
1

Authenticating Aggregate Queries over
Set-Valued Data with Confidentiality

Cheng Xu, Qian Chen, Haibo Hu, Jianliang Xu, Xiaojun Hei

Abstract—With recent advances in data-as-a-service (DaaS) and cloud computing, aggregate query services over set-valued data are
becoming widely available for business intelligence that drives decision making. However, as the service provider is often a third-party
delegate of the data owner, the integrity of the query results cannot be guaranteed and is thus imperative to be authenticated.
Unfortunately, existing query authentication techniques either do not work for set-valued data or they lack data confidentiality. In this
paper, we propose authenticated aggregate queries over set-valued data that not only ensure the integrity of query results but also
preserve the confidentiality of source data. As many aggregate queries are composed of multiset operations such as set union and
subset, we first develop a family of privacy-preserving authentication protocols for primitive multiset operations. Using these protocols
as building blocks, we present a privacy-preserving authentication framework for various aggregate queries and further optimize their
authentication performance. Security analysis and empirical evaluation show that our proposed privacy-preserving authentication
techniques are feasible and robust under a wide range of system workloads.

Index Terms—Query Authentication, Aggregate Queries, Set-Valued Data, Merkle Hash Tree

F

1 INTRODUCTION

R ECENT advances in data-as-a-service (DaaS) and cloud
computing have been driving data from different sources

into massive repositories for queries. A typical example is Big-
Query [1] in the Google Cloud Platform, which uses SQL-like
queries to analyze big datasets. The results of these queries,
particularly aggregate queries, in turn serve as sources for data
analytics. For example, business intelligence executives can thus
make critical, million-dollar decisions such as investing in new
business opportunities. As such, ensuring the integrity of query
results from the service provider is crucial. Similar requirements
also exist in many other domains such as scientific research and
government policy. For example, personal genomics analysis (e.g.,
23andMe and the Personal Genome Project (PGP) at Harvard
Medical School [2]) is based on aggregate queries on large genome
datasets, the integrity of whose results is vital. Below is one
example:

PID ZIP Mut-Genes
P1 95014 A-C130R, P-I696M
P2 20482 H-C282Y, P-P12A, R-G1886S
P3 95014 A-C130R, U-G71R, W-R611H
P4 01720 A-V2050L, H-C282Y, M-R52C, U-G71R
P5 20134 A-C130R, P-P12A, R-G1886S, S-E366K
P6 17868 C-R102G, R-G1886S
P7 55410 C-R102G, C-Q1334H, S-E288V
P8 20852 C-R102G, P-P12A, R-G1886S, K-T220M

TABLE 1: Set-Valued Genome Dataset

Example 1. Aggregate Queries on PGP Data. Table 1 shows

• Cheng Xu, Qian Chen and Jianliang Xu are with the Department of
Computer Science, Hong Kong Baptist University, Hong Kong.
E-mail: {chengxu, qchen, xujl}@comp.hkbu.edu.hk

• Haibo Hu is with the Department of Electronic and Information Engineer-
ing, Hong Kong Polytechnic University, Hong Kong.
E-mail: haibo.hu@polyu.edu.hk

• Xiaojun Hei is with the School of Electronic Information and Communica-
tions, Huazhong University of Science and Technology, Wuhan, China.
E-mail: heixj@hust.edu.cn

a sample genome dataset, where PID is participant ID, ZIP
is ZIP code, and Mut-Genes is a sensitive set-valued attribute
that records the mutation genes of each participant. Users (e.g.,
medical doctors) may be interested in the following aggregate
queries:
• Q1: Find the most common gene in the district of Cupertino,

CA (ZIP: 95014).
• Q2: Count the number of participants who carry the gene

‘R-G1886S’.
• Q3: Find the most frequent genes with supports ≥ 3 in ZIPs

20***.
The corresponding query results are: {‘A-C130R’}, 4, and
{‘P-P12A’, ‘R-G1886S’}, respectively.

Unfortunately, there is no guarantee of the service provider
returning correct and complete results, for various reasons that
could include service outages, hack attacks, or even corporate
dishonesty. In the field of query processing, authentication on
query results has been studied by a large body of literature [3]–
[10]. The fundamental concept is that the data owner signs a well-
designed authenticated data structure (ADS), based on which
the service provider then constructs a cryptographic proof for
each query and returns it along with the query results for the
query client to verify. However, the prior research cannot be
applied to aggregate queries on set-valued genomics or business
data as exemplified above for two reasons. First, most of the
research has been focused on relational or spatial data and their
associated query types, whereas set-valued data have their own
unique operations and aggregate query types. Second, most of
the research ignores data confidentiality — they assume that the
service provider is willing to and capable of sharing a substantial
amount of source data to the query client for result verification.
In the genomics analysis, business intelligence, and many other
cases, however, the source data cannot be disclosed to the query
client, either because they are private assets of the data owner, or

This is the Pre-Published Version.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The following publication C. Xu, Q. Chen, H. Hu, J. Xu and X. Hei, "Authenticating Aggregate Queries over Set-Valued Data with Confidentiality," in IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 4, pp. 630-644, 1 April 2018 is available at https://doi.org/10.1109/TKDE.2017.2773541.

2

because they may contain sensitive personal information such as
individual genome sequences.

As set-valued data are ubiquitous and sometimes indispensable
in describing real-world problems for analytics, in this paper we
study authenticated aggregate query services over set-valued data
with confidentiality preservation. We assume that a dataset con-
sists of one sensitive set-valued attribute (e.g., mutation-gene set)
and multiple non-sensitive attributes (e.g., ZIP code and age). As
illustrated in Example 1, an aggregate query is defined as a query
whose result is derived from aggregates of data. In this paper, each
aggregate query consists of two phases: a filtering phase that filters
data by a range selection on non-sensitive attributes, followed by
an aggregating phase that aggregates on the sensitive set-valued
attribute. For broader applicability, we model the sensitive set-
valued attribute as a multiset, i.e., a set that allows duplicate
elements. This enables advanced data analytics such as frequent
itemset mining in market basket analysis [11], inverted indexes in
web search and auto-completion [12], and web log mining [13],
all of which require a collection data type that supports duplicate
elements.

Because aggregate queries exhibit unique properties that are
unseen in those queries previously studied for authentication [3]–
[5], the design of the ADS and its related authentication techniques
face great challenges. First, due to the dynamics of aggregate
queries (e.g., each query in Example 1 selects a different group
of participants), it is impossible to pre-compute the query results
and endorse them in advance. Second, aggregate queries over
set-valued data are largely supported by multiset operations, for
which existing authentication techniques, mostly designed for
relational queries, cannot be applied. Third, to safeguard source
data confidentiality, the query client must be able to verify the
query results without learning any single set of sensitive values.
To address these challenges, we propose PA2, a privacy-preserving
authentication framework for aggregate queries. It consists of
an authenticated index Merkle Grid tree (MG-tree), a family of
privacy-preserving authentication protocols for primitive multiset
operations, and a series of aggregate query processing algorithms.
We further propose several optimizations to reduce the compu-
tation and communication overheads for both the server and the
query client. In summary, our contributions made in this paper are
as follows:
• To the best of our knowledge, this is the first work that

addresses both integrity and confidentiality for aggregate
queries over set-valued data.

• We propose a privacy-preserving authentication framework
and we develop a set of privacy-preserving authentication
protocols and algorithms for various aggregate queries.

• We provide formal security analysis and cost models for the
proposed authentication protocols and algorithms.

• We propose optimizations to enhance the performance of
query authentication algorithms.

• We perform extensive performance evaluation on real-world
datasets. Empirical results demonstrate the feasibility and
robustness of our proposals.

The rest of this paper is organized as follows. Section 2
reviews the related work on aggregate queries and authenticated
query processing. Section 3 formally defines the problem and its
security model. Section 4 introduces some related cryptographic
constructs. Section 5 proposes the PA2 framework for privacy-
preserving authentication of aggregate queries based on a family of
verifiable multiset operations. Security analysis and performance

optimization techniques are given in Sections 6 and 7. Section 8
presents our experimental results and is followed by a conclusion.

2 RELATED WORK

Aggregate Queries over Set-Valued Data. Set-valued data, in
which a set of values is associated with an individual, is common
in data analytics applications ranging from market basket analysis,
to web log mining, to heathcare research. Özsoyoğlu et al. were
the first to extend relational algebra and aggregate functions to
set-valued data [14]. They defined algebraic expressions such
as set union, set difference, and aggregation. Since then, data
analytics over set-valued data has been extensively studied in
various application domains. The most well-known application is
association rule mining [15]. Given a database of sales transac-
tions, each containing a subset of items in the product universe,
the objective is to find rules such as “a user buying item(s)
X will probably buy item(s) Y ”. Although various algorithms
are proposed, a fundamental problem in this application is to
efficiently compute two aggregate values, namely, the support and
confidence of X [11]. The former is the number of transactions
that contain X , whereas the latter is those in the former that
also contain Y . With the boom of web search and online adver-
tisement, query log and click stream have become new sources
of set-valued data. A variety of aggregate queries have been
proposed on these sources for tasks such as website clustering and
frequent item identification and counting [16]. Recently, graphs
have become another new source of set-valued data. In particular,
social networks have contributed various social relations, such as
“friend/unfriend,” “follow,” “post/tag,” and user access rights, to
set-valued data [17]. Aggregating such data for social network
analysis and recommendation has been intensively studied [18].

Authenticated Query Processing. A large body of research
on authenticated query processing has been carried out to verify
the integrity of query results against an untrusted service provider.
Most of the existing works focus on relational and spatial data [3]–
[6], [19]. Their query authentication schemes are based on two
basic techniques, namely, digital signature and Merkle hash tree
(MHT). The former is a public-key message authentication scheme
based on asymmetric cryptography. A digital signature is produced
for each data value by the data owner using a private key. A verifier
can verify the authenticity of a value using the owner’s public key
and the value’s signature. To further ensure the completeness of
query results, signature chaining was proposed to correlate the
signatures of adjacent values [3]. Signature chaining is simple, but
it requires each value to be signed and thus is not scalable to large
datasets. MHT, on the other hand, requires only a single signature
on an index tree [20]. Each entry in a leaf node is assigned a
digest based on its data value, and each entry in an internal node
is assigned a digest derived from its child nodes. The data owner
signs the root digest of the MHT, which can be used to verify
any subset of data values. The MHT has been widely adapted to
various index structures. Typical examples include the Merkle B-
tree for relational data [4], the Merkle R-tree for spatial data [5],
[21], the authenticated inverted index for text data [22], and the
authenticated prefix tree for multi-source data [9] .

More recently, privacy-preserving query authentication tech-
niques have been studied for location-based range and top-k
queries [23], [24]. The core idea is to enable the verification of
comparison results on private values. However, these previous
works consider relational/spatial data only, not set-valued data,

3

reference set
operations

multiset
operations

aggregate
queries

privacy
preserving

[25], [26], [27] 3 7 7 7
[29] 3 only sum 7 3
[30], [31] 3 7 7 3
our work 3 3 3 3

TABLE 2: Comparison with prior works

which are the focus of this paper. As we will see later in this paper,
aggregate queries over set-valued data heavily involve primitive
multiset operations such as set union and subset. This renders
the existing privacy-preserving authentication techniques that are
based on private value comparisons inapplicable.

On the other hand, there are only a few query authentication
works over set-valued data. For primitive set operations, Papaman-
thou et al. proposed efficient verification protocols for set union,
set intersection, and set difference operations [25]. Canetti et al.
extended it by allowing data updates and monolithic verification
of hierarchical set operations [26]. Papadopoulos et al. studied
efficient high-dimensional range query authentication [27]. Dong
et al. [28] developed a result verification protocol for frequent
itemset mining. Yet, none of these previous studies has considered
the data confidentiality requirement. For example, the solution in
[28] allows the query client to learn which transactions contain the
frequent itemsets, thus breaching data privacy. Protecting the con-
fidentiality of source data requires designing new cryptographic
constructs on primitive multiset operations. The preliminary work
in [29] supports multiset sum operations only. Papadopoulos et al.
proposed a zero-knowledge accumulator for set-valued data and
common primitive operations [30]. However, it is computation-
ally expensive and does not support multisets. Recently, another
zero-knowledge set accumulator is proposed by Zhang et al. It
is expressive but still lacks of the support for multiset opera-
tions [31]. Furthermore, how to support authenticated aggregate
queries based on verifiable multiset operations while preserving
data confidentiality is another new challenge. Table 2 summarizes
the differences between our work and the previous works.

3 PROBLEM DEFINITION

A data owner (DO) owns a dataset D = {o1, o2, · · · , on}. Each
object oi is represented by <Ai, Xi>, where Ai is a set of non-
sensitive attributes, and Xi is a sensitive multiset of features
(hereafter called feature set). The DO outsources D to a third-
party service provider (SP), together with an authenticated data
structure (ADS) signed with the DO’s private key. Based on this,
the SP provides aggregate query services to clients (e.g., Q1 and
Q2, and Q3 in Example 1).

Multiset Operations. A multiset is a generalization of a set
in which elements are allowed to occur more than once [32]. The
number of occurrences is called the multiplicity of an element.
For instance, in multiset {a, a, b}, a has a multiplicity of 2 and
b has a multiplicity of 1. The multiset is order insensitive, so
it can be represented as a set of pairs (x, η) where x is an
element and η is its multiplicity. The above multiset {a, a, b}
can thus be rewritten as {(a, 2), (b, 1)}. The most important
operations in a multiset are union and sum, denoted as ∪ and
], respectively. The union operation on multisets is exactly the
same as that on regular sets — it simply unifies two multisets
and sets the multiplicity of each element to 1. For instance, given
multisets X1 = {(a, 2), (b, 1)}, X2 = {(b, 1), (c, 2)}, we have
X1 ∪X2 = {(a, 1), (b, 1), (c, 1)}. In contrast, the sum operation

o1
o2

o7
o8

o5

o3

o11

o9

o4

o10

o12
α

β
o6

(a) Objects

Object Feature Set
o5 X5 = {c, d}
o6 X6 = {a, c, c}
o9 X9 = {a, a, d, e}
o10 X10 = {a, d}
o11 X11 = {a, b, e}
o12 X12 = {a, c}

(b) Features

Fig. 1: Example of Aggregate Queries

sets the multiplicity of each element as the sum of multiplicities
in the original multisets. For instance, given the same multisets as
above, we have X1]X2 = {(a, 2), (b, 2), (c, 2)}.

Aggregate Queries. Since the results of aggregate queries are
derived from aggregates of data, our study mainly focuses on the
following primitive aggregate queries: max/min, count, sum, top-k,
and frequent feature query (FFQ).1 More specifically, an aggregate
query can be expressed in the form of Q = (q, {xi}, [α, β]),
where q is the aggregate operator, {xi} is the queried feature
(which is only needed for count and sum), and [α, β] specifies the
selection range on the non-sensitive attributes. Consider a sample
query Q = (q, {xi}, [α, β]) in Figure 1. The query range [α, β]
selects the objects o5, o6, o9, o10, o11, o12. Since X5]X6]X9]
X10] X11] X12 = {(a, 6), (b, 1), (c, 4), (d, 3), (e, 2)}, the
query result is based on the aggregate operator q, as follows:
• q = sum or count: This sums or counts the multiplicities

of {xi} in all selected objects. Supposing {xi} = {a}, the
sum and count results are (a, 6) and (a, 4), respectively.2

• q = max ormin: This selects the feature with the maximum
or minimum summed multiplicity in all selected objects. If
q = max, the result is (a, 6); if q = min, the result is (b, 1).

• q = top-k: This selects the top-k features with the largest
summed multiplicities in all selected objects. Supposing k =
3, the result is (a, 6), (c, 4), (d, 3).

• q = FFQδ: This selects the features whose summed multi-
plicities in all selected objects are no less than a threshold δ.
Supposing δ = 4, the result is (a, 6), (c, 4).

The aggregate queries in Example 1 can be reduced to
the above aggregate queries as follows. Q1 is simply a max
query, i.e., (max, -, [95014, 95014]). Q2 is a count query, i.e.,
(count, {R-G1886S}, [00000, 99999]). Q3 is an FFQ query,
(FFQ3,−, [20000, 29999]), which finds the set of genes whose
sum result is no less than 3.

Threat Model and Problem Statement. We consider two
potential security threats: 1) the SP could provide unfaithful query
execution, thereby returning incorrect or incomplete query results;
and 2) data privacy could be breached if sensitive source data are
disclosed to the query client. Thus, the authentication problem
we are investigating is for the query client to verify that the SP
executes Q faithfully in terms of the following conditions: 1)
the candidate objects are correctly selected and no objects in the
selection range are skipped; 2) the returned features and multi-
plicities are not tampered with; and 3) the query result satisfies
the aggregation semantics. The confidentiality requirement in this
problem is to protect the objects’ (sensitive) feature sets against

1. Extension to other more advanced aggregate queries such as average and
confidence will be discussed in Section 5.2.3.

2. The sum and count results will be the same if there are no duplicate
elements in the feature sets.

4

the query client. That is, the client cannot infer the features (as
well as their multiplicities) of any single object beyond what is
implied from the query result.

If neither efficiency nor confidentiality is a concern, au-
thenticating an aggregate query can work as follows. The SP
returns a verification object (VO) to the client, along with the
query result. As a naive solution, the VO may include the non-
sensitive attributes and sensitive features of all objects in D and a
signature of D. The client uses the VO to verify the soundness and
completeness of the results by testing the following conditions:
• None of the objects in D is tampered with.
• All candidate objects are in [α, β] and no objects in [α, β]

are missing.
• The features and multiplicities of the candidate objects are

correct.
• The result satisfies the aggregation semantics of q.

However, the verification cost of this naive solution is prohibitively
high because the entire dataset has to be returned. Moreover,
verifying the last two conditions without disclosing sensitive
feature sets requires privacy-preserving protocols. To address these
issues, we propose an efficient privacy-preserving authentication
framework based on verifiable multiset operations, the preliminar-
ies of which are introduced in the next section.

4 PRELIMINARIES

This section gives some preliminaries on cryptographic constructs
and integrity assurance.

Cryptographic Hash Function. A cryptographic hash func-
tion h(·) accepts an arbitrary-length string as its input and re-
turns a fixed-length bit string. It is collision resistant, i.e., it is
difficult to find two different messages m1 and m2 such that
h(m1) = h(m2). Classic cryptographic hash functions include
MD5 and SHA-1.

Bilinear-Map (BM) Accumulator. This maps a multiset to a
single value for ease of processing. Let G be a cyclic multiplicative
group of order p. A BM accumulator is a function of a multiset
X of n elements in the cyclic group Zp [33]. It returns an
accumulative value of X:

acc(X) = gP (X) = g
∏

x∈X (x+s),

where g is a group generator of G, s ∈ Z∗p = Zp\{0} is a random
secret, and P (X) =

∏
x∈X (x+ s).

One useful property of acc(X) is that even without knowing s,
acc(X) can still be computed byX and g, gs, · · · , gsk (k ≥ |X|)
through polynomial interpolation. As for its security, it has been
proved in [34] that the accumulative function acc(·) is collision
resistant.

Randomized BM Accumulator. The above accumulative
value acc(X) is deterministic for a fixed multiset X . As such, an
adversary can determine with high confidence that two multisets
are the same if they happen to have the same accumulative value.
To enhance confidentiality, we propose randomizing the acc value
of X as

acc(X) = gP (X)·rX , (1)
where rX is a random value hidden from the query client but
disclosed to the SP. It is worth noting that this randomization
does not affect the original properties of a BM accumulator. We
further prove in Section 6 that the randomized acc values are
indistinguishable under chosen plaintext attack.

Bilinear Pairing. This maps a pair of elements in two groups
to a single element in a third group. Let Gt be another cyclic

multiplicative group with the same order p. We can find a bilinear
mapping e : G×G→ Gt which has the following properties:

1) Bilinearity: If u, v ∈ G and e(u, v) ∈ Gt, then e(ua, vb)
= e(u, v)ab for any u, v.

2) Non-degeneracy: e(g, g) 6= 1.
3) Computability: Given u, v ∈ G, it is easy to compute e(u, v).

Bilinear q-Strong Diffie-Hellman (DH) Assumption. This
assumption shows that bilinear pairing is appropriate for multiset
operation authentication as it is hard to forge. Let (G,Gt, e, g) be
a bilinear pairing. This assumption says that as long as s ∈ Z∗p is
secret, even given all elements g, gs, · · · , gsk ∈ G, no probabilis-
tic polynomial-time (PPT) algorithm can derive e(g, g)1/(x+s) for
any x ∈ Z∗p with a probability higher than a negligible value [35].
In essence, this bilinear q-strong DH assumption extends the
regular DH assumption on g and G to e(g, g) and Gt. This
assumption will be used as a foundation in our security analysis.

Set Operation Authentication. Based on the above, two
result verification protocols have been introduced in [25], [26]
to authenticate the following operations on two sets X1 and X2:
(i) X1 ⊆ X2 and (ii) X1 ∩X2 = ∅.

For (i), the server computes a witness value W = acc(X2 −
X1) and returns it to the query client. The client then verifies
X1 ⊆ X2 by checking:

e(acc(X1),W)
?
= e(acc(X2), g).

For (ii), according to the extended Euclidean algorithm, there
are two polynomials Q1, Q2 such that

Q1 · P (X1) +Q2 · P (X2) = 1.

As such, the server prepares F1 = gQ1 , F2 = gQ2 , and then the
client verifies it by checking:

e(F1, acc(X1)) · e(F2, acc(X2))
?
= e(g, g).

Though these two protocols are privacy-preserving in nature and
can be extended to multisets, we have yet to design privacy-
preserving authentication protocols for other multiset operations
such as sum and union, which will be covered in Section 5.1.

5 PA2: PRIVACY-PRESERVING AUTHENTICATION
FRAMEWORK FOR AGGREGATE QUERIES

In this section, we present the complete framework that can
authenticate various aggregate queries while preserving data confi-
dentiality. Fig. 2 illustrates both the query and authentication flow
charts of the framework. The framework consists of two phases:
candidate object selection and aggregate query processing. Recall
that given an aggregate query Q = (q, {xi}, [α, β]), the SP first
selects the candidate objects within the range [α, β], and then
computes the aggregate values of these candidate objects with
regard to the queried feature xi. Along with query processing,
the server also constructs the verification objects (VOs) for both
phases. Once the client receives the query results and VOs, it
can authenticate the correctness of the entire query following the
verification flow, which is the opposite of the SP’s VO construction
flow. In what follows, we present the detailed procedure of each
phase in this framework, starting with the second phase for clarity
reasons.

5.1 Privacy-Preserving Authentication Protocols on
Multiset Operations
Before running into the detailed procedure of authenticating ag-
gregate queries, we present five core privacy-preserving authen-

5

Candidate
Object

Selection

Aggregate
Query

Processing

MG-Tree
Authentication

Multiset Operation
Authentication

Query Processing Flow

VO Construction Flow

Aggregate
Query

Client Verification Flow

Query
Results

SP

Phase 1
VO

Phase 2
VOClient

Fig. 2: PA2 Authentication Framework Overview

tication protocols on multiset operations. The challenge is that
the client cannot learn any sensitive feature information when
authenticating the multiset operations. Inspired by [27], [30], our
key idea is to leverage the randomized bilinear-map accumulator
acc(·) (i.e., Eq. (1)) introduced in Section 4 to hash a multiset into
a fixed-length value with collision resistance. With the bilinear
pairing function e(·, ·) (also introduced in Section 4), the client
can verify the accumulated value of the output multiset without
learning the content of each input multiset. This distinguishes
the accumulator function from other cryptographic hash functions
such as SHA-1.

In the rest of this section, we introduce the five core
privacy-preserving authentication protocols on multiset opera-
tions, namely, subset, sum, empty, union, and times. For ease
of presentation, we mark below any unverified value computed
by the SP with ∗, while all other unmarked values are trusted
or already verified by the candidate object selection protocol
(to be explained in Section 5.3). We also assume that the seeds
g, gs, · · · , gsk are public and that the random values rXi

’s are
known to the DO and SP but hidden from the client.

Subset: sub(Xi, Xj). Given two multisets Xi, Xj , it returns
the accumulative value acc(Xj − Xi). Note that if Xi * Xj ,
the SP cannot compute a correct value of acc(Xj −Xi). Hence,
if acc(Xj − Xi) is verified as correct, the client is assured that
Xi ⊆ Xj . The detailed protocol is as follows:

i. The SP computes the accumulative value acc(Xj − Xi)
∗

based on Xi, Xj , the random values rXi , rXj , and the public
seeds g, gs, · · · , gsk (thanks to the nice property of acc as
mentioned in Section 4), and sends it to the client together
with acc(Xi) and acc(Xj).

ii. The client verifies the correctness of acc(Xj − Xi)
∗ by

checking the following condition, where we exploit the
property of bilinear pairing function e(·, ·) as mentioned in
Section 4.

e(acc(Xi), acc(Xj −Xi)
∗)

?
= e(acc(Xj), g).

Sum: sum({X1, · · · , Xn}). Given a set of multisets {X1,
· · · , Xn}, it returns the accumulative value acc(S) of the sum set
S =]{Xi}. The detailed protocol is as follows:

i. The SP computes the accumulative values acc(X1] X2)
∗,

acc(X1]X2]X3)
∗, · · · , acc(S)∗, and sends them to the

client together with acc(X1), · · · , acc(Xn).
ii. The client verifies the correctness of acc(S)∗ by checking

the following equations one by one:
e(acc(X1), acc(X2))

?
= e(acc(X1]X2)

∗, g)

e(acc(X1]X2)
∗, acc(X3))

?
= e(acc(X1]X2]X3)

∗, g)
...

e(acc(]n−1i=1 Xi)
∗, acc(Xn))

?
= e(acc(S)∗, g)

Empty: empty({X1, · · · , Xn}). Given a set of multisets
{X1, · · · , Xn}, it verifies whether ∩{Xi} = ∅. According to
the extended Euclidean algorithm, if ∩{Xi} = ∅, there exist n
polynomials Qi such that

∑n
i=1Qi · P (Xi) = 1 . The detailed

protocol is as follows:

i. The SP computes n values F ∗i = g
Qi
rXi , and sends F ∗1 , · · · ,

F ∗n , acc(X1), · · · , acc(Xn) to the client.
ii. The client verifies the result is empty if the following equa-

tion holds:
n∏
i=1

e(acc(Xi), F
∗
i)

?
= e(g, g).

Union: union({X1, · · · , Xn}). Given a set of multisets
{X1, · · · , Xn}, it returns the accumulative value acc(U) of the
union set U = ∪ni=1Xi. This operation is more complicated than
the sum operation. Denote X̂i as the set version of a multiset Xi.
The client needs to verify two conditions:

(1) Deflation checking: X̂1 ⊆ U ∧ X̂2 ⊆ U ∧· · · X̂n ⊆ U . This
is to prevent the SP from deliberately missing any object;

(2) Inflation checking:(U−X̂1)∩(U−X̂2)∩· · · (U−X̂n) = ∅.
This is to prevent the SP from deliberately adding any non-
result object.

We can authenticate them based on the above sub and empty
protocols as follows:

i. Use protocols sub(X̂1, U), sub(X̂2, U), · · · , sub(X̂n, U)
to verify the first condition. This not only authenticates X̂i ⊆
U , but also provides the client the correct acc(U − X̂i).

ii. The SP computes a special hash value he(U)∗ of the union
set U , and by verifying this value the client is assured that
the SP knows the pre-image U besides acc(U)∗.

iii. Use protocol empty({(U−X̂1), (U−X̂2), · · · , (U−X̂n)})
to verify the second condition.

In step (ii), he(·) is an extractable collision resistant hash (ECRH)
function that has one unique property — extractability [36].
By presenting a correct he(U)∗ value, the SP can prove that
it knows U . Inspired by [36], we design he(·) for a multiset
X = {x1, x2, · · · , xt} as follows:

he(X) = (h1, h2) = (
∏
i∈[t]

gs
iai ,

∏
i∈[t]

gαs
iai),

where s, α ∈ Z∗p are secret values only known to the DO of X ,
and ai is the ith coefficient for polynomial P (X) · rX . Before
any other party can compute or verify he(X), the DO releases
g, gs, · · · , gsk , gα, gαs, · · · , gαsk ∈ G to the public, where k ≥
|X|, the cardinality of X . Then any party, including the client,
can verify whether a hash value he(X) is correct by checking the
following equations:

e(he(X).h1, g
α)

?
= e(he(X).h2, g),

he(X).h1
?
= acc(X).

Times: times(X, t). Given a multiset X and a coefficient
t, it returns the accumulative value acc(t · X) of t · X , which
raises the multiplicity of each element in X by t. For example,
if X = {(a, 2), (b, 3)}, then 3 · X = {(a, 6), (b, 9)}. A
straightforward solution is to use the sum protocol directly as

sum({
t︷ ︸︸ ︷

X,X, · · · , X}). Here we give a more efficient solution
using sum on the binary components. Let t = (b0b1 · · · bd)2,
the binary form of t. The client only needs to execute sum({b0 ·
X, · · · , bi ·2i ·X, · · · , bd ·2d ·X}), where bi = 1. For instance, if

6

t = 5 = (101)2, then the client only executes sum({X, 4 ·X}).
The detailed protocol is as follows:

i. Let d = blog2(t)c, the SP computes acc(2 · X)∗, · · · ,
acc(2d · X)∗, acc(t · X)∗, and sends them to the client
together with acc(X).

ii. The client first verifies the values acc(2 ·X)∗, · · · , acc(2d ·
X)∗ by checking the following equations:
e(acc(X), acc(X))

?
= e(acc(2 ·X)∗, g)

e(acc(2 ·X)∗, acc(2 ·X)∗)
?
= e(acc(4 ·X)∗, g)

...

e(acc(2d−1 ·X)∗, acc(2d−1 ·X)∗)
?
= e(acc(2d ·X)∗, g)

iii. The client then verifies acc(t · X)∗ according to the binary
form of t(b0b1 · · · bd).

We will show in the cost analysis that this protocol signif-
icantly improves the performance over the straightforward sum
solution.

5.2 Privacy-Preserving Authentication Algorithms on
Aggregate Queries

Next, we present the detailed procedures of the second phase, i.e.,
authenticating aggregate queries while preserving data confiden-
tiality. Here, we assume that the output from the first phase of
candidate object selection has been verified (to be explained in
Section 5.3). In what follows, {X1, · · · , Xm} are the feature sets
of m candidate objects, and S =]{Xi} is the sum set. We first
study the sum/count and max/min/FFQ/top-k aggregate queries
and then extend them to other more advanced aggregate queries.

5.2.1 Sum/Count Query

The output of a sum query sum(xq) is ηq , the sum of mul-
tiplicities of feature xq in all candidate objects. To align with
other multiset queries, we define its result as R = {(xq, ηq)}.
For example, in Figure 1, after selecting the candidate objects
{o5, o6, o9, · · · , o12}, the query Q = (sum, {a}, [α, β]) returns
the sum of multiplicities of feature a, i.e., R = {(a, 6)}.

To verify this result R, we design Algorithm 1 for the client to
check the following two conditions:
• Inflation checking (Lines 1–3): R ⊆ S. This is to prevent the

SP from deliberately increasing the multiplicity of the result;
• Deflation checking (Line 4): (S − R) ∩ R = ∅. This is to

prevent the SP from deliberately decreasing the multiplicity
of the result.

Algorithm 1 PA2 Sum ({R,X1, · · · , Xm})
1: Obtain R, acc(X1), · · · , acc(Xm) from the SP (these acc

values are authenticated by the MG-tree, to be detailed in
Section 5.3) and compute acc(R) locally;

2: Execute sum({X1, · · · , Xm}) to get verified acc(S);
3: Execute sub(R,S) to get verified acc(S − R); // implies
R ⊆ S

4: Execute empty(S −R,R) to verify (S −R) ∩R = ∅.

In the running example, the sum set of the candidate objects’
features is S = {(a, 6), (b, 1), (c, 4), (d, 3), (e, 2)}. So the client
needs to perform:

• Inflation checking: {(a, 6)} ⊆ {(a, 6), (b, 1), (c, 4), (d, 3),
(e, 2)};

• Deflation checking: {(b, 1), (c, 4), (d, 3), (e, 2)} ∩ {(a, 6)}
= ∅.

Similarly, the output of a count query count(xq) is the
number of the candidate objects that have the query feature xq .
It can be processed similarly to the sum query, except that the
multiplicity of each feature is enforced as 1.

5.2.2 Max/Min/FFQ/Top-k Query

The output of a max query is the feature with the highest (i.e.,
top-1) multiplicity. Let τ denote this multiplicity, and thus the
query is equivalent to searching for any feature whose multiplicity
is no less than τ . Formally, the query result R = π({(xi, ηi)|xi ∈
S∧ηi ≥ τ}), where π(·) randomly selects one feature when there
are ties. For example, in Figure 1, the query Q = (max, -, [α, β])
returns the result R = {(a, 6)}. To verify this result, we design
Algorithm 2 for the client to check the following three conditions:

• Inflation checking (Lines 1–3): R ⊆ S.
• Deflation checking (Line 4): (S −R) ∩R = ∅. 3

• Completeness checking (Lines 5–8): (S−R) ⊆ τ ·(U− R̂),
where R̂ is the set version of multiset R, e.g., R = {(a, 6)}
and R̂ = {(a, 1)}. This is to prevent the SP from deliberately
missing any feature whose multiplicity is larger than τ .

Algorithm 2 PA2 Max ({R,X1, · · · , Xm})
1: Obtain R, acc(X1), · · · , acc(Xm) from the SP (these acc

values are authenticated by the MG-tree, to be detailed in
Section 5.3) and compute acc(R) and acc(R̂) locally;

2: Execute sum({X1, · · · , Xm}) to get verified acc(S);
3: Execute sub(R,S) to get verified acc(S − R); // implies
R ⊆ S;

4: Execute empty(S −R,R) to verify (S −R) ∩R = ∅ 3;
5: Execute union({X1, · · · , Xm}) to get verified acc(U);
6: Execute sub(R̂, U) to get verified acc(U − R̂);
7: Execute times(U − R̂, τ) to get verified acc(τ · (U − R̂));
8: Execute sub(S − R, τ · (U − R̂)) to verify (S − R) ⊆
τ · (U − R̂).

In the running example, the sum set is S = {(a, 6), (b, 1),
(c, 4), (d, 3), (e, 2)} and the union set is U = {(a, 1), (b, 1),
(c, 1), (d, 1), (e, 1)}. So the client needs to perform:

• Inflation checking: {(a, 6)} ⊆ {(a, 6), (b, 1), (c, 4), (d, 3),
(e, 2)};

• Deflation checking: {(b, 1), (c, 4), (d, 3), (e, 2)} ∩ {(a, 6)}
= ∅; 3

• Completeness checking: {(b, 1), (c, 4), (d, 3), (e, 2)} ⊆ {(b,
6), (c, 6), (d, 6), (e, 6)}.

The min query is similar except that we verify (S − R) ⊇
τ · (U − R̂) in the completeness checking.

The FFQ query returns the features whose multiplicities are
no lower than a threshold δ. This query is naturally supported as
it is a subroutine of the max query (by replacing the threshold τ
with δ in the completeness checking) .

Similarly, the top-k query can be verified by exploiting the
routine of max query and replacing the top-1 multiplicity τ with
the top-kth multiplicity.

3. In the actual implementation, the deflation check can be omitted for
max, FFQ and top-k queries. This is because it is implied by the following
completeness check.

7

o1
o2

o7
o8

o5

o3

o11

o9

N5

N2

N4

N1

N3
level 1

level 2

level 2

N6

N7
N8 N9

N10

o4

o10

o12

α

β
o6

(a) Structure

N1 N2 N3 N4

N5 N6 N7 N9 N10N8

o1 o2 o3 o4 o7 o8o5 o9 o10 o11 o12

level 1

level 2

N0

o6

gb0 dig0

sig

(b) Index

Fig. 3: Merkle Grid Tree (MG-tree)

5.2.3 Extension to Advanced Aggregate Queries
By fusing multiple primitive aggregate queries, we can further ex-
tend our algorithms to support more advanced aggregate queries.

Average Query. The avg query returns the average multiplic-
ity of a queried feature. Its result can be authenticated with a sum
query and a count query.

Confidence Query. The confidence query takes two features as
input and returns the conditional probability of witnessing the sec-
ond feature given the first feature. To revisit Example 1, the con-
fidence that gene ‘R-G1886S’ co-exists with gene ‘C-R102G’ is
2
4 = 50%. This query can be decomposed into two count queries
for authentication, i.e., (count, {R-G1886S}, [00000,99999])
and (count, {R-G1886S, C-R102G}, [00000,99999]).

Lift Query. The lift query is often used to observe the
independence between two features. Given two features x1
and x2, it is defined as the ratio of count({x1, x2}) to
count(x1) · count(x2). In the above example, the lift of gene
‘R-G1886S’ and gene ‘C-R102G’ is 2

4×3 = 1
6 . Similar to the

confidence query, its result can be authenticated with three count
queries, i.e., (count, {R-G1886S}, [00000,99999]), (count,
{C-R102G}, [00000,99999]), and (count, {R-G1886S, C-
R102G}, [00000,99999]).

It is noteworthy that as authenticating the above advanced
aggregate queries is always reduced to authenticating a set of
primitive aggregate queries, the results of those primitive queries
are needed by the client to complete the verification chain and
are thus not kept confidential. Nevertheless, the confidentiality of
source data is still preserved by the privacy-preserving authentica-
tion algorithms. Finally, we remark that a multi-feature aggregate
query can be supported by treating a multi-feature set as a unique
(virtual) feature.

5.3 Privacy-Preserving Authentication on Candidate
Object Selection
Now we turn back to the first phase, i.e., processing and authen-
ticating the candidate object selection. Without loss of generality,
we assume that the objects are indexed by a grid structure on
their non-sensitive attributes. Thus, we propose Merkle Grid tree
(MG-tree), an authenticated data structure (ADS) for the DO to
construct and sign. Note that our technique can be easily adapted

to other multi-dimensional index structures such as R-tree and kd-
tree.

Figure 3a shows a multi-layer grid system, which partitions the
space of non-sensitive attributes recursively into multiple levels of
grid cells until each cell contains no more than two objects. The
bounding box of each cell is called a grid box, and is denoted by
gb. Figure 3b shows the corresponding MG-tree for the objects in
Figure 3a. Every node Ni corresponds to a non-empty grid cell.
Its grid box is denoted by gbi, and has a digest (denoted by digi)
that is computed from its C child entries, c1, ..., cC , as follows:

Definition 1 (Digest for Non-Leaf Node). Let h(·) be a crypto-
graphic hash function and ‘|’ denote string concatenation. The
digest of a non-leaf node is defined as:

digi = h(gbc1 |digc1 | · · · |gbcC |digcC).
For example, in Figure 3b, the digest of node N2, dig2 =
h(gb6|dig6 |gb7|dig7).

Now we define the digest of a leaf node based on the acc
values of leaf entries.

Definition 2 (Digest for Leaf Node). The digest of a leaf node is
defined as:4

digi = h(h(acc(Xc1))| · · · |h(acc(XcC))),

where acc(Xi) is the accumulative value of the feature set of
object Xi (defined in Eq. (1)).

For example, for leaf node N5, its digest dig5 = h(h(acc(X1))
|h(acc(X2))). Note that this digest does not need any information
about objects’ non-sensitive attributes Ai, because the digest of its
parent node already proves that this object is in its grid box.5 With
these definitions, the DO can compute the acc values of all feature
sets and the digests of all nodes in the MG-tree recursively in a
bottom-up fashion. The digest of the root entry dig0 is signed by
the DO as sig(dig0).

On the SP side, the processing of a range query [α, β] starts
from the root node. If a non-leaf node intersects the query range
[α, β], it will be branched, i.e., its subtree is further explored.
On the other hand, if a leaf node intersects the query range
[α, β], all its entries will be returned as query results. Figure 3a
illustrates an example where N0, N1, · · · , N10 are nodes and
o1, o2, · · · , o12 are objects, i.e., leaf entries. Since the root node
N0 intersects with the range [α, β], it will be branched and then
non-leaf nodes N2, N4 are also branched. After that, leaf nodes
N7, N9, N10 intersect the query range, and all the leaf entries
{o5, o6, o9, o10, o11, o12} are returned as results, i.e., the selected
candidate objects for the next phase of aggregate query processing.

To guarantee the correctness of the selected candidate objects,
the query authentication protocol on the MG-tree is as follows:

• The SP prepares a VO and sends it to the client. The VO
includes: (i) the grid boxes of all intersected leaf nodes and
the accumulative acc values of their leaf entries; (ii) the
grid boxes and the digests of all other visited (but not in-
tersected by the query) nodes; (iii) the signature of the root’s
digest. For example, in Figure 3b, the VO (marked as grey)
includes {gb5, dig5, gb6, dig6, gb7, acc(X5), acc(X6), gb8,

4. In fact, the digest also includes h(acc(X̂c1))| · · · |h(acc(X̂cC)), where
X̂ci is the set version of a multiset Xci . These acc values are needed for the
union(·) protocol in Section 5.1 but omitted for clarify of presentation.

5. For simplicity, in this paper we assume that the query range aligns with
the grid boxes. Otherwise, the definition can be easily extended to include Ai

in the digests of leaf nodes.

8

dig8, gb9, acc(X9), acc(X10), gb10, acc(X11), acc(X12),
sig(dig0)}.

• The client first verifies the correctness of the returned results,
that is, the grid boxes of all the result nodes are intersected
with the query range while all the others are not. Then, the
client verifies whether all these information is genuine by
restoring the root digest. Specifically, the client recursively
rebuilds the digests of leaf nodes and non-leaf nodes up to
the root level. Finally, the client checks whether the restored
digest matches the signature from the DO. If so, the client
verifies that all the returned information is genuine. For ex-
ample, in Figure 3b, the client first verifies gb7, gb9, gb10 are
intersected with the query range [α, β], while gb5, gb6, gb8
are not. Next, the client rebuilds dig7 = h(h(acc(X5))|
h(acc(X6))), dig9 = h(h(acc(X9))|h(acc(X10))), dig10
= h(h(acc(X11))|h(acc(X12))), and then dig1 = h(gb5
|dig5), dig2 = h(gb6|dig6|gb7|dig7), dig3 = h(gb8|dig8),
dig4 = h(gb9|dig9|gb10|dig10). And finally, the client
restores dig0 = h(gb1|dig1| · · · |gb4|dig4) and checks
whether it matches sig−1(dig0).

5.4 Cost Analysis

In this section, we analyze the performance of PA2 framework.
Specifically, we derive cost models for the privacy-preserving
authentication protocols on multiset operations, the aggregate
query authentication algorithms, and the MG-tree, respectively.

5.4.1 Cost Model for Authentication Protocols on Multiset
Operations

Table 3 summarizes the time costs for the SP and client, as well
as the VO size for the five core privacy-preserving authentication
protocols on multiset operations (Section 5.1). In this table, n is
the total number of objects, t is the second operand for times(·, ·),
Ce is the time cost of a bilinear pairing operation, Cgp is the time
cost of a multiplication operation in cyclic multiplicative group G
with order p, |U | is the size of union set, and Macc is the size of
an accumulative value.

5.4.2 Cost Model for Aggregate Query Authentication Algo-
rithms

Based on the above analysis, we now derive the cost models for
various aggregate queries. Let m be the number of candidate
objects, |S| be the size of the sum set, |R̂| be the size of set
R̂, |Xi| be the size of the feature set for the ith candidate object,
and τ be the top-kth (top-1 for a max query) multiplicity.

Count/Sum Aggregate Query. The time cost for the SP is:
CScount = CSsum + CSsub + CSempty

= (
m∑
i=1

(i · |Xi|) + |S| − |R|

+max(|S −R|, |R|)) · log2(p) · Cgp.
The time cost for the client is:
CCcount = CCsum + CCsub + CCempty + |R| · log2(p) · Cgp

= (2m+ 1) · Ce + |R| · log2(p) · Cgp.
The VO size, i.e., the communication cost, is:

Mcount =Msum +Msub +Mempty

= (4m+ 3) ·Macc.

Max/Min/FFQ/Top-k Aggregate Query. The time cost for
the SP is:
CSmax = CSsum + 3CSsub + CSempty + CSunion + CStimes

= (
m∑
i=1

(i · |Xi|) + (m+ 2 + 2τ)|U |+max(|S −R|, |R|)

+maxni=1|X̂i| − (1 + τ)|R̂| −
n∑
i=1

|X̂i|) · log2(p) · Cgp.

The time cost for the client is:
CCmax = CCsum + 3CCsub + CCempty + CCunion + CCtimes

+ (|R|+ |R̂|) · log2(p) · Cgp
= (3m+ 6 + 2log2(τ)) · Ce + (|R|+ |R̂|) · log2(p) · Cgp.

The VO size, i.e., the communication cost, is
Mmax =Msum + 3Msub +Mempty +Munion +Mtimes

= (7m+ 14 + 2log2(τ)) ·Macc.

A key observation from the above analysis is that both the
client time cost and the VO size are determined only by the result
set size and are independent of the number of sensitive features.

5.4.3 Cost Model for Candidate Object Selection
We next analyze the cost of the candidate object selection. Our
analysis starts with the MG-tree size, based on which we derive
the VO construction and verification costs for a range selection.
Without loss of generality, the data space is a d-dimensional
unit space [0, 1]d, and we assume each non-sensitive attribute
independently follows a uniform distribution. As such, the MG-
tree partitions each dimension equally and the height of the tree
can be approximated as w = dlog2d(nf)e, where n is the total
number of objects and f is the minimum number of objects in a
leaf node.

MG-tree size. Each tree node stores a grid box (represented
by two d-dimensional corner points) and a digest. As such, the
size of a node, in terms of bytes, is:

MN = 2 · d · 4 +Mh,

where Mh is the size of a hash value.
Besides the tree nodes, the server stores all leaf entries (i.e.,

objects). Let Macc denote the size of an accumulative value; then
the total size of an MG-tree is:

MMG = 2 · n ·Macc +
∑w−1

i=0
min(n, 2i·d) ·MN .

Construction cost of VO. According to [37], the probability
that two random rectangles R1, R2 overlap is:

Proverlap(R1, R2) =
∏d

j=1
(R1.Lj +R2.Lj), (2)

where Ri.Lj is the length of Ri in dimension j. Since both the
MG-tree partition and object distribution are uniform, the lengths
of an intermediate entry at level i and a leaf entry are 2−i and
d
√
k/n, respectively. Putting them into Eq. (2), the numbers of

visited tree nodes Nn and visited leaf entries Ne are:

Nn =
w−1∑
i=0

2i·d
d∏
j=1

(2−i +Q.Lj),

Ne = n ·
d∏
j=1

(
d

√
k

n
+Q.Lj),

respectively. Let C⊗ denote the time cost of accessing a single
entry or a single node. The cost of constructing the VO is modeled
as:

Cpre = (Nn +Ne) · C⊗.

9

Operation SP Time Client Time VO Size
sub(X1, X2) CS

sub = (|X2| − |X1|) · log2(p) · Cgp CC
sub = Ce Msub = 3Macc

sum({X1, · · · , Xn}) CS
sum =

∑n
i=1(i · |Xi|) · log2(p) · Cgp CC

sum = n · Ce Msum = 2n ·Macc

empty({X1, · · · , Xn}) CS
empty = maxni=1(|Xi|) · log2(p) · Cgp CC

empty = n · Ce Mempty = 2n ·Macc

union({X1, · · · , Xn})
CS

union =((n+ 1) · |U | −
∑n

i=1 |X̂i|
+maxni=1 |X̂i|) · log2(p) · Cgp

CC
union = (2n+ 1) · Ce Munion = (5n+ 1) ·Macc

times(X, t) CS
times = 2t · |X| · log2(p) · Cgp CC

times = 2log2(t) · Ce Mtimes = 2log2(t) ·Macc

TABLE 3: Cost Models for Multiset Operations

VO size (communication cost). A VO includes three parts:
(i) the grid boxes of all intersected leaf nodes and accumulative
values of leaf entries, i.e., Ne

k · 8 · d + Ne ·Macc; (ii) the grid
boxes and digests of all boundary nodes, i.e., Ne · w · (2d − 1);
(iii) the signature of tree root’s digest, i.e., Msig . As such, the
communication cost of the VO is:

MV O = 8d
Ne
k

+Ne ·Macc+Ne ·w(2d−1)(8d+Mh)+Msig.

Client verification time cost. The client verifies the VO by
first reconstructing the MG-tree, and then checks the signature:

Cver = (Nn +Ne) · Ch + Csig,

where Ch, Csig are the time costs of calculating a hash value and
verifying a signature, respectively.

6 SECURITY ANALYSIS

In this section, we perform a security analysis on our PA2

algorithms for aggregate queries.

6.1 Security of PA2 Algorithms
The correctness of our PA2 algorithms is defined in the natural
way and is omitted. For soundness, it can be formally defined as
follows:
Definition 3 (Soundness). The PA2 authentication algorithms for

aggregate queries are sound if for all PPT adversaries, the
success probability is negligible in the following experiment:
• The adversary picks a dataset D.
• Run the ADS generation on D and forward to the adversary.
• The adversary outputs a query Q, a result R, and a VO.

We say the adversary succeeds if the VO passes the result verifi-
cation and R 6= Q(D).
We now show that the PA2 authentication algorithms indeed

satisfy the desired security requirements.
Theorem 1. The PA2 authentication algorithms for aggregate

queries guarantee the correctness and soundness of the query
results under the bilinear q-strong Diffie-Hellman assumption.

PROOF. The theorem is proved by proving the security of each
multiset operation: sub(·, ·), empty(·), sum(·), union(·), and
times(·, ·). See Appendix A in the Supplemental Material for
more detailed proofs.

6.2 Privacy Guarantee on Sensitive Features
Next, we analyze the privacy guarantee on the sensitive features in
our PA2 framework. Specifically, we show that the accumulative
value of a feature set does not disclose any feature information to
the client. Formally, it is stated as follows:
Definition 4 (IND-CPA). The augmented accumulative value

acc(X) for a multiset X is indistinguishable if for all PPT
adversaries, there exists a negligible probability neg(q), s.t.
Pr[Adv→ {X1, X2, st}; b→ {0, 1};

acc(Xb)→ c;Adv(st, c)→ b′; b = b′] =
1

2
+ neg(q).

Before showing the indistinguishability of accumulative val-
ues, we start with the following lemma on the group G.

Lemma 1. For any random value r ← Zp, gr has an equal
probability of being any element in G (with an order of p).
Formally, for any ĝ ∈ G,

Pr[gr = ĝ] = 1/p.

PROOF. Let logg() denote the discrete logarithm of base g in
group G. We have

Pr[gr = ĝ] = Pr[r = logg(ĝ)].

Since r is random, the probability of r being a fixed element
logg(ĝ) equals 1/p.

Now we show a theorem on the security of accumulative
values.

Theorem 2. The augmented accumulative value acc(X) for a
multiset X is indistinguishable under chosen plaintext attack
(CPA).

PROOF. Since the augmented accumulative value acc(X) =
gP (X)·rX = (gP (X))rX , according to the above lemma, acc(X)
has an equal probability of being any element in G. As such, the
verifier learns nothing about P (X) and any element xi ∈ X . Fur-
ther, since rX is random for each X , acc(X) is indistinguishable
under CPA.

It is worth noting that by achieving indistinguishability on
a single accumulative value, multiple accumulative values are
automatically guaranteed to be indistinguishable. Therefore, the
above theorem effectively proves the security of the authentication
algorithms developed for various primitive aggregate queries, as
only (indistinguishable) accumulative values are disclosed for the
sensitive features throughout the authentication process, which
protects the confidentiality of source data.

6.3 Discussion on Privacy Guarantee

It is noteworthy that during the authentication of aggregate queries,
the results of primitive aggregate queries are disclosed to the
client, which might be a source of privacy leak. In an extreme
case, if there is only one candidate object in the selection phase,
the query result could directly reveal the features of that object.
Further, the difference of two query results could reveal the
features of the difference of the two candidate object sets. As more
aggregate queries are issued and each may consist of multiple
primitive aggregate queries, it becomes easier to find smaller
difference of candidate object sets. To mitigate such privacy
leak, inspired by the bucketization approach [38], we impose a
minimum granularity on the MG-tree leaf nodes for the non-
sensitive attributes. Specifically, when building the MG-tree, the
DO enforces each leaf node (i.e., a bucket) to contain a minimum
number of objects that can satisfy a given privacy metric (e.g.,
k-anonymity or t-closeness [39], [40]). As such, the data space

10

N1 N2 N3 N4

N5 N6 N7 N9 N10N8

o1 o2 o3 o4 o7 o8

gb0 S0 acc(S0) dig0

o5 o9 o10 o11 o12

level 1

level 2

N0

o6

U0 acc(U0)

sig

Fig. 4: Optimized MG-tree

is partitioned into disjoint buckets, and upon query processing,
a bucket is the smallest granule for range selection. With this
enforcement, no query result can reveal whether it is contributed
by a specific object in a bucket, and the latter becomes the smallest
granule of result privacy leak, no matter how many aggregate
queries are issued. Formally, the results of aggregate queries and
the associated authentication process achieve the following bucket-
wise indistinguishability privacy:
Definition 5 (Bucket-wise Indistinguishability). Given a bucket B

and an object o ∈ B, if an aggregate query result R is from a
candidate object setO ⊇ B, then any adversary can determine
whether o contributes to R with a success rate no higher than
that of a random guess.

7 OPTIMIZATIONS

This section introduces three optimization techniques for our PA2

authentication framework. They are orthogonal to each other, and
therefore can be combined to further boost the performance.

7.1 Optimized MG-Tree
One performance bottleneck is that the SP has to use the costly
exponentiation operation rather than modular exponentiation to
compute the accumulative values because it does not know the
secret value of s. To alleviate this, we let the DO pre-compute
and store some intermediate accumulative values in the MG-tree
for the SP. For example, in Figure 3, to authenticate the query
Q = (max, -, [α, β]), the SP needs to compute the acc(S) value
of S = X5] X6] X9] · · ·] X12. To do so, the SP has to
compute five intermediate accumulative values in turn: acc(X5]
X6), acc(X5]X6]X9), · · · , acc(X5]X6]X9] · · ·]X12).
However, if the DO has already computed acc(S7) and acc(S4)
for the two intermediate nodes N7 and N4, the SP can simply
compute acc(S) = sum({S7, S4}).

As the DO knows the value of s, computing such intermediate
accumulative values is efficient. Nonetheless, to alleviate the SP’s
storage cost, we only compute and store the accumulative values of
sum and union operations as they are the most time-consuming
operations. To accommodate these intermediate values in the MG-
tree, we redesign the digest for non-leaf nodes as follows:
Definition 6 (Optimized Digest for Non-Leaf Node). Let C be

the number of child entries of node Ni, Si be the sum set of
child entries’ sum sets, and Ui be the union set of child entries’
union sets; the digest of node Ni is defined as:

digi = h(gbc1 |h(acc(Sc1)|acc(Uc1))|digc1 | · · ·
|gbcC |h(acc(ScC)|acc(UcC))|digcC).

Based on this optimized MG-tree, the query Q = (max, -
, [α, β]) no longer needs to traverse down to the child nodes if

the current tree node is fully contained in the query range [α, β].
As such, the candidate object selection and PA2 algorithms on the
optimized MG-tree are revised as follows:

• The SP prepares the VO, which includes (i) the grid
boxes, the accumulative values of sum and union sets,
and the digests of those fully contained tree nodes; (ii)
the grid boxes, the hash values for the accumulative
values of sum and union sets, and the digests of all
boundary nodes; (iii) the signature of the tree root’s
digest. For example, in Figure 4, for the same query
Q = (max, -, [α, β]), the VO (marked as grey) includes
{gb5, h(acc(S5)|acc(U5)), dig5, gb6, h(acc(S6)|acc(U6)),
dig6, gb7, acc(S7), acc(U7), dig7, gb8, h(acc(S8)|acc(U8)),
dig8, gb4, acc(S4), acc(U4), dig4, sig(dig0)}.

• The client still verifies the VO by reconstructing the
root digest of the MG-tree recursively. First, the client
verifies that the grid boxes are fully inside or outside the
query range. Then, the client rebuilds the digest for each
node. Finally, the client checks whether the restored root
digest matches the signed one. For example, the client
verifies gb5, gb6, gb8 are fully outside the range [α, β] and
gb4, gb7 are fully inside the range. Next, the client rebuilds
dig1 = h(gb5|h(acc(S5)| acc(U5))|dig5), dig2 = h(gb6|
h(acc(S6)|acc(U6))|dig6|gb7|h(acc(S7)|acc(U7))|dig7),
dig3 = h(gb8|h(acc(S8)|acc(U8))|dig8). And then,
the client rebuilds dig0 = h(gb1|h(acc(S1)|acc(U1))|
dig1| · · · |gb4|h(acc(S4)|acc(U4))|dig4) and finally
compares it against sig−1(dig0).

• Next, the client proceeds to the PA2 algorithms with in-
put {R,S1, U1, · · · , Sm′ , Um′}. The difference is that the
accumulative values of sum and union sets are com-
puted from the intermediate sum and union sets. That
is, for a sum operation, the client computes acc(S) =
sum({S1, · · · , Sm′}) instead of sum({X1, · · · , Xm}).
Similarly, for a union operation, the client computes
acc(U) = union({U1, · · · ,Um′}) instead of union({X1,
· · · , Xm}).

Regarding the performance, since the number of subsets to
compute the acc values from is reduced from m to log(m),
the SP’s computation, the client’s computation, and the com-
munication complexity of computing the sum set are reduced
from O(m2), O(m), O(m) to O(m), O(log(m)), O(log(m)),
respectively. Similarly, the costs of computing the union set are
reduced from O(m · (|S| + |U |)), O(m), O(m) to O(log(m) ·
(|S|+|U |)),O(log(m)),O(log(m)), respectively. As computing
the sum and union sets dominates the total computation and
communication complexity of their respective queries, we expect
the overall performance gain is significant.

7.2 Accumulating sum(·) by Linear Ordering
For the sum(·) operation, it has a nice additive property that
sum({X}) + sum({Y }) = sum({X}] {Y }). Therefore,
we can ask the DO to pre-compute sum accumulative values
in an accumulative manner. Let us consider the 1D case for
simplicity and sort the objects in ascending order. For each
i ∈ [1, n] (n is the number of objects), the DO pre-computes,
sum1−i, the sum accumulative value for the objects from o1
up to oi. Then, for any range query [α, β] that selects the
objects from i to j, the sum value sumi−j can be computed
as sumi−j = sub(sum1−(i−1), sum1−j). For example, in

11

X1 X2 X3 X4 X5 X6 X7 X8

S3−6S1−2

S1−6

a1 :

Fig. 5: Sum Optimization

Figure 5, all eight objects are sorted by attribute a1. The DO
pre-computes the sum accumulative values of sum({X1}),
sum({X1, X2}), · · · , sum({X1, · · · , Xn}). As such, the sum
accumulative value sum3−6 can be computed by sub(sum1−2,
sum1−6).

Regarding the performance, similar to the optimized MG-tree,
since the DO knows the secret value of s, the pre-computation is
very efficient. As for the query cost, let m denote the number of
candidate objects; both the client’s computation and communica-
tion complexity will be reduced to O(1). While the computation
complexity for the SP is still O(m), the constant ratio will be
greatly reduced with fewer sum(·) operations. Note that for
multidimensional space, we can still enforce linear ordering on
the objects and adopt this optimization, by using space embedding
techniques such as the Hilbert Curve. Nonetheless, the perfor-
mance gain is less significant because sumi−j might not be
the exact objects selected by a range and some further subset
operations would be needed.

7.3 Acceleration by Parallelism

Both the multiset authentication protocols and PA2 algorithms are
highly parallelizable. As such, we can accelerate the authentication
performance by embracing parallel computing architectures, such
as multithreading, GPU computing, and MapReduce. For example,
in the union(·) protocol, we can map all sub(·, ·) jobs to the
available computing units, whether they are CPU cores or worker
nodes in MapReduce. Similarly, in the empty(·) protocol, the
server can compute the accumulative values of polynomials Qi
in a parallel manner. Note that, however, in the sum(·) and
times(·, ·) protocols, the order of polynomials is accumulated and
therefore the time cost of each parallel job may vary significantly.
As such, instead of splitting all jobs equally at the beginning of
the query, we schedule a small set of jobs at a time. With this
graceful scheduling technique, we can minimize the waiting time
of idle computing units while still reducing the job scheduling
overhead.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PA2 framework for
aggregate queries over set-valued data, including the max, top-k,
sum, and FFQ queries. Three datasets are used in the experiments,
namely Personal Genome Project at Harvard Medical School
(PGP) [2], Foodmarket from Microsoft (FoodMarket) [41], and
TPC Benchmark H (TPC-H) [42]. As introduced in Section 1,
the PGP dataset contains personal genome data of 600 partici-
pants. The objects in this dataset are in the form of <latitude,
longitude, mut-genes>, where mut-genes is a feature set of
mutation genes of an individual, e.g., {‘A-C130R’, ‘P-I696M’}.
There are totally 395 unique mutation genes, and on average
each individual has 35 of them. The FoodMarket is a larger
dataset that contains 164, 558 shopping transaction records from
8, 842 users and 1, 560 products, in the form of <birthday,
membershipAge, items>. Finally, the TPC-H dataset contains

Algorithm
SP CPU Time (s) Client

CPU Time
(ms)

VO
Size

(Bytes)
Features per Multiset
100 1,000 10,000

sub(·, ·) 0.03 0.5 16 2 384
sum(·) 0.04 0.4 3.6 5 384
union(·) 0.1 1.3 33 20 1,024
empty(·) 0.04 0.5 16 5 512
times(·, 10) 0.4 4.1 43 20 640

TABLE 4: Performance vs. # Features

Algorithm
SP CPU Time (s)

Multisets
5 10 20 50

sum(·) 0.1 0.3 1.4 8.3
union(·) 0.4 2.6 18 240
empty(·) 0.01 0.01 0.01 0.01

TABLE 5: Performance vs. # Multisets

1, 020, 116 transaction records from 255, 000 orders and 1, 700
suppliers, in the form of <order priority, date, suppliers>.
In all these three datasets, the first two attributes are non-sensitive,
whereas the last attribute is sensitive. We use the FoodMarket as
the default dataset unless otherwise stated. For the experiments re-
quiring higher dimensionality, we also synthesize some attributes
into this dataset.

Both the DO and the query client are set up on a commodity
laptop computer with Intel Core i5 CPU and 4GB RAM, running
on macOS Sierra. The SP is set up on an x64 blade server
with dual Intel Xeon 2.2GHz E5-2630 CPU and 256GB RAM,
running on CentOS 6. The experiments are written in C++ and
use the following libraries: Pairing-based cryptography for bilinear
pairing computations, Flint for modular arithmetic operations,
Crypto++ for 160-bit SHA-1 hash operations, OpenMP for parallel
computation.

To evaluate the performance of the authentication process, we
mainly measure two costs: (i) the computational cost in terms of
the SP and client CPU time, and (ii) the communication cost in
terms of the size of data transmitted (a) between the DO and the
SP (i.e., the index size) and (b) between the SP and the client (i.e.,
the VO size). The results are reported based on an average of 10
randomly generated operations/queries.

8.1 Performance of Privacy-Preserving Multiset Au-
thentication Protocols
We first use two synthetic multisets to evaluate the performance of
the five privacy-preserving authentication protocols, i.e., sub(·, ·),
sum(·), union(·), empty(·), and times(·, ·) in terms of (i) the
SP CPU time, (ii) the client CPU time, and (iii) the VO size. We
fix the coefficient for times(·, ·) to 10, and vary the number of
features from 100 to 10, 000. The SP CPU time (single-threaded)
is reported in Table 4. As coinciding with our cost model analysis,
the SP CPU time is almost linear to the number of features.
In contrast, the client CPU time and VO size are all constants,
irrespective of the number of features.

We further investigate the SP CPU time of sum(·), union(·),
empty(·) for more than two input multisets. We fix the number of
features in each multiset to 20 and vary the number of multisets.
Since the client time and VO size are both linear to the number
of input multisets, Table 5 only shows the SP CPU time. For
the sum(·) and union(·) operations, the cost is almost quadratic
to the number of multisets, which coincides with our analysis in
Table 3. For union(·), we also investigate whether the cardinality
of feature universe affects its performance. Table 6 shows the

12

Algorithm
SP CPU Time (s)
Unique Features

50 100 200 500
union(·) 0.14 0.26 0.33 0.39

TABLE 6: Performance of union(·) vs. # Unique Features

Dataset Dataset
Size (MB) Setup Time (s) MG-tree Index

Size (MB)
PGP 0.08 9.7 0.42

FoodMarket 0.9 136 7.1
TPC-H 13 1,365 116

TABLE 7: DO Setup Overhead

results as the features increase while fixing the number of multisets
and the multiset size to 5 and 20, respectively. We observe that the
increment is sublinear to the cardinality of feature universe.

8.2 Query Authentication Performance
We turn on all the optimizations and evaluate the overall per-
formance of privacy-preserving query authentication on all three
datasets. First of all, Table 7 shows the DO setup cost for generat-
ing the acc values and constructing the MG-tree. As explained in
the cost model analysis, since the DO knows the secret value of s,
the setup process is relatively efficient.

To select the candidate objects, we choose the participants’ lo-
cation attributes in PGP, the customers’ birthday and membership
age in FoodMarket, and the order priority and date in TPC-H as
the input attributes for 2D range queries. The aggregate queries,
max, top-k, sum, and FFQ, are then performed on the feature
sets of the selected candidate objects. For top-k queries, we set
k = 5; and for FFQ queries, we set the threshold to be 80%
of the highest multiplicity of all features. The experiments are
conducted under a multi-threaded setting (40 hyper-threads on 20
CPU cores). The results are shown in Figure 6, Figure 7, and
Figure 8 respectively, where the query range varies from 1% to
20% of the data space. It is observed that all the costs are generally
sublinear to the query range, thanks to the optimized MG-tree
that significantly reduces the multiset operations and accumulative
value computations. It is interesting to note that the cost of client
CPU time is relatively higher for FFQ queries on TPC-H dataset.
This is caused by the large multiplicity of the returned multiset
result, which incurs more overhead when computing the result
acc value on the client. Nevertheless, the consistent results on
the three different datasets suggest that our algorithms are robust
against various data distributions.

For FFQ queries, we also compare our proposed privacy-
preserving authentication algorithm with the state-of-the-art non-
privacy-preserving counterpart proposed in [28], denoted by FFQ-
NP. This comparison intends to show the overhead incurred by
the confidentiality preservation requirement. We select 1% of the
PGP data as input and set the maximum size of frequent feature
sets to 3. As shown in Table 8, the overhead is moderate in that
our FFQ is only tens of times worse than FFQ-NP in terms
of the DO index size and SP CPU time. The VO size of our
FFQ is even smaller than that of FFQ-NP. Another interesting
observation is that the SP CPU time is positively correlated to the
threshold δ in our algorithm, but negatively in FFQ-NP. The is
because the times(·, ·) operation involved in FFQ, whose input
is the infrequent feature sets, becomes more costly with increasing
threshold. In comparison, the SP CPU time of FFQ-NP is mainly
affected by the number of frequent feature sets, which decreases
with a larger threshold. As FFQ queries are often used in the

Algorithm DO Setup
Time (s)

DO Index
Size (KB) δ

SP CPU
Time (s)

Client CPU
Time (s)

VO Size
(KB)

FFQ 8.9 307
50% 24 6.1 1.1
70% 25 1.1 1.1
90% 45 0.4 1.1

FFQ-NP 0.1 13.7
50% 15.1 22.0 1668
70% 5.0 7.0 346
90% 2.5 1.8 88

TABLE 8: Proposed FFQ Algorithm vs. FFQ-NP Algorithm

sum max top-k FFQ
Query Protocols

0

5

10

15

S
P

 C
P

U
 T

im
e

(s
)

1%
5%

10%
20%

(a) SP CPU Time

sum max top-k FFQ
Query Protocols

0.0

0.2

0.4

0.6

0.8

1.0

C
lie

nt
 C

P
U

 T
im

e
(s

)

1%
5%

10%
20%

(b) Client CPU Time

sum max top-k FFQ
Query Protocols

0

10

20

30

40

V
O

 S
iz

e
(K

B
)

1%
5%

10%
20%

0.0

0.1

0.2

0.3

0.4

0.5

V
O

 S
iz

e/
D

at
as

et
 S

iz
e

(c) VO Size

Fig. 6: Query Performance vs. Selectivity on PGP dataset

sum max top-k FFQ
Query Protocols

0

25

50

75

100

S
P

 C
P

U
 T

im
e

(s
)

1%
5%

10%
20%

(a) SP CPU Time

sum max top-k FFQ
Query Protocols

0

1

2

3

C
lie

nt
 C

P
U

 T
im

e
(s

)

1%
5%

10%
20%

(b) Client CPU Time

sum max top-k FFQ
Query Protocols

0

50

100

150

V
O

 S
iz

e
(K

B
)

1%
5%

10%
20%

0.00

0.05

0.10

0.15

V
O

 S
iz

e/
D

at
as

et
 S

iz
e

(c) VO Size

Fig. 7: Query Performance vs. Selectivity on FoodMarket dataset

sum max top-k FFQ
Query Protocols

0

1000

2000

3000

S
P

 C
P

U
 T

im
e

(s
)

1%
5%

10%
20%

(a) SP CPU Time

sum max top-k FFQ
Query Protocols

0

50

100

150

200

C
lie

nt
 C

P
U

 T
im

e
(s

)

1%
5%

10%
20%

(b) Client CPU Time

sum max top-k FFQ
Query Protocols

0

200

400

600

800

V
O

 S
iz

e
(K

B
)

1%
5%

10%
20%

0.00

0.02

0.04

0.06

V
O

 S
iz

e/
D

at
as

et
 S

iz
e

(c) VO Size

Fig. 8: Query Performance vs. Selectivity on TPC-H dataset

early stage of the whole data analytics pipeline, their threshold is
usually set to a low or medium value, which falls in the comfort
zone of our algorithm.

8.3 Impact of Optimizations

To evaluate the impact of the proposed optimizations, namely,
the optimized MG-tree (OMG) and parallelizing techniques, we
use the FoodMarket dataset and set the selectivity of candidate
objects to 5% of the whole dataset. Their effects for different
aggregate queries are shown in Figure 9. It can be seen that both
the OMG-tree and multithreading techniques substantially reduce
the SP CPU time by an order of magnitude. In Figure 10, we
further vary the number of threads in parallelization. We observe
that the SP can be effectively accelerated by up to 30-40 threads,
only bounded by the number of logical CPUs of our server. As
we show the computation of the SP is highly parallellizable, we
believe its performance can be further accelerated by clusters or
cloud IaaS widely available in today’s data centers.

We also evaluate the performance of the linear ordering
technique in Figure 11. We compare it with the baseline sum(·)
under one-dimensional data. The results show that it dramatically
improves the performance by more than four times. In addition, as
the selectivity increases, the performance gain becomes even more
eminent.

13

sum max top-k FFQ
Query Protocols

10
0

10
1

10
2

10
3

10
4

S
P

 C
P

U
 T

im
e

(s
)

basic
OMG-tree
OMG-tree
(multithreads)

Fig. 9: Performance vs. Optimizations

1 5 10 15 20 25 30 35 40
Threads

0

200

400

600

800

S
P

 C
P

U
 T

im
e

(s
)

sum
max
top-k
FFQ

Fig. 10: Multi-Threaded Acceler-
ation

1% 10% 20% 30%
Query Range

0

2

4

6

8

S
P

 C
P

U
 T

im
e

(s
)

basic
linear ordering

Fig. 11: Basic sum(·) vs. Linear
Ordering

8.4 Scalability Test on Dimensionality and Object Car-
dinality

We investigate the impact of dimensionality on the authentication
performance using the FoodMarket dataset. We fix the selectivity
of candidate objects to 5% of the whole dataset and vary the
dimensionality as 1, 3, and 5. For the latter two dimensionalities,
we synthesize the non-sensitive attributes based on a uniform
distribution and therefore the size of the range query changes
accordingly. Figure 12 plots the costs of various aggregate queries.
We observe that the performance of max, top-k, and FFQ queries
deteriorates severely due to the curse of dimensionality, while the
performance of sum queries does less. This is because union(·),
the most affected operation by dimensionality, is not needed in
sum queries.

Finally, Figure 13 shows our scalability test with respect to
the cardinality of objects. The results show that the SP CPU
time increases monotonically for sum, but is U-shape for other
types of queries. This is because the other queries involve not
only sum(·) operations but also union(·) operations, whose costs
decrease with increasing object cardinality under a fixed number
of unique features. On the other hand, the CPU time of the client
is independent of total number of features, but is positively related
to the multiplicity of the returned multiset result. This also causes
a relative high cost in client CPU time for FFQ queries, similar to
what we have observed in query performance on TPC-H dataset.
As for the VO size, it is almost constant as it only depends on
the number of OMG-tree nodes that cover the selected candidate
objects.

9 CONCLUSIONS

In this paper, we have studied the problem of privacy-preserving
authentication of aggregate queries over set-valued data. We
presented a family of privacy-preserving protocols on multiset
operations. Based on that, we proposed PA2, a framework that
supports various privacy-preserving aggregate queries. We also
designed the MG-tree to guarantee the correctness of the candidate
objects selected by a range query and developed several advanced
optimization techniques. Analytical models and empirical results
validate the feasibility and robustness of our proposals. In par-
ticular, the overhead of authenticating aggregate queries at the

sum max top-k FFQ
Query Protocols

10
1

10
2

10
3

S
P

 C
P

U
 T

im
e

(s
)

1
3
5

(a) SP CPU Time

sum max top-k FFQ
Query Protocols

10
1

10
0

10
1

C
lie

nt
 C

P
U

 T
im

e
(s

)

1
3
5

(b) Client CPU Time

sum max top-k FFQ
Query Protocols

10
1

10
2

10
3

V
O

 S
iz

e
(K

B
)

1
3
5

(c) VO Size

Fig. 12: Query Performance vs. Dimensionality

sum max top-k FFQ
Query Protocols

0

100

200

300

S
P

 C
P

U
 T

im
e

(s
)

1e5
3e5
1e6
3e6

(a) SP CPU Time

sum max top-k FFQ
Query Protocols

0

10

20

30

40

50

C
lie

nt
 C

P
U

 T
im

e
(s

)

1e5
3e5
1e6
3e6

(b) Client CPU Time

sum max top-k FFQ
Query Protocols

0

20

40

60

V
O

 S
iz

e
(K

B
)

1e5
3e5
1e6
3e6

(c) VO Size

Fig. 13: Query Performance vs. Object Cardinality

client side is only sublinear to the number of candidate objects
and is independent of the cardinality of multisets. The evaluation
results also reveal that the authentication overhead incurred by the
confidentiality preservation requirement is only moderate.

As for future work, we plan to extend the proposed privacy-
preserving authentication techniques to more complex aggregate
queries such as median and percentile. We also plan to leverage
GPGPU technologies to accelerate the computation of accumula-
tive values during query processing at the SP.

ACKNOWLEDGEMENT

This work was supported by Research Grants Council (RGC) of
Hong Kong under GRF Projects 12244916, 15238116, 12202414,
12200114, 12200914, CRF Project C1008-16G, and NSFC Grant
61370231.

REFERENCES

[1] “Google Inc. What is bigquery?” https://cloud.google.com/bigquery/
what-is-bigquery, 2016.

[2] “Personal genome project,” http://www.personalgenomes.org, 2016.
[3] H. Pang and K.-L. Tan, “Authenticating query results in edge computing,”

in Proc. ICDE, 2004.
[4] F. Li, G. Kollios, and L. Reyzin, “Dynamic authenticated index structures

for outsourced databases,” in Proc. SIGMOD, 2006, pp. 121–132.
[5] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Authenticated

indexing for outsourced spatial databases.” VLDBJ, vol. 18, no. 3, pp.
631–648, 2009.

[6] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Authenticated
index structures for aggregation queries,” ACM TISSEC, vol. 13, no. 32,
pp. 1–35, 2010.

[7] S. Papadopoulos, G. Cormode, A. Deligiannakis, and M. Garofalakis,
“Lightweight authentication of linear algebraic queries on data streams,”
in Proc. SIGMOD, 2013, pp. 881–892.

[8] Y. Tang, T. Wang, L. Liu, X. Hu, and J. Jang, “Lightweight authentication
of freshness in outsourced key-value stores,” in Proc. ACSAC, 2014.

[9] Q. Chen, H. Hu, and J. Xu, “Authenticated online data integration
services,” in Proc. SIGMOD, 2015, pp. 167–181.

[10] Y. Peng, Z. Fan, B. Choi, J. Xu, and S. S. Bhowmick, “Authenticated
subgraph similarity searchin outsourced graph databases,” IEEE TKDE,
vol. 27, pp. 1838–1860, 2015.

[11] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of VLDB, 1994, pp. 487–499.

[12] H. Bast and I. Weber, “Type less, find more: Fast autocompletion search
with a succinct index,” in Proc. SIGIR, 2006.

[13] A. Metwally and C. Faloutsos, “V-smart-join: A scalable mapreduce
framework for all-pair similarity joins of multisets and vectors,” in Proc.
VLDB, 2012, pp. 704–715.

14

[14] G. Özsoyoğlu, Z. M. Özsoyoğlu, and V. Matos, “Extending relational
algebra and relational calculus with set-valued attributes and aggregate
functions,” ACM Transactions on Database Systems (TODS), vol. 12,
no. 4, pp. 566–592, 1987.

[15] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of ACM
SIGMOD, 1993.

[16] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proceedings of VLDB, 2002, pp. 346–357.

[17] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: An online social network with user-defined privacy,” in Proc
of the ACM SIGCOMM, 2009, pp. 135–146.

[18] S. Debnath, N. Ganguly, and P. Mitra, “Feature weighting in content
based recommendation system using social network analysis,” in Proc of
the 17th International Conference on World Wide Web, 2008, pp. 1041–
1042.

[19] G. Yang, Y. Cai, and Z. Hu, “Authentication of function queries,” in Proc.
ICDE, 2016.

[20] R. C. Merkle, “A certified digital signature,” in Proc. Crypto, 1989, pp.
218–238.

[21] M. L. Yiu, E. Lo, and D. Yung, “Authentication of moving knn queries,”
in ICDE, 2011, pp. 565–576.

[22] H. Pang and K. Mouratidis, “Authenticating the query results of text
search engines,” in VLDB, 2008.

[23] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-based
services without compromising location privacy,” in Proc. SIGMOD,
2012, pp. 301–312. [Online]. Available: http://doi.acm.org/10.1145/
2213836.2213871

[24] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in location-
based services with confidentiality,” in Proc. VLDB, 2014, pp. 49–60.

[25] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal verifica-
tion of operations on dynamic sets,” in Proc. CRYPTO, 2011, pp. 91–110.

[26] R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos, “Verifi-
able set operations over outsourced databases,” in Proc. PKC, 2014, pp.
113–130.

[27] D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos, “Taking
authenticated range queries to arbitrary dimensions,” in Proc. CCS, 2014.

[28] B. Dong, R. Liu, and W. Wang, “Integrity verification of outsourced
frequent itemset mining with deterministic guarantee,” in Proc. ICDM,
2013, pp. 1025–1030.

[29] P. Fauzi, H. Lipmaa, and B. Zhang, “Efficient non-interactive zero
knowledge arguments for set operations,” in Financial Cryptography and
Data Security, 2014.

[30] E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and N. Trian-
dopoulos, “Zero-knowledge accumulators and set operations,” in IACR
Cryptology ePrint, 2015.

[31] Y. Zhang, J. Katz, and C. Papamanthou, “An expressive (zero-knowledge)
set accumulator,” in EuroS&P, 2017, pp. 158–173.

[32] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., 1997.

[33] L. Nguyen, “Accumulators from bilinear pairings and applications,” in
Proc. CT-RSA, 2005, pp. 275–292.

[34] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated
hash tables based on cryptographic accumulators,” Algorithmica, pp. 1–
49, 2015.

[35] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in Proc.
CRYPTO, 2004, pp. 41–55.

[36] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proc. the 3rd Innovations in Theoretical Computer
Science Conference (ITCS), 2012, pp. 326–349.

[37] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer, “Towards an analysis
of range query performance in spatial data structures,” in Proc. PODS,
1993, pp. 214–221.

[38] B.-C. Chen, D. Kifer, K. LeFevre, and A. Machanavajjhala, Privacy-
Preserving Data Publishing. Now Publishers, 2009.

[39] P. Samarati and L. Sweeney, “Protecting privacy when disclosing in-
formation: k-anonymity and its enforcement through generalization and
suppression,” Technical Report SRI-CSL-98-04, SRI Computer Science
Laboratory, Tech. Rep., 1998.

[40] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond
k-anonymity and l-diversity,” in Proc. ICDE, 2007.

[41] “Foodmarket,” http://recsyswiki.com/wiki/Grocery shopping datasets,
1998.

[42] T. P. P. Council, “TPC benchmark H,” http://www.tpc.org/tpch/, 2017.

Cheng Xu is a PhD student in the Depart-
ment of Computer Science, Hong Kong Bap-
tist University and a member of the HKBU
Database Research Group (http://www.comp.
hkbu.edu.hk/∼db). He received his BEng degree
from Huazhong University of Science and Tech-
nology in 2014. His research interests include in-
formation security and privacy-aware computing.

Qian Chen is a PhD student in the Depart-
ment of Computer Science, Hong Kong Bap-
tist University. He received his BEng degree in
Computer Science from East China Normal Uni-
versity in 2011. His research interests include
database security and privacy-aware data man-
agement.

Haibo Hu is an Assistant Professor in the
Department of Electronic and Information En-
gineering, Hong Kong Polytechnic University.
Prior to this, he has held academic positions
in HKUST and HKBU since he received his
PhD degree from HKUST in 2005. His research
interests include information security, privacy-
aware computing, wireless data management,
and location-based services. He has published
over 60 research papers in refereed journals,
international conferences, and book chapters.

As priciple investigator, he has received over 5 million HK dollars of
external research grants from Hong Kong and mainland China. He is
the Panel Co-chair of DASFAA 2011, and Program Co-chair of DaMEN
2011, 2013 and CloudDB 2011. He is also the recipient of a number of
awards, including ACM-HK Best PhD Paper Award, Microsoft Imagine
Cup, and GS1 Internet of Things Award.

Jianliang Xu is a Professor in the Department
of Computer Science, Hong Kong Baptist Uni-
versity. He received the BEng degree from Zhe-
jiang University and the PhD degree from Hong
Kong University of Science and Technology. He
held visiting positions at Pennsylvania State Uni-
versity and Fudan University. His current re-
search interests include big data management,
database security and privacy, and location-
aware computing. He has published more than
150 technical papers in these areas. He has

served as a program co-chair/vice chair for a number of major inter-
national conferences including IEEE ICDCS 2012, WAIM 2016, and
APWeb-WAIM 2018. He is an Associate Editor of IEEE Transactions
on Knowledge and Data Engineering (TKDE) and PVLDB 2018.

Xiaojun Hei received the B.Eng. degree in infor-
mation engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 1998, the M.Phil. degree in electrical and elec-
tronic engineering from The Hong Kong Univer-
sity of Science and Technology, Hong Kong, in
2000, and the Ph.D. degree from the Department
of Electronic and Computer Engineering, The
Hong Kong University of Science and Technol-
ogy in 2008. Since 2008, he has been with the
Internet Technology and Engineering Research

and Development Center, School of Electronic Information and Commu-
nications, Huazhong University of Science and Technology. He is cur-
rently an Associate Professor with the School of Electronic Information
and Communications, Huazhong University of Science and Technology.

