage

cost; Rvmax
beat : Rate of proposed model beat Deter in maximal voltage violation rate.

5.6. Modified IEEE 123-Node Distribution Network

To demonstrate the scalability and effectivity of the proposed framework, a modified IEEE
123-node DN in [36] was also used as a test system, which additionally included eight 1.1 MW WT,
0.5 MW PV, and 1.5 MVAR SVC in the same locations, which were connected at nodes 6, 37, 42, 56, 62,
69, 86 and 114. The 24-h load demand profile was the same as the 33-node system, and the total peak
load demand and capacity of lines were five times of their original given values. The other parameters
were the same as Section 5.1.

Table 7 shows the co-planning scheme in three robust optimization-based cases and one
deterministic optimization-based case, in which the uncertainty sets were the same as in Section 5.2.
Furthermore, Table 8 presents the corresponding investment cost of each case. In general, it could
be observed that results of DGs and DR investment showed the same trend with the results in the
33-node test system, which verifies the efficiency and scalability of the proposed framework.
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Table 7. Co-planning scheme in different cases of a 123-node test system.

Case
DGs Deployments DR Investment

Size (MW) Location (Node) Percentage (%) Location (Node)

1

0.03 151

100

7, 9, 11, 10, 19, 20, 28, 33, 29, 30
37, 42, 45, 47, 46, 48, 49, 50

51, 151, 55, 56, 60, 62, 63, 64
65, 68, 69, 70, 71, 76, 77, 86
79, 80, 82, 83, 87, 88, 94, 95

98, 99, 35, 1, 52

0.22 108
0.27 450, 80
0.36 46
0.60 82
0.82 65, 91
1.43 79, 49
2.50 93

2

0.10 34

100

7, 9, 11, 10, 19, 20, 28, 33, 29, 30
37, 42, 45, 46, 47, 48, 49, 50, 51
53, 55, 56, 60, 62, 63, 64, 65, 68
69, 70, 71, 76, 77, 86, 79, 80, 82

82, 83, 87, 88, 94, 95, 98, 99
100, 109, 113, 35, 1, 52

0.17 71
0.20 65
0.43 45
0.64 44
0.87 82
1.21 93
2.41 79
2.50 89

3

0.07 108

100

7, 9, 11, 10, 19, 20, 28, 33, 29, 30
37, 42, 45, 47, 46, 48, 49, 50, 51
53, 55, 56, 60, 62, 63, 64, 65, 68

69, 70, 71, 76, 77, 86, 79, 80, 82, 83, 87
88, 94, 95, 98, 99, 100, 109, 111, 112

113, 114, 35, 1

0.17 450
0.25 151
0.27 45
1.14 87
1.85 66
2.50 83, 93

Deter.

0.22 88

100
7, 9, 11, 10, 19, 20, 28, 33

30, 37, 48, 50, 87, 88, 94, 95
35, 1

0.41 66
1.10 82
2.50 93

Table 8. Investment cost for a co-planning scheme in a different case of a 123-node test system.

Case Cdr ($) Cdg ($) Cinv ($)

1 348.58 3693.93 4042.51
2 365.24 3693.93 4059.17
3 377.38 3693.93 4071.31

Deter. 157.65 2427.41 2585.06

6. Conclusions

This paper proposes a DRF and DG co-investment model to determine the optimal capacity and
location of demand response and DG. A robust, optimization-based two-stage model was adopted
to accommodate the uncertainties of renewables and load demand. The price-sensitive demand was
modeled with modified PEDR, where both inelastic and elastic demand was taken into account.
In the proposed model, the overall cost was optimized, taking into consideration the first-stage
investment decision, as well as the hourly DG and DR coordinated operation in second-stage operation.
The customer bills, total energy supply, and operation regulations were considered to motivate the
electricity end users to participate in the DR program. Finally, a modified CCG/OA algorithm was
employed to solve the proposed two-level programming problem. Case studies demonstrate the
effectiveness of the proposed model from aspects of economic and security operations. With the aid of
the proposed model, not only is the operation violation of the DN alleviated, but the system cost is
also minimized.
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Nomenclature

A. Indices and Sets
t/T Index/set of time slots
j/J Index/set of DN nodes
i/Ωj Index/set of child nodes of node j
d/D Index of load demand
dg/DG Index of DG
n/Nwt, Npv Index/set of the wind power/solar energy
sv/Nsv Index/set of automatic voltage regulators (SVCs)
B. Parameters
CClcs/CCami Load control switch/advanced metering infrastructure procurement and installation cost
CCinc/CCedu Financial incentive and education cost for DR program
CCdg DG procurement and installation cost
ε Capital recovery factor for day-based cost
θ Weighting factor for transferring yearly cost to daily cost
Ns Maximum number of nodes with DRF and DG installation
Bmax

j Maximum increment in size of DG at j
Com

dg /Com
wt /Com

pv Operation and maintenance cost of DG/WT/PV generations

C f l
dg Fuel cost of DG

Prin/Prout Electricity price for buying/selling energy to/from the main grid
Prk

j,t Electricity price at step k in the linearized PEDR model at j,t
lk
j,t kth length in the linearized PEDR curve at j,t

Psd
j,t /Qsd

j,t Expected load demand from statistic data at j,t
D0/D1 Coefficient for inelastic part and maximum of actual load demand at j,t
Psub

min/Psub
max Lower/upper bound of power flow into/from substation

Pcap
ij Capacity of the DN line ij

Qsvg
max Maximum SVC output at sv, t

Pcap
ij Capacity of the DN line ij

Qsvg
max Maximum SVC output at sv, t

Pwt,pv
mean,n,t Mean value of WT/PV output

µd
low,j,t/µd

up,j,t Lower/upper bound of load demand rate at j,t (% of expected demand)

µ
wt,pv
low,n,t/µ

wt,pv
up,n,t Lower/upper bound of WT/PV output rate at n,t (% of expected output)

rij/xij Resistance/reactance of DN line ij
V0 Voltage reference value, set as 1.0 p.u.
σ Allowable value of voltage fluctuation

Γ
d,wt,pv
l /Γ

d,wt,pv
p Uncertainty budget of load demand/wind power/solar energy

C. Variables
αdr

j /α
dg
j Binary variable indicating if DRF/DG is installed at j

βdr
j

DR investment percentage indicating the load demand rate with DR ability (% of the peak load)
at j

β
dg
j,b Integer variable indicating bth increments in size of DG at j

Pj,t/Qj,t Active/reactive power flow at j,t
Vj,t Voltage at j,t
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Pdg
j,,t/Qsvg

sv,t DG/SVC output at j/sv, t
dk

j,t Auxiliary variable introduced at kth step in PEDR model at j,t
hd

j,t Actual load demand at j,t
rd

j,t Electricity payment of load demand with DR program at j,t
Rd

j,t Uncertain variation rate of load demand at j,t
Suv

j,t /Slv
j,t, Slack variables of voltage violation at j,t

Sucap
ji,t /Slcap

ij,t Slack variables of line capacity limitation at ij,t

Susub
t /Slsub

t Slack variables of substation capacity limitation at j,t
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