1

2

3

4

5

Modelling the Skip-and-resurgence of Japanese Encephalitis Epidemics in Hong Kong

Shi Zhao, Yijun Lou, Alice P.Y. Chiu & Daihai He^{*}

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong

* Correspondence to D.H.: daihai.he@polyu.edu.hk

May 14, 2018

Abstract

Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne virus, persisting in pigs, Ardeid birds and *Culex* mosquitoes. It is endemic to China and Southeastern Asia. The casefatality ratio (CFR) or the rate of permanent psychiatric sequelae is 30% among symptomatic patients. There were no reported local JEV human cases between 2006 to 2010 in Hong Kong, but it was followed by a resurgence of cases from 2011 to 2017. The mechanism behind this "skip-and-resurgence" patterns is unclear.

This work aims to reveal the mechanism behind the "skip-and-resurgence" patterns using 8 mathematical modelling and likelihood-based inference techniques. We found that pig-to-9 pig transmission increases the size of JEV epidemics but is unlikely to maintain the same 10 level of transmission among pigs. The disappearance of JEV human cases in 2006-2010 11 could be explained by a sudden reduction of the population of farm pigs as a result of the 12 implementation of the voluntary "pig-rearing licence surrendering" policy. The resurgence 13 could be explained by of a new strain in 2011, which increased the transmissibility of the 14 virus or the spill-over ratio from reservoir to host or both. 15

Keywords: Japanese encephalitis virus, mathematical modelling, skip-and-resurgence, vector free transmission

18 1 Introduction

Japanese encephalitis virus (JEV) is a zoonotic and mosquito-borne virus that is the major cause of viral encephalitis in Asia. The annual total confirmed human cases has decreased substantially from 12,594 cases to 3,429 cases between 2006 and 2012, and then resurged to 5,399 in 2016 (Fig. 1). The case-fatality ratio and the rate of permanent neurologic or psychiatric sequelae of patients with encephalitis can be 30% [1, 3, 4, 5, 6, 7, 8] and over 35% in children [9]. JEV persists in a transmission cycle of pigs, Ardeid birds and mosquitoes. It could infect humans through mosquito bites by *Culex tritaeniorhynchus* species [1], [4], [10]. Humans are dead-end hosts where they cannot develop viremia to infect mosquitoes. Population sizes of farm pigs and the size of rice land, which favors the *Culex* mosquitoes' growth, are the two key factors affecting local transmission [1], [4], [11]

Figure 1: Annual JEV confirmations from 2006 to 2016 among the top six JEV endemic countries and the total of other countries. Data are obtained from World Health Organization 2.

Vertical transmission of JEV in mosquitoes and pig-to-pig transmission are the major determinants of the following year's transmission. Vertical transmission exists between mosquitoes and their eggs [12, 13, 14]. Mosquito population increases during spring, peaks in summer and decreases during fall annually [16, 17]. According to a recent study by Ricklin et al., pig-to-pig transmission is also present [15].

JEV transmission via blood transfusion has recently been found in Hong Kong, which was probably the first case worldwide. The transmission was reported to come from an asymptomatic viremic donor to two hospitalized patients 23.

Sero-prevalence of JEV antibodies varied by season among swines and among human population groups in Hong Kong. During rainy season between May and July, the sero-prevalence among swines reached 91% compared with 34% that is reported in dry season [18]. It was approximately 80% to 90% among swines in July and August from 2000 to 2004 [16]. Another local serological survey found that 23.5% of pig farmers and 5.9% of abattoir workers are seropositive to JEV antibodies, in contrast to 0% reported among 30 blood donors [18].

JEV vaccine protection rates has been investigated. The vaccine was reported to have a high effective protection rate of 93.3% by five years and a predicted protection rate of 85.5% by 10 years [20]. A recent study by Cao et al. investigated the current JEV vaccine derived from G3 JEV genotype against the emerging G5 genotype in mice, and found that the lethal challenge protection rate was 50%. The same study also reported that neutralizing antibodies against G5 $_{48}$ JEV were detected in 35% of vaccinated healthy children 22.

Riley et al. examined the skip-and-resurgence patterns of JEV from 1969 to 2004 in Hong Kong [16]. They suggested that the skip from 1990 to 2002, except for one case reported in 1996, was likely due to the lack of rice production, as *Culex* species breed principally in rice fields [29]. They proposed that the resurgence from 2003 to 2004 was likely due to the heightening of infectious disease notification system after the Severe Acute Respiratory Syndrome (i.e., SARS) outbreak in 2003 in Hong Kong [16].

In Hong Kong, no locally-acquired JEV case was reported between 2006 and 2010, but reported between 2011 and June, 2017. Considering the declining local live pig population from 350,000 to 60,000 between 2004 and 2017 [24, 26, 25, 27, 28], the disappearance of local JEV cases between 2006 and 2010 are expected, but the resurgence of local cases is intriguing.

Our work aims to identify the mechanism underlying the JEV skip-and-resurgence patterns between December 2003 and May 2017 in Hong Kong. We hypothesized such behavior could be due to the surrendering of pig licenses during a pig rearing policy change in 2006 and/or a new JEV strain invasion around 2011. These hypotheses are tested using mathematical modelling and likelihood-based inference techniques.

⁶⁵ 2 Data and Methods

66 2.1 Data

The monthly JEV cases between December 2003 and May 2017 were retrieved online from the Centre for Health Protection in Hong Kong 30, 18. The regional monthly mosquito ovitrap index from December 2003 to December 2016 were retrieved online from the Food and Environmental Hygiene Department in Hong Kong 31. The annual pattern of reported JEV cases and regional mosquito ovitrap index are shown in Fig. 2. We present the time series of JEV cases and regional mosquito ovitrap index in Fig. 3.

The population sizes of live pigs in Hong Kong (Fig. 4) were obtained from local government reports, local news articles, and reports from Department of Agriculture in the United States [24, 35, 25, 28, 34, 32, 33, 26, 27]. Since the pig rearing license surrendering policy was implemented in May 2006, the number of local live pigs has rapidly declined. 243 out of 265 pig farms owners had surrendered their licenses [25].

78 2.2 JEV Compartmental Model

Ricklin et al. recently reported that pig-to-pig transmission of JEV can also occur without 79 the mosquito vectors 15. After the infectious period in pigs where JEV in swine serum are 80 infectious to mosquitoes, there is also a convalescent period in which pig sheds JEV virus in 81 their oronasal secretions. Thus, the pig population could be classified into five compartments: 82 susceptible, exposed, infectious, convalescent and recovered which are denoted as S_p , E_p , I_p , C_p 83 and R_p respectively. We considered pig-to-pig transmission and vector-borne transmission. Fig. 5 84 shows the model diagram considering pigs, mosquitoes and humans. JEV transmission can be 85 described by the following system of equations (Eqn. (1)). 86

Figure 2: The plot of "skip-and-resurgence" of JEV epidemic from 1980 to 2017 in Hong Kong. Panel (a) shows the area of local rice production and self-supporting vegetable ratio. Panel (b) The orange line shows the number of local live pigs, where the data is obtained from Fig. 4 Panel (c) shows the reported annual (i.e. both local and imported) JEV cases in Hong Kong. The two blue arrows in panel (c) indicate the timing of H5N1 and SARS outbreaks respectively.

Figure 3: Panel (a) shows the monthly reported local JEV cases in Hong Kong, and panel (b) shows the average monthly ovitrap index of regions (i.e., including Yuen Kong, Yuen Long and Tin Shui Wai) around Yuen Long district in Hong Kong. For both panels, darker lines represent annual averages, lighter lines represent smoothed data. Dots represent the annual reported data from 2004-2016.

Figure 4: Local live pig populations and their daily consumptions from January 2004 to May 2017 in Hong Kong. Purple line represents the annual live pig populations, connected by their reported and estimated numbers, which are depicted in filled and hollow circles respectively (N_p) . Violet red line and dots represent the daily local live pig consumptions $(\nu_p N_p)$. Vertical grey dashed line denotes the time when the pig rearing license surrendering policy was implemented in Hong Kong.

Figure 5: JEV model diagram. Infectious classes are denoted in red, and JEV human cases are in grey (i.e., Z_h , or Z_i in Eqn. (2)). The transition paths are represented in black arrows. Red dashed arrows represent paths of transmission. Births and deaths (including slaughtering) of pigs are represented in light blue arrows.

$$\begin{cases} S'_{p} = (1 - \eta) \cdot B_{p}(t) \cdot N_{p} - \nu_{p}S_{p} - \left(\lambda_{vp} + \beta_{p} \cdot \frac{C_{p}}{N_{p}}\right)S_{p}, \\ E'_{p} = \left(\lambda_{vp} + \beta_{p} \cdot \frac{C_{p}}{N_{p}}\right)S_{p} - (\sigma_{p} + \nu_{p})E_{p}, \\ I'_{p} = \eta \cdot B_{p}(t) \cdot N_{p} + \sigma_{p}E_{p} - (\gamma_{p} + \nu_{p})I_{p}, \\ C'_{p} = \gamma_{p}I_{p} - (\delta_{p} + \nu_{p})C_{p}, \\ R'_{p} = \delta_{p}C_{p} - \nu_{p}R_{p}. \end{cases}$$
(1)

Table 1 summarizes the model parameters in Eqns. (1). The effects of $B_p(t)$ and ν_p are presented in the dynamics of local live pig population because $N'_p = [B_p(t) - \nu_p]N_p$. In this model, the total pig population is:

$$N_p = S_p + E_p + I_p + C_p + R_p,$$

where N_p is the observed live pig populations in Hong Kong and is a time-dependent parameter (see purple dashed line in Fig. 4). $B_p(t)$ is the time-dependent birth rate of local live pigs. Humans are dead-end hosts and cannot further transmit the disease [1, 4, 11], thus we model human cases using a variable spill-over ratio (ρ) in week $i \rho_i$ (see Eqn. (2)):

$$Z_i = \int_{\text{week}\,i} \rho_i \gamma_p I_p \, dt. \tag{2}$$

Please see S2.2 for more reasoning on model structure.

We consider different scenarios (of new JEV strain invasion) to fit the "skip-and-resurgence" pattern of the JEV epidemic. We refer to the invasion scenario with force of infection and spill-over rate given respectively by equations (4) and (6) as in I3 (see Table 3 and the main results). In the Supplementary Information, we compare this invasion scenario with a baseline (no invasion, see B in Table 3 and S1.1) and two alternative invasion scenarios (see I1 and I2 in Table 3, S1.3 and S1.2).

Table 1: Model input parameters. We denote JEV transmitted from vectors to pigs as " $v \rightarrow p$ ", and from pigs to humans as " $p \rightarrow h$ " respectively. Please see S2.1 for more information of the initial proportions.

Parameters	Notations	Values	Banges	Remarks/Units	Sources
Force of infection	$\frac{\lambda_{vn}}{\lambda_{vn}}$	-	time-dependent	$v \rightarrow p$, per vear	Eqn. (3)
Latent period in pigs	σ_n^{-1}	1.5	1-2	davs	43 15
Infection period in pigs	γ_{p}^{p-1}	3	2-4	days	61 43 65 15 3
Convalescent period in pigs	δ_n^{p-1}	2.5	1-4	days	
Proportion of infected among imported pigs	η^{-p}	1.0%	0.43% - 1.45%	pigs, Nil	Eqn. (8)
Effective contact rate	β_n	estimate	0.0-0.4	pigs, per days	Eqn. (10)
Lifespan of pigs	ν_n^{-1}	234.0	234.0	davs	Eqn. (7)
Population size of pigs	\tilde{N}_{p}	-	time-dependent	see Fig. 4	24 26 25 27 28 18
Spill-over rate	ρ	-	time-dependent	$p \rightarrow h$, Nil	Eqn. (5)
Initial proportion of susceptible	S_{p0}	estimate	45-75%	Nil	10 16 36
Initial proportion of exposed	E_{p0}	0.1%	-	Nil	assumed
Initial proportion of infectious	I_{p0}	0.1%	-	Nil	assumed
Initial proportion of convalescent	C_{p0}	0.1%	-	Nil	assumed
Initial proportion of recovered	R_{p0}	estimate	25-55%	Nil	10, 16, 36

102 2.3 Model Framework

JEV cases were modelled as a Partially Observed Markov Process (POMP), also known as 103 Hidden Markov model, using R package "POMP" 42. The iterated filtering and plug-and-play 104 likelihood-based inference frameworks were employed to fit the time series 41, 40, 52. Further-105 more, the Maximum Likelihood Estimate (MLE) was used to estimate the model parameters. To 106 quantify the tradeoff between the goodness-of-fit of a model and its complexity 44, Bayesian 107 Information Criterion (BIC) was used for model comparison. Simulations were performed by im-108 plementing the Euler-multinomial integration method with a fixed time-step of one day [48, 40]. 109 The model was first validated with the observed JEV cases in Hong Kong, based on informa-110

tion about the size of pig population. Mosquito abundance is a time-dependent parameter, which was smoothed over time based on the ovitrap index (ω). The force of infection (λ_{vp}) from vectors to reservoirs is another time-dependent parameter. The spill-over ratio (ρ) is estimated through ω .

The monthly observed cases, C_i , were assumed to follow a Poisson distribution (Poi), with a mean Z_i , the underlying monthly cases modelled by Eqn. (2). Hence, we have:

$$C_i \sim \text{Poi}(\lambda = Z_i)$$
 with mean : $\mu_i = Z_i$

¹¹⁷ Thus, the overall log-likelihood function, l, was given by:

$$l(\Theta|C_1,...,C_n) = \sum_{i=1}^n \ln f(C_i|C_{1:(i-1)},\Theta)$$

where Θ denotes the parameter vector being estimated, $f(C_i|C_{1:(i-1)}, \Theta)$ was the posterior probability measurement function for C_i given $C_{1:(i-1)}$, which were then numerically computed by Sequential Monte Carlo (SMC, also known as particle filtering) [40], and n denotes the total number of months during the study period. Using the profile likelihood method, the confidence intervals (C.I.) of the model output parameters were estimated based on the model input parameter ranges as described in Table 1. Parameters estimation and statistical analyses are conducted using R (version 3.4.1) 19.

125 2.4 Parameter Estimation

Force of Infection from Vectors to Reservoirs (λ_{vp}) : We can express λ_{vp} as $\lambda_{vp} = a\vartheta_{vp} \cdot \frac{I_v}{N_p}$, where *a* is the mosquito biting rate; ϑ_{vp} is the transmission probability of JEV per mosquito bite; and I_v is the number of infected mosquitoes. However, in this study, we simplify λ_{vp} as a function of ovitrap index over time, since we are employing a vector-free modelling framework. This is justifiable by assuming that *a* and ϑ_{vp} are constant, while $\frac{I_v}{N_p}$ is roughly proportional to the ovitrap index. Briefly, we assume:

$$\lambda_{vp} = k \cdot \omega(t) + b \tag{3}$$

where ω is the time series of ovitrap index in Hong Kong, k and b are model parameters under estimation. Constant b represents the contribution of the vertical transmission from adult mosquitoes to their eggs. The vertical transmission ratio of *Culex tritaeniorhynchus* is varied from 12% to nearly 100% [13], [12]. By using Eqn. (3), we also incorporate the case that despite the ovitrap index is close to zero during a dry season, the transmission rate can still be positive due to vertical transmission of vectors.

To investigate the mechanism of the observed resurgence of JEV after 2011 in Hong Kong, we partitioned the force of infection into time segments based on the hypothesis that the re-emergence was due to the invasion of a new JEV strain. This hypothesis is then validated using statistical approaches. We assume the force of infection (λ_{vp}) takes the following form:

$$\lambda_{vp} = \begin{cases} k_1 \cdot \omega(t) + b, & t < T_0 \\ k_2 \cdot \omega(t) + b, & t \ge T_0 \end{cases}$$

$$\tag{4}$$

where T_0 is the time when the new JEV strain invaded.

Biologically, the force of infection (λ_{vp}) under the new strain invasion scenario is higher than the no-invasion scenario, since the pig population is immunologically naive in the first few years after invasion. Thus, under the new-strain invasion hypothesis, we have $k_2 > k_1 > 0$. The average spill-over ratio $\langle \lambda_{vp} \rangle$ after invasion should be much higher than that before invasion. Without new strain invasion, we have the special case where $k_1 = k_2$ in Eqn. (4).

Spill-over Ratio from Reservoirs to Humans (ρ): In Eqn. (2), we assume that humans are dead-end hosts [1, 4, 11]. Thus, the reported JEV human cases are proportional to pig infections according to the time-dependent spill-over ratio(ρ). Since the number of human cases are related to the total number of vectors, we can further assume the spill-over ratio as a function of ovitrap index:

$$\rho = \xi \cdot \omega(t - \tau) \tag{5}$$

where ξ is the strength of infectivity parameter under estimation and τ is the sum of incubation period of mosquitoes (i.e. 6 to 12 days) [36, 37, 13], latent period in humans (i.e. 5 to 13 days) [4, 10, 3] and case-reporting delay. For simplicity, we fix τ to be 15 days for this study. To investigate the mechanism of the observed resurgence of JEV after 2011 in Hong Kong, we partitioned the spill-over ratio into time segments based on the hypothesis that the re-emergence was due to the invasion of a new JEV strain. This hypothesis is then validated using statistical approaches. We assume the spill-over ratio (ρ) takes the following form from Tien et al. [38]:

$$\rho = \begin{cases} \xi_1 \cdot \omega(t - \tau), & t < T_0 \\ \xi_2 \cdot \omega(t - \tau), & t \ge T_0 \end{cases} \tag{6}$$

where T_0 is the time when the new JEV strain invaded.

Biologically, the spill-over ratio (ρ) under the new strain invasion scenario is much higher than the no-invasion scenario, since the pig population is immunologically naive in the first few years after invasion. Thus, under the new-strain invasion hypothesis, we have $\xi_2 > \xi_1 > 0$. The average spill-over ratio $\langle \rho \rangle$ after invasion should be much higher than that before invasion. Without new strain invasion, we have the special case where $\xi_1 = \xi_2$ in Eqn. (6).

Lifespan of pigs (ν_p^{-1}) : Hong Kong people consumed approximately 265 live domestic pigs per day during 2016-17 [33], 32], and roughly 275 live domestic pigs per day in around 2012 [34], whereas the consumption was around 1,450 live domestic pigs back in 2004 [25]. The total pig population has fallen from 350,000 in 2004-05 [24], [25], [26], to 65,000 in 2012 [27] and further dropped to 60,000 in 2016-17 [28]. Thus the average lifespan of pigs $\langle \nu_p^{-1} \rangle$ can be estimated as:

During 2004-05:
$$\langle \nu_p^{-1} \rangle = \frac{N_p}{\text{daily consumptions}} = \frac{350000}{1450} \approx 241.38 \text{ days},$$

In 2012: $\langle \nu_p^{-1} \rangle = \frac{N_p}{\text{daily consumptions}} = \frac{65000}{275} \approx 236.36 \text{ days},$ (7)
During 2016-17: $\langle \nu_p^{-1} \rangle = \frac{N_p}{\text{daily consumptions}} = \frac{60000}{265} \approx 226.42 \text{ days}.$

By averaging the above, we computed the average lifespan of pigs ν_p^{-1} to be approximately 234 days.

Pigs' population (N_p) : Given that the average local living pig consumption is 650 live pigs per day in 2007 [25], we approximate the total number of pigs (N_p) to be $234 \times 650 = 152, 100$. The sudden drop in the number of live pigs between 2006 and 2007 was due to the surrendering of pig rearing licenses in early 2006, which result in 243 out of 265 pig farm owners turning over their licenses [25]. Although the daily live pig consumption is not included as a modelling parameter, given the pig's average lifespan, we could infer the total number of live pigs from the amount of daily consumption.

Infection ratio among imported pigs (η) : η can be computed as:

$$\eta = \langle \text{IAR}_p \rangle \cdot \frac{\gamma_p^{-1} + \delta_p^{-1}}{\langle \nu_p^{-1} \rangle},\tag{8}$$

where $\langle IAR_p \rangle$ is the average attack rate over the average lifespan of pigs $\langle \nu_p^{-1} \rangle$. According to the value of parameter in Table 1, if γ_p^{-1} is 1.5 day, δ_p^{-1} is 2.5 days, $\langle \nu_p^{-1} \rangle$ is 234 days and $\langle IAR_p \rangle \in [25\%, 85\%]$ 39, 10, we estimated that $\eta \in [0.43\%, 1.45\%]$.

183 Baselits

¹⁸⁴ 3.1 Model Fitting Results

In addition to the simulated median, we also present the simulated annual means of the model prediction using the approach described in Camacho et al. [50], since simulated means demonstrated fitting results more consistently when the data are being restricted as integers and are subject to stochastic noise.

Figure 6: Model fitting results of JEV local cases in Hong Kong from 2004 to 2016 under new JEV strain invasion scenario with variable ρ . Panel (a) and (b) are the scaled force of infection (from vectors to pigs, scaled by the population size of pigs) and simulation results from 2004 to 2016 respectively. Panel (c) and (d) are the one-year-average scaled force of infection and simulation results from 2004 to 2016 respectively. In panel (a) and (b), black dashed lines are the scaled force of infection. In panel (b) and (d), blue lines are the simulation results, shaded regions are 95% quantile interval from simulation, pink dots are the reported (i.e., observed) JEV local cases and red lines are the smoothed (by *loess* function) reported JEV cases. The vertical grey dashed line marks the time point when Hong Kong government triggered the pig rearing licences surrender policy. The vertical dark green dashed line marks the time point when the new JEV strain introduced to the pigs' population. The inset panel shows the maximum log-likelihood (MLL) values of different k_{1s} and k_{2s} , the red dot with the highest MLL are selected for fitting in main panels. The model scenario is associated with explanation I3 in Table 3.

The model fitting results under the new JEV strain invasion scenario are shown in Fig. 6. The estimated model parameters are summarized in Table 2. Although the long-term fitting suffers from severe stochastic noise (i.e. zero, one or two cases per month), the 95% simulated quantile interval covers all observed data, and the simulated average annual pattern is consistent with the observed pattern.

¹⁹⁴ BIC reduces more than 28 units when we went from the baseline (i.e. no invasion, see

Table 2: Summary table of model parameters' estimates under new JEV strain invasion scenario with both variable λ_{vp} and ρ . X_{p0} denotes the initial proportion of class X_p .

Parameter	Notation	Value	Type	Initial status	Unit/Remarks
Average force of infection	$2004-10:\langle\lambda_{vp}\rangle$	0.0043	estimated	time-dependent	before invasion
Average force of infection	$2011-16:\langle \lambda_{vp} \rangle$	0.0071	estimated	time-dependent	after invasion
Pig latent period	σ_p^{-1}	1.5	fixed	1-2	days
Pig infection period	γ_p^{-1}	3	fixed	2-4	days
Pig convalescent period	δ_p^{-1}	2.5	fixed	1-4	days
Imported infection ratio	η	1.0%	fixed	0.43%- $1.45%$	Nil
Effective contact rate	β_p	0.0058	estimated	0.0-0.4	per days
Pig living period	ν_p^{-1}	234	fixed	234	days
Pig population	\dot{N}_p	-	-	time-dependent	pigs
Average spill over ratio	$2004-10:\langle \rho \rangle$	0.0002	estimated	time-dependent	before invasion
Average spill over ratio	$2011\text{-}16:\langle \rho \rangle$	0.0013	estimated	time-dependent	after invasion
Average ovitrap index	$\langle \omega \rangle$	0.0564	given	time-dependent	Nil
Initial susceptible	S_{p0}	0.6470	estimated	45 - 75%	Nil
Initial exposed	E_{p0}	0.001	assumed	$0.0 ext{-} 0.25\%$	Nil
Initial infectious	I_{p0}	0.001	assumed	$0.0 ext{-} 0.25\%$	Nil
Initial convalescent	C_{p0}	0.001	assumed	$0.0 ext{-} 0.25\%$	Nil
Initial recovered	R_{p0}	0.3400	estimated	25-55%	Nil
BIC	BIC	144.8174	estimated	-	Nil

S1.1) scenario to the new strain invasion scenario (see Fig. 6 and explanation I3 in Table 3). We 195 modelled another new strain invasion scenario where only the force of infection λ_{vp} is partitioned 196 (see explanation I2 in Table 3 and S1.3). The BIC increases approximately 1.0 unit which implies 197 an almost equivalent fitting performance to the main results (see Fig. 6 and explanation I3 in 198 Table 3). The partitioned force of infection with no partition on spill-over ratio is presented in 199 S1.3 (see explanation I2 in Table 3). Another invasion scenario with time-dependent λ_{vp} and ρ 200 are investigated in S1.2 (see explanation I1 in Table 3), and BIC increases 4.55 unit. The detailed 201 model performance and explanation of are in Table 3 and Supplementary Information. 202

Table 3: Summary of model fitting results and associated trait(s) under different scenarios.

Label	Scenario and its trait(s)	BIC	$\triangle BIC^{\dagger}$	Remarks
В	baseline (no invasion)	168.7009	28.4376	see S1.1
I1	invasion $(\rho \text{ changed since } 2011)$	140.2633	0.0	see $S1.2$
I2	invasion $(\lambda_{vp} \text{ changed since } 2011)$	141.2743	1.0110	see $S1.3$
I3	invasion (ρ and λ_{vp} changed since 2011)	144.8174	4.5541	see Fig. 6, Table 2

†: $\triangle BIC = BIC - BIC_{min}$, where BIC_{min} is the minimum of BICs of all scenarios. Here, BIC_{min} = 140.2633 (see S1.2).

²⁰³ 3.2 Basic Reproduction Number of Pig-to-Pig Transmission

Using the next generation matrix method [45, 49], the basic reproduction number, \mathcal{R}_{pp} , of pig-to-pig transmission is computed as:

$$\mathcal{R}_{pp} = \frac{\beta_p \gamma_p \cdot (\eta \nu_p + \sigma_p)}{[(1 - \eta)(\gamma_p + \delta_p + \nu_p)\nu_p + \gamma_p \delta_p](\nu_p + \sigma_p)}.$$
(9)

We consider that imported infections are rare $(\eta \approx 0^+)$, and both incubation period and infection period of JEV in pigs are negligible (i.e., $\sigma_p^{-1} \approx 0^+$ and $\gamma_p^{-1} \approx 0^+$). Then, it could be seen that $\mathcal{R}_{pp} \approx \frac{\beta_p}{\delta_p + \nu_p}$, which is consistent with the standard SIR compartmental model [48]. We estimated \mathcal{R}_{pp} to be 0.0013 (95% C.I.: [0.00,0.31]) under the invasion scenario (see Fig. 7). Furthermore, the range of effective contact rate,

$$\beta_p \in [0.0, 0.4],\tag{10}$$

(see Table 1 and 2) is set corresponding to $\mathcal{R}_{pp} \in [0.0, 1.0]$.

The range of \mathcal{R}_{pp} could be inferred from the followings: JEV sero-positive rates among pigs quickly decreases in winter [16]. Mosquito abundance is almost zero during the same time period. Thus, this indicates the vector-free transmission of JEV among pigs cannot persist. Therefore, \mathcal{R}_{pp} is less 1.0 and positive (i.e., greater than 0).

Figure 7: The results of estimation of the basic reproduction number of pig-to-pig transmission (\mathcal{R}_{pp}) under new JEV strain invasion scenario with variable ρ . The horizontal blue dashed line is the 95% confidence threshold. The model scenario is associated with explanation I3 in Table 3.

²¹⁶ 3.3 Critical Community Size

The critical community size (CCS) is defined as "the minimum size of a closed population within which a host-to-host, non-zoonotic pathogen can persist indefinitely" [46]. Nåsell [47] presented a method of approximating the CCS from simple compartmental models of directlytransmitted diseases. This is relevant to our study concerning pig-to-pig transmission. CCS can be formulated (obtained from Eqn. 12.1 in Ref. [47]) as:

$$CCS \approx \frac{2\pi}{\ln 2} \cdot \frac{\mathcal{R}_0 \cdot \alpha_p^{1.5}}{(\mathcal{R}_0 - 1)^{1.5}},\tag{11}$$

where $\alpha_p = \frac{\gamma_p + \nu_p}{\nu_p}$ denotes the ratio of average lifespan of pigs (ν_p^{-1}) to the average duration of 222 infection. The basic reproduction number of pig-to-pig transmission, \mathcal{R}_{pp} in Eqn. (9) is relatively 223 small compared to that of vector-borne transmission, \mathcal{R}_{vp} . A modelling study by Khan et al. 224 estimated \mathcal{R}_{vp} to be 1.2 among pigs [39]. Also, \mathcal{R}_{vp} is believed to be greater than 1.0, as JEV 225 does spread during every rainy season. Applying the parameters under the new strain invasion 226 scenario in Table 2 (explanation I3 in Table 3) to Eqn. (9), \mathcal{R}_{pp} is merely 0.0013, which is much 227 smaller than \mathcal{R}_{vp} . By using the next generation matrix approach [49, 52], the basic reproduction 228 number is: 229

$$\mathcal{R}_0 = \frac{\mathcal{R}_{pp} + \sqrt{\mathcal{R}_{pp}^2 + 4\mathcal{R}_{vp}^2}}{2}$$

If we ignore the effects of \mathcal{R}_{pp} (i.e., $\mathcal{R}_{pp} \approx 0^+$ as in Ref. [52]), we have $\mathcal{R}_0 \approx \mathcal{R}_{vp}$. If we fix $\nu_p^{-1} = 234.0$ (see Eqns. (7)), and set $\mathcal{R}_0 \in [1.10, 1.40]$ and $\gamma_p^{-1} \in [2.0, 4.0]$ (thus, $\alpha_p \in [59.5, 118.0]$), the relationship among α_p , \mathcal{R}_0 and CCS (in Eqn. (11)) are illustrated in Fig. 8.

Figure 8: Contour plot of the relationships between critical community size (CCS), α_p and the basic reproduction number \mathcal{R}_0 . Numbers indicating the different CCS levels.

The number of local live pigs was reduced from 80,000 to 60,000 since 2008 after the pig license surrendering policy came into effect (Fig. 4) [25]. With relatively low \mathcal{R}_0 , CCS is greater than 150,000 (see the area below the blue line in Fig. 8) over a broad range of α_p 's. This could explain the local JEV case disappearance from 2006 to 2010 in Hong Kong.

Moreover, for the invasion scenario, we found that the force of infection, λ_{vp} , could increase 237 after the introduction of new JEV strain while assuming a fixed spill-over ratio, ρ . The fitting 238 results of the partitioned force of infection, which did not partition on the spill-over ratio, are 239 presented in the S1.3 (see explanation I2 in Table 3). The goodness-of-fit is almost equivalent to 240 the previous scenario. We modelled the partitioned λ_{vp} and ρ scenario in S1.2 (see explanation 241 I1 in Table 3). Although the fitting results are not as good as in the invasion scenario, (i.e. the 242 main results in Fig. 6 and explanation I3 in Table 3, it is still a significant improvement from 243 the baseline (no invasion) scenario. The estimated force of infection, λ_{vp} , also increases after 244 introducing a new JEV strain (see S1.2 and explanation I1 in Table 3). With an increased \mathcal{R}_0 245 due to an increased λ_{vp} , the CCS level could become lower than the local live pig's population 246 level (see Fig. 8), which explains the resurgence of JEV cases. Further discussion on \mathcal{R}_0 and CCS 247 can be found in S2.3248

249 4 Discussion

In this study, we argue that the resurgence of JEV after 2011 was likely due to new strain 250 invasion that has a higher transmissibility. some indirect overseas evidence does exist: (i) **JEV** 251 genotype 1 (G1) strain since 2000: In Southeast Asia, studies reported that Genotype 3 252 was predominant during the late 20th century, and then genotype 1 started to replace genotype 253 3 around 2000 and become dominant thereafter 60, 53, 7. One genetic study found that the 254 genotype 1 strain was not observed until 2008 in the regions of Mainland China surrounding Hong 255 Kong 54. Thus, it is very likely that there is a newly introduced JEV strain from pigs imported 256 from these Mainland Chinese regions <u>63</u>); (ii) **JEV genotype 5 (G5) strain:** Similar JEV 257 resurgences were observed in South Korea in 1998 and 2010 62. The resurgence in 1998 was 258 likely due to the introduction of G1 strain in the mid-1990's 7, 54. The first isolated local G5 259 strain was reported in 2010 in South Korea, which coincided with the resurgence of JEV in 2010 260 64, where the average number of annual JEV cases increased approximately six- to eight-fold 261 62. This is also consistent with our results of explanation I1 and I3 in Table 3. 262

We achieved almost equivalent goodness-of-fit under the two invasion scenarios. There are three potential explanations for the JEV resurgence since 2011: (**I1**) The newly introduced JEV strain has slightly increased the transmissibility from vectors to pigs, and considerably increased the spill-over ratio from pigs to humans; (**I2**) The newly introduced JEV strain has considerably increased the transmissibility, but the spill-over ratio is held constant; (**I3**) The main results: the newly introduced JEV strain has increased both the transmissibility and the spill-over ratio. Please also see the summary of **I1-I3** in Table **3**.

The symptomatic ratio of JEV could be further used to refine the mathematical model. As the majority of JEV infections are asymptomatic, and the mortality ratio for clinical JEV cases are approximately 30% (Table 4). We assume the symptomatic ratio of JEV among pigs are the same as that of humans, and asymptomatic pigs have negligible JEV transmissibility to vectors due to low within-host viral loads.

Our main results are derived from I3 (Fig. 6). In Table 2, we estimated the annual force of

Table 4: Symptomatic JEV infection ratio and case-fatality ratio (CFR) of JEV with clinical illness from various sources. The numbers in brackets are the geometric average of the upper and lower ranges.

$\frac{\text{Symptomatics}}{\text{Total Infections}} \text{ (Symptomatic\%)}$	$CFR = \frac{Mortality}{Clinical Illness}$	Source(s)
$(0.48\%) \ 0.4\%$ - 0.5%	30%	1, 3
< 1%	20%- $30%$	4, 5
$(0.81\%) \ 0.33\%$ -2%	25%	6
$(0.63\%) \ 0.1\%$ -4%	25%- $30%$	7,8
4% (occasionally)	-	37
$(0.63\%) \ 0.1\%$ -4%	-	58, 56, 51, 55, 57
-	35%	59
	36.4% (children)	9

infection $\langle \lambda_{vp} \rangle$ to be 0.0042 and the proportion of susceptible pigs S_{p0} to be 68% at the beginning of each year [16, 36, 10], the annual average JEV infection attack rate (IAR_p) among pigs could be computed as

$$IAR_p = \frac{\langle \lambda_{vp} \rangle \cdot S_{p0}}{Symptomatic\%}$$

where Symptomatic% is the JEV symptomatic rate, by which IAR_p is estimated from 35.26% to 275 59.50% (with Symptomatic $\% \in [0.48\%, 0.81\%]$), which is consistent with [10, 16, 39]. The results 276 corresponding to I2 are presented in S1.3, where the annual transmission rate $\langle \lambda_{vp} \rangle$ is set to be 277 0.0044 and 0.1763 before and after invasion, respectively. The larger annual force of infection 278 after invasion produces unreasonable IAR_p. With parameter values in S1.3, $\langle \lambda_{vp} \rangle = 0.1763$ and 279 $S_{p0} = 57.67\%$ lead to IAR_p $\in [1255\%, 2118\%]$, which is larger than 100\%. The mechanism I3 280 implies increase in both λ_{vp} and ρ after invasion (see S1.2). With $S_{p0} = 64\%$, IAR_p is increased 281 from [33.98%, 57.33%] to [56.10%, 94.67%] after invasion, within acceptable ranges. Therefore, 282 according to the range of IAR_p , I1 and I3 are likely to be the possible explanations of the 283 resurgence of JEV epidemics in 2011, while **I2** is unlikely since it predicts unreasonable values of 284 IAR_p . 285

Furthermore, **I3** could be more biologically reasonable than **I1**. In **I1**, we assumed the force of infection (i.e., λ_{vp}) unchanged but only change the value of spill-over rate before/after the new JEV invasion. However, with the force of infection in **I1**, the JEV epidemic is unlike to maintain according to the estimation results of CCS (i.e., in this case, the pig population is lower than the CCS). On the contrary, with increased force of infection in **I3**, the JEV epidemic is very likely to come back (i.e., resurgent) since 2011. Further work is needed in order to identify the biological evidences and mechanisms of **I3**.

In this work, we only investigated the scenarios of new JEV invasion, more possible causes (or scenarios) due to various other factors can be further explored.

295 5 Conclusions

We developed a simple mathematical model to investigate the mechanisms behind the skip-296 and-resurgence patterns of JEV human cases in Hong Kong. The critical community size (CCS) 297 estimated through the model indicates that the pig rearing license surrender policy on May 2006 298 could be responsible for the disappearance of JEV human during 2006-10, assuming that other 299 factors remain unchanged. Compared with the results of baseline (no invasion) scenario (see S1.1), 300 our fitting results in the hypothetical scenario imply that the resurgence of JEV in 2011 was likely 301 due to the introduction of new strains which has a higher transmissibility and/or a spill-over ratio. 302 The basic reproduction number (\mathcal{R}_{pp}) of pig-to-pig transmission is estimated to be 0.0013 303 (95% C.I.: [0.00,0.30]). Although the vector-free JEV transmission route exists 15 and it could 304 increase the epidemic size and prolongs the outbreak, JEV is unable to spread among pigs without 305 vectors. 306

Thus vector control remains the most important and effective measure in mitigating JEV outbreaks in Hong Kong. Apparently, the reduction in local farm pig did not lead to elimination of JEV in Hong Kong. But monitoring JEV among pigs is still very important. This work shed light on the understanding of JEV epidemic in the other parts of Asia. A better understanding on the JEV epidemiology is helpful for strategies design and mitigation of JEV in other places. Our work shows that even though pigs play a very crucial role, a reduction of pigs might not be sufficient (to prevent JEV outbreaks).

314 6 Acknowledgement

The model simulations are performed on workstations of the Department of Applied Mathematics at the Hong Kong Polytechnic University. This work was partially supported by the Early Career Schemes ((PolyU 251001/14M) and (PolyU 253004/14P)) and General Research Fund (PolyU 153277/16P) from Hong Kong Research Grants Council. The authors would like to thank the editor and two anonymous reviewers for their comments and suggestions, which greatly improved the manuscript.

321 References

- [1] World Health Organization. Japanese Encephalitis fact sheet. http://www.who.int/
 mediacentre/factsheets/fs386/en/. Accessed on Jul, 2017.
- World Health Organization. Japanese Encephalitis annual incidence record. http://apps.
 who.int/immunization_monitoring/globalsummary/timeseries/tsincidencejapenc.html.
 Accessed on Apr, 2018.
- [3] Centers for Disease Control, R.O.C. (Taiwan), Japanese Encephalitis. http://www.cdc.
 gov.tw/english/info.aspx?treeid=E79C7A9E1E9B1CDF&nowtreeid=E02C24F0DACDD729&tid=
 784CF7F674BD5DFA. Accessed on Jul, 2017.

- [4] Centers for Disease Control and Prevention (CDC). Japanese Encephalitis. https://www.
 cdc.gov/japaneseencephalitis/index.html. Accessed on Jul, 2017.
- [5] Arai S, Matsunaga Y, Takasaki T, Tanaka-Taya K, Taniguchi K, Okabe N, Kurane I, Vaccine
 Preventable Diseases Surveillance Program of Japan. Japanese encephalitis: surveillance and
 elimination effort in Japan from 1982 to 2004. Jpn J Infect Dis. 2008;61(5):333-8.
- [6] Libraty DH, Nisalak A, Endy TP, Suntayakorn S, Vaughn DW, Innis BL. Clinical and
 immunological risk factors for severe disease in Japanese encephalitis. Trans R Soc Trop
 Med Hyg. 2002;96(2):173-8.
- ³³⁸ [7] Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence ³³⁹ of Japanese encephalitis, West Nile and dengue viruses. Nat Med. 2004;10:S98-109.
- [8] Solomon T, Winter PM. Neurovirulence and host factors in flavivirus encephalitis-evidence
 from clinical epidemiology. Arch Virol Suppl. 2004;(18):161-70.

[9] Kumar R, Mathur A, Kumar A, Sharma S, Chakraborty S, Chaturvedi UC. Clinical features
& prognostic indicators of Japanese encephalitis in children in Lucknow (India). Indian J
Med Res. 1990;91:321-7.

- [10] Center for Health Protection. Japanese Encephalitis. http://www.chp.gov.hk/en/content/
 9/24/28.html. Accessed on Jul, 2017.
- Impoinvil DE, Baylis M, Solomon T. Japanese encephalitis: on the one health agenda. In
 One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases
 The Concept and Examples of a One Health Approach (Current Topics in Microbiology and Immunology, 365). Berlin, Heidelberg: Springer Berlin Heidelberg : Imprint: Springer.
- [12] Rosen L, Lien JC, Shroyer DA, Baker RH, Lu LC. Experimental vertical transmission of
 Japanese encephalitis virus by Culex tritaeniorhynchus and other mosquitoes. Am J Trop
 Med Hyg.1989;40(5):548-56.
- [13] Takashima I, Rosen L. Horizontal and vertical transmission of Japanese encephalitis virus
 by Aedes japonicus (Diptera: Culicidae). J Med Entomol. 1989;26(5):454-8.
- [14] Rosen L, Tesh RB, Lien JC, Cross JH. Transovarial transmission of Japanese encephalitis
 virus by mosquitoes. Science. 1978;199(4331):909-11.
- [15] Ricklin ME, Garcia-Nicolas O, Brechbuhl D, Python S, Zumkehr B, Nougairede A, Charrel
 RN, Posthaus H, Oevermann A, Summerfield A. Vector-free transmission and persistence of
 Japanese encephalitis virus in pigs. Nat Commun. 2016;7.
- [16] Riley S, Leung GM, Ho LM, Cowling BJ. Identification of the key elements of transmission
 of Japanese encephalitis virus in Hong Kong. RFCID: 05050132.
- [17] Riley S, Leung GM, Ho LM, Cowling BJ. Transmission of Japanese encephalitis virus in
 Hong Kong. Hong Kong Med J. 2012;18 Suppl 2:45-6.

- [18] Scientific Committee on Vector-borne Diseases, Hong Kong. official website. http://www.
 chp.gov.hk/en/sas7/101/110/107.html, accessed on Jul, 2017.
- ³⁶⁷ [19] R: The R Project for Statistical Computing. https://www.r-project.org/.
- [20] Desai K, Coudeville L, Bailleux F. Modelling the long-term persistence of neutralizing anti body in adults after one dose of live attenuated Japanese encephalitis chimeric virus vaccine.
 Vaccine. 2012;30(15):2510-5.
- ³⁷¹ [21] Lam K, Tsang OT, Yung RW, Lau KK. Japanese encephalitis in Hong Kong. Hong Kong ³⁷² Med J. 2005;11(3):182-8.
- [22] Cao L, Fu S, Gao X, Li M, Cui S, Li X, Cao Y, Lei W, Lu Z, He Y, Wang H. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese encephalitis virus. PLoS Negl Trop Dis. 2016;10(5):e0004686.

³⁷⁶ [23] South China Morning Post website. http://www.scmp.com/news/hong-kong/
 ³⁷⁷ health-environment/article/2103667/hong-kong-tackles-worlds-first-case-patient.
 ³⁷⁸ Accessed on Aug, 2017.

- ³⁷⁹ [24] Legislative Council of Hong Kong, Official Report (CB(2) 1663/05-06(05)). (URL) Accessed ³⁸⁰ on Aug, 2017.
- ³⁸¹ [25] Legislative Council of Hong Kong, Official Report (CB(2)2445/06-07(01)). (URL). Accessed ³⁸² on Aug, 2017.
- [26] The Government of Hong Kong, Agriculture, Fisheries and Conservation Department
 (AFCD) official website. http://www.afcd.gov.hk/eindex.html. accessed on Jul, 2017.
- [27] The Government of Hong Kong, Agriculture, Fisheries and Conservation Department
 (AFCD), Annual Reports. http://www.afcd.gov.hk/misc/download/annualreport2012/
 agriculture.html. accessed on Aug, 2017.
- ³⁸⁸ [28] Hong Kong 01, Press Release. (URL). Accessed on Aug, 2017.
- [29] Tian HY, Bi P, Cazelles B, Zhou S, Huang SQ, Yang J, Pei Y, Wu XX, Fu SH, Tong SL, Wang
 HY. How environmental conditions impact mosquito ecology and Japanese encephalitis: an
 eco-epidemiological approach. Environ. Int. 2015;79:17-24.
- [30] The Government of Hong Kong, Center for Health Protection (CHP), Statistics on communicable diseases official website. http://www.chp.gov.hk/en/notifiable1/10/26/43.html.
 Accessed on Jul, 2017.
- [31] The Government of Hong Kong, Food and Environmental Hygiene Department, Pest Control
 website. http://www.fehd.gov.hk/english/safefood/dengue_fever/index.html. Accessed
 on Jul, 2017.

- [32] The Government of Hong Kong, Food and Environmental Hygiene Department (FEHD),
 Press Release official website. http://sc.isd.gov.hk/gb/www.info.gov.hk/gia/general/
 201011/04/P201011040289.htm and http://www.fehd.gov.hk/english/index.html. Accessed
 on Jul, 2017.
- [33] The Government of Hong Kong, Food and Environmental Hygiene Department (FEHD),
 Monthly Average Daily Supply and Auction Prices of Live Pigs. http://www.fehd.gov.hk/
 tc_chi/sh/data/supply_avg_tw.html. Accessed on Aug, 2017.
- ⁴⁰⁵ [34] Ta Kung Pao in Hong Kong, Press Release. (URL). Accessed on Aug, 2017.
- [35] United States Department of Agriculture (USDA), Global Agriculture Information Network
 (GAIN) Reports. http://www.usfoods-hongkong.net/res/mns/00321/HK1330.pdf and http:
 //www.usfoods-hongkong.net/res/mns/00433/HK1524.pdf, accessed on Sep, 2017.
- [36] Konno J. Cyclic outbreak of Japanese encephalitis among pigs and humans. Japanese Journal
 of Tropical Medicine. 1969;10(2):132-3.
- [37] Van den Hurk AF, Ritchie SA, Mackenzie JS. Ecology and geographical expansion of
 Japanese encephalitis virus. Annu Rev Entomol. 2009;54:17-35.
- [38] Tien JH, Poinar HN, Fisman DN, Earn DJ. Herald waves of cholera in nineteenth century
 London. J. R. Soc. Interface. 2010:rsif20100494.

[39] Khan SU, Salje H, Hannan A, Islam MA, Bhuyan AM, Islam MA, Rahman MZ, Nahar N,
Hossain MJ, Luby SP, Gurley ES. Dynamics of Japanese encephalitis virus transmission
among pigs in Northwest Bangladesh and the potential impact of pig vaccination. PLoS
Negl Trop Dis. 2014;8(9):e3166.

- [40] He D, Ionides EL, King AA. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J R Soc Interface. 2010;7:271-83.
- [41] King AA, Nguyen D, Ionides EL. Statistical inference for partially observed Markov processes
 via the R package pomp.J Stat Softw. 2016; 69:1-43.
- [42] King AA. Statistical Inference for Partially-Observed Markov Processes. http://kingaa.
 github.io/pomp/; accessed on Jun, 2017.
- [43] Kodama K, Sasaki N, Inoue YK. Studies of live attenuated Japanese encephalitis vaccine in
 swine. J Immunol. 1968;100(1):194-200.
- ⁴²⁷ [44] Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461-4.
- [45] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180(1):29-48.
- [46] Bartlett MS. The critical community size for measles in the United States. J. R. Stat. Soc.
 Series A (General). 1960:37-44.

- [47] Nåsell I. A new look at the critical community size for childhood infections. Theor Popul
 Biol. 2005;67(3):203-16.
- [48] Allen LJ, Brauer F, Van den Driessche P, Wu J. Mathematical epidemiology. Lecture Notes
 in Mathematics. 2008;1945:81-130.
- [49] Brauer F, Castillo-Chavez C, Mubayi A, Towers S. Some models for epidemics of vector transmitted diseases. Infectious Disease Modelling. 2016;1(1):79-87.
- [50] Camacho A, Kucharski AJ, Funk S, Breman J, Piot P, Edmunds WJ. Potential for large
 outbreaks of Ebola virus disease. Epidemics. 2014;9:70-8.
- [51] Chakraborty MS, Chakravarti SK, Mukherjee KK, Mitra AC. Inapparent infection by
 Japanese encephalitis (JE) virus in West Bengal. Indian J Public Health. 1980;24(3):121-7.
- [52] Gao D, Lou Y, He D, Porco TC, Kuang Y, Chowell G, et al. Prevention and Control of
 Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modeling
 Analysis. Sci Rep. 2016;6:28070.
- [53] Gao X, Liu H, Li M, Fu S, Liang G. Insights into the evolutionary history of Japanese
 encephalitis virus (JEV) based on whole-genome sequences comprising the five genotypes.
 Virol J. 2015;12(1):43.
- [54] Gao X, Liu H, Wang H, Fu S, Guo Z, Liang G. Southernmost Asia is the source of Japanese
 encephalitis virus (genotype 1) diversity from which the viruses disperse and evolve through out Asia. PLoS Negl Trop Dis. 2013;7(9):e2459.
- [55] Grossman RA, Edelman R, Chiewanich P, Voodhikul P, Siriwan C. Study of Japanese encephalitis virus in Chiangmai Valley, Thailand. II. Human clinical infections. Am J Epidemiol. 1973;98:121-32.
- [56] Grossman RA, Edelman R, Willhight M, Pantuwatana S, Udomsakdi S. Study of Japanese
 Encephalitis Virus in Chiangmai Valley, Thailand: III. Human seroepidemiology and inap parent infections. Am J Epidemiol. 1973;98(2):133-49.
- [57] Halstead SB, Grosz CR. Subclinical Japanese Encephalitis I. Infection of Americans with
 Limited Residence in Korea. Am J Hyg. 1962;75(2):190-201.
- [58] Konishi E, Suzuki T. Ratios of subclinical to clinical Japanese encephalitis (JE) virus infections in vaccinated populations: evaluation of an inactivated JE vaccine by comparing the ratios with those in unvaccinated populations. Vaccine. 2002;21(1):98-107.
- [59] Monath TP, Levenbook I, Soike K, Zhang ZX, Ratterree M, Draper K, Barrett AD, Nichols
 R, Weltzin R, Arroyo J, Guirakhoo F. Chimeric yellow fever virus 17D-Japanese encephalitis
 virus vaccine: dose-response effectiveness and extended safety testing in rhesus monkeys. J
 Virol. 2000;74(4):1742-51.

- [60] Pan XL, Liu H, Wang HY, Fu SH, Liu HZ, Zhang HL, Li MH, Gao XY, Wang JL, Sun XH,
 Lu XJ. Emergence of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. J Virol. 2011;85(19):9847-53.
- [61] Ricklin ME, Garcia-Nicolas O, Brechbuhl D, Python S, Zumkehr B, Posthaus H, Oevermann
 A, Summerfield A. Japanese encephalitis virus tropism in experimentally infected pigs. Vet
 Res. 2016;47(1):34.
- [62] Sunwoo JS, Jung KH, Lee ST, Lee SK, Chu K. Reemergence of Japanese Encephalitis in
 South Korea, 2010!V2015. Emerg Infect Dis. 2016;22(10):1841.
- [63] The Government of Hong Kong, Agriculture, Fisheries and Conservation Department
 (AFCD). Imported live pigs. https://www.afcd.gov.hk/English/quarantine/qua_ie/qua_
 ie_ipab/qua_ie_ipab_ilpbp/qua_ie_ipab_ilpbp.html; Accessed on Aug, 2017.
- [64] Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, Grieco J,
 Evans BP. Emergence of Japanese encephalitis virus genotype V in the Republic of Korea.
 Virol J. 2011;8(1):449.
- [65] Williams DT, Daniels PW, Lunt RA, Wang LF, Newberry KM, Mackenzie JS. Experimental
 infections of pigs with Japanese encephalitis virus and closely related Australian flaviviruses.
 Am J Trop Med Hyg. 2001;65(4):379-87.