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Abstract— This paper presents an approximation quantum
projection filtering strategy, aiming to reduce the computational
cost in calculating the standard quantum filter equation in
time. By using a differential geometric approach, the trajectory
of the resulting quantum projection filter is constrained to
evolve in a finite-dimensional differentiable manifold consisting
of an exponential family of quantum density operators. A
convenient design of the differentiable manifold is then de-
veloped through reduction of the local approximation errors,
which allows simplification of the quantum projection filter
equations. Finally, simulation results from a two-level quantum
system example illustrate the approximation performance of the
proposed filtering scheme. The proposed approach is expected
to be of practical use in developing more efficient quantum
control methods.

Index Terms— Quantum projection filtering; open quantum
systems; quantum information geometry; differentiable mani-
fold.

I. INTRODUCTION

The fundamental postulates of quantum mechanics pre-

clude simultaneous measurement of any two non-commuting

observables in a single realization. In other words, any quan-

tum measurement scheme can extract in principle only par-

tial information from the observed quantum system, which

makes any measurement based quantum feedback control

problem necessarily one with partial observations ([10], [13],

[17]). A quantum filter, like its classical counterpart optimal

filter, recursively updates the information state of a quantum

system undergoing continual measurements and provides

the essential real-time knowledge that can be fed back to

the quantum system through appropriately designed control

actuators ([2], [3], [8]). In this way, a measurement based

quantum feedback control problem can be converted into a

control problem for an optimal quantum filter with the state

information fully accessible, as in classical stochastic control

theory. In this quantum control framework, the system and

observations are often described by quantum stochastic dif-

ferential equations, while the quantum filter is a classical

Itô stochastic differential equation due to the fact that a

laboratory measuring setup generates a classical stochastic

signal. In order to implement the quantum feedback control
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setup, the quantum filtering equation has to be calculated in

time, which tends to be computational expensive especially

when the quantum system has a high dimension [15].

In order to make the implementation efficient, several

approaches have been proposed in literature concerning the

approximation of the quantum filter equation, to mention

a few, see [7], [14]. In [7], an extended Kalman filter-

ing approach was developed for a class of open quantum

systems subject to continuous measurement, where a time-

varying linearization is applied to the system dynamics and a

Kalman filter is designed based on the linearized system. The

proposed approach performs well for nearly linear quantum

system. The authors in [14] proposed a numerical approach

to reducing the computational burden associated with calcu-

lating quantum filter and used the approach to demonstrate

a two-qubit feedback control scheme. It was shown by

simulation studies that high approximation accuracy can be

achieved even when a small number of integration steps is

involved.

The main goal of this paper is to approximate the optimal

quantum filter with a lower dimensional quantum projection
filter, motivated by the pioneer works by Brigo, Hanzon

and LeGland for classical filters ([5], [6]). The authors in

[9] had applied the projection filtering approach to a highly

nonlinear quantum model of a strongly coupled two-level

atom in an optical cavity and the infinite-dimensional filter

is reduced to a tractable set of equations. However, the

approach in [9] requires exact prior knowledge of an invariant

set of the filtering equation, which makes the proposed

method applicable only in special situations. In this paper,

we address the problem of quantum projection filtering for

general open quantum systems subject to continuous ob-

servation, using differential-geometric methods in quantum

information geometry theory. The solutions to the quantum

filter are constrained to evolve within a lower-dimensional

differentiable manifold consisting of an exponential family

of quantum density operators, through a projection operation

defined on the tangent space of this manifold. In other words,

the resulting quantum trajectories reduce to a curve on the

lower-dimensional manifold and the filter equation becomes

a set of recursive equations satisfied by the corresponding

coordinate system. A convenient design of this manifold is

also given, aiming to reduce the local approximation errors.

This paper is organized as follows. Section II briefly

introduces the theory of quantum filtering and its typical

physical scenario. In Section III, we first introduce some

mathematical foundations of quantum information geometry,

based on which the equations of quantum projection filter are

then derived. Section IV is devoted to simulation studies,
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where the approximation performance of the proposed filter-

ing scheme is demonstrated using a spin- 1
2 quantum system

example. Section V concludes this paper.

II. QUANTUM FILTER

We sketch the open quantum system model under consid-

eration in this section. More detailed description can refer

to several papers and books ([3], [4], [15], [17]) and the

references therein. A cloud of atoms trapped in a cavity is

in weak interaction with an external laser field that is initially

in the vacuum state and spontaneously emits in all directions.

One of the cavity mirrors, through which a forward mode of

the electromagnetic scatters off, is made slightly leaky such

that information about the atoms can be extracted using a

homodyne detector. Let HS be the Hilbert space of the

finite dimensional atomic system with dim(HS ) = n < ∞.

The probe laser field is modelled by the symmetric Fock

space E that can be decomposed into the past and future

components in the form of a tensor product E = Et]⊗E(t .

The joint system state ρ0 = π0 ⊗ |υ〉〈υ | is given by some

quantum state π0 on HS and the vacuum state |υ〉.
The composite system composed of the atomic system

and the field is assumed to be isolated. Then its temporal

Heisenberg-picture evolution can be then described by a

unitary operator U(t) on the tensor product Hilbert space

HS ⊗E , which satisfies the following Hudson-Parthasarathy

quantum stochastic differential equations1:

dU(t) =
{(

−iH(t)− 1

2
L†L

)
dt +LdB†(t)−L†dB(t)

}
U(t)

with the initial condition U(0) = I. Here i =
√−1 is the

imaginary unit, H(t) is the system Hamiltonian, and the

coupling strength operator L together with the field operator

b(t) = Ḃ(t) models the system probe interaction. Q(t) =
B(t)+B†(t) is the real quadrature of the input laser field.

A homodyne detector is used to continuously monitor the

observable Y (t), which generates a photocurrent that satisfies

dY (t) =U†(t)(L+L†)U(t)dt +dQ(t).

By using the past history of the observation process Y (t),
a quantum filter determines the least-mean-square sense

optimal estimation of the atomic system state that satisfies

the following quantum stochastic master equation [3]:

dρt = L †
L,H(ρt)dt +DL(ρt)dW (t), (1)

with ρ0 = π0. Here L †
L,H is the adjoint Lindblad generator:

L †
L,H(X) =−i[H,X ]+LXL† − 1

2
(L†LX +XL†L),

DL is defined by

DL(X) = LX +XL† −X Tr(X(L+L†)),

and dW (t) = dY (t)−Tr(ρt(L+L†))dt is a classical Wiener

process.

1We have assumed h̄=1 by using atomic units in this paper.

Note that (1) is a classical stochastic differential equation

that is driven by the classical photocurrent signal Y (t) and

can thus be implemented on a classical signal processor.

Equation (1) is widely used in applications including quan-

tum state estimation and quantum feedback control ([10],

[13]), where in time calculation of (1) is essential. However,

one has to calculate a system of recursive Itô stochastic

differential equations with the dimension n2 −1, in order to

determine the conditional probability densities ρt defined on

HS . High computational cost will arise if the atomic system

has a large number of energy levels. It is the main goal of

this paper to reduce the dimension of the filtering equations

while guaranteeing acceptable approximation performance.

III. DESIGN OF AN EXPONENTIAL PROJECTION

QUANTUM FILTER

In this section, we propose a projection filtering approach

to approximating the quantum filter equation in (1), using

differential geometric methods in quantum information ge-

ometry theory. The basic idea of the projection filtering

strategy is illustrated in Fig. 1. We consider to apply a pro-

jection operation to a space of quantum density operators and

map the optimal quantum filter equation onto a fixed lower-

dimensional submanifold. A natural basis will be derived for

the tangent space in each point of this submanifold, and a

local projection operation can be defined with respect to a

quantum Fisher metric to map the infinitesimal increments

generated by the quantum filter equation onto such tangent

spaces. The resulting stochastic vector field on the subman-

ifold then defines the dynamics of the approximation filter.

In this paper, we consider to use a submanifold consisting

of an exponential family of quantum density operators. It

is noted that quantum density operators in the exponential

form is useful in practice, examples being Gaussian states

and general thermal states [12].

A. Some Preliminaries on Quantum Information Geometry

This subsection will be introducing some foundations of

the quantum information geometry theory. Detailed formu-

lation can be found in Chapter 7 from the book [1]. Denote

the set of all self-adjoint operators on the Hilbert space HS

by

A= {A|A = A†}. (2)

Subsequently, we focus on the geometry of the totality of

nonnegative self-adjoint operators which is denoted by

Q= {ρ|ρ ≥ 0,ρ ∈ A}. (3)

Q is an open subset of A and hence is naturally regarded

as a real manifold of dimension dim(Q) = n2. Apparently,

the tangent space at each point ρ to Q, which is denoted by

Tρ(Q), is identified with A.

When a tangent vector X ∈ Tρ(Q) is considered as an

element of Tρ(Q) by this identification, we denote it by

X (m) and call it the m-representation of X . When a coordinate

system [ε i] is given on Q so that each state is parameterised
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Fig. 1. Cartoon illustrating the basic ideas of projection filtering ([5], [6]).
The solid black line in the upper half of the figure represents a quantum
trajectory which flows within a higher dimensional space. The vector field
(the black arrows) along the curve represents the temporal filter dynamics.
The tangent vectors at each point live in a linear space called tangent
vector space. In the bottom half of the figure, we build a lower dimensional
submanifold which is embedded in the higher dimensional space. We aim
to make the solutions to the optimal filter remain in the finite dimensional
submanifold. This can be done if we project the linear tangent vector space
of the higher dimensional space to the tangent vector space of the finite
dimensional one, and make the two solid lines start from the same initial
point.

as ρε , the m−representation of the natural basis vector of

the tangent vector space is identified with

(∂i)
(m) = ∂i, (4)

where ∂i := ∂ρ/∂ε i. Assuming {∂i} are linear independent,

then we have

Tρ(Q) = Span{∂i}. (5)

A differentiable manifold is not naturally endowed with

an inner product structure. We need to add to the manifold

a Riemannian structure. To be specific, we define a Rieman-

nian metric on Q. The Bogoliubov inner product is employed

to define the inner product {	,
ρ ,ρ ∈Q} on A [1]:

	 A,B 
ρ=
∫ 1

0
Tr(ρλ Aρ1−λ B)dλ ,∀A,B ∈ A. (6)

Based on this inner product, we define another useful

representation called e− representation of a tangent vector

X ∈ Tρ(Q) as the self-adjoint operator X (e) ∈ A satisfying

	 X (e),A 
ρ= Tr(X (m)A),∀A ∈ A. (7)

Using the e−representation defined above, we define an

inner product 〈,〉 on Tρ(Q) by

〈X ,Y 〉ρ =	 X (e),Y (e) 
ρ

= Tr(X (m)Y (e)),∀X ,Y ∈ Tρ(Q). (8)

Then g = 〈,〉 forms a Riemman metric on Q which may

be regarded as a quantum version of the Fisher metric. The

components of this metric are given by

gi j =
〈
∂i,∂ j

〉
ρ = Tr(∂ (m)

i ∂ (e)
j ). (9)

B. Design of the Quantum Projection Filter

Section III-A has demonstrated the differential geometric

structure of the quantum state space. The main aim of this

subsection will be deriving the quantum projection filter

equation. We start from the unnormalized version of the

quantum filter equation in (1):

dρ̄t = L †
L,H(ρ̄t)dt +

(
Lρ̄t + ρ̄tL†

)
dY (t), (10)

where ρ̄t is the unnormalized information state corresponding

to ρt such that ρt = ρ̄t/Tr(ρ̄t). ρ̄t is nonnegative and self-

adjoint, and is initially set to be ρ̄0 = ρ0 = π0.

In the subsequent analysis, we will focus on the unnor-

malized filter equation (10) since its linear form is easier to

manipulate compared with the nonlinear filter equations in

(1). However, it is worth mentioning that in order to illustrate

this dynamical equation using a differential manifold struc-

ture, we must interpret the above system using Stratonovich

integral theory because Itô’s rule is incompatible with man-

ifold structure [5]. We have the following result.

Lemma 1. The Itô quantum stochastic differential equa-

tion in (10) is equivalent to the following Stratonovich

quantum stochastic differential equation:

dρ̄t = (−i[H, ρ̄t ]−SL(ρ̄t))dt +
(
Lρ̄t + ρ̄tL†

)◦dY (t). (11)

where SL(ρ̄t) =
(L+L†)Lρ̄t+ρ̄t L†(L+L†)

2 .

Now we design the quantum projection filter following the

scheme illustrated in Fig. 1. It follows from (11) that the two

terms −i[H, ρ̄t ]−SL(ρ̄t) and Lρ̄t + ρ̄tL† on the right hand

side of the equation are vectors in A. The submanifold is

designed to be a C∞ manifold consisting of an exponential

family of unnormalized quantum density operators.

S= {ρ̄θ}=
{

e∑m
i=1 θiAi

}
, (12)

where the submanifold operators Ai, i ∈ {1,2, ...,m} ∈ A are

self-adjoint and predesigned. We suppose that the entire

submanifold S can be covered by a single coordinate chart

(S,θ = (θ1, ...,θm) ∈ Θ), where Θ is an open subset of ℜm.

Then we have dim{S}= m.

According to the chain rule in Stratonovich stochastic

calculus, we have

dρ̄θ =
m

∑
i=1

∂̄i ◦dθi, (13)

where ∂̄i := ∂ ρ̄θ/∂θi. Assuming the set {∂̄1, ..., ∂̄m} is lin-

early independent, then this set forms an m−representation

of the natural basis of Tρ̄θ (S), i.e., the tangent vector space

at each point ρ̄θ to S. We have

Tρ̄θ (S) = Span{∂̄i}, i = 1, ...,m. (14)

A useful formula for density operators of the exponential

form (12) is [16]

∂ ρ̄θ
∂θi

=
∫ 1

0
ρ̄λ

θ
∂i log ρ̄θ

∂θi
ρ̄1−λ

θ dλ . (15)
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It then follows directly from (6) and (7) that ∂̄ (e)
i = Ai. Thus

the components of the quantum Fisher metric are given by

gi j(θ) =	 ∂̄ (e)
i , ∂̄ (e)

j 
ρ̄θ

=
∫ 1

0
Tr(ρ̄λ

θ Aiρ̄1−λ
θ A j)dλ . (16)

The quantum Fisher information matrix is an m × m di-

mensional real matrix given by G(θ) = (gi j(θ)). Then an

orthogonal projection operation Πθ can be defined for every

θ ∈ Θ as follows:

A −→ Tρ̄θ (S)

ν �−→
m

∑
i=1

m

∑
j=1

gi j(θ)
〈
ν , ∂̄ j

〉
ρ̄θ

∂̄i, (17)

where the matrix
(
gi j(θ)

)
is the inverse of the quantum

information matrix G(θ).
Now we are ready to formulate the projection quantum

filter. Consider a curve in S around the point ρ̄θ to be of the

form t �→ ρ̄θt . This corresponds to a real curve γ : t �→ θt in Θ
around the real vector θ , though the coordinate chart (S,θ).
Let us consider that (11) starts from the initial condition π0 =
ρ̄θ0

for some θ0 ∈ Θ. The unnormalized quantum projection

filter is then defined as the following quantum stochastic

differential equation on the m-dimensional differentiable

manifold S:

dρ̄θt = Πθt (−i[H, ρ̄θt ]−SL(ρ̄θt ))dt

+Πθt

(
Lρ̄θt + ρ̄θt L

†
)◦dY (t). (18)

From the definition of the manifold S in (12), the pro-

jection quantum filter can be equivalently written using the

equations satisfied by the real curve γ in Θ. Denote θt =
(θ1(t), ...,θm(t))′. An explicit form of the curve equations is

given in the following theorem.

Theorem 1. The real curve γ : t �→ θt satisfies the following

recursive stochastic differential equations:

dθt = G(θt)
−1{Ξ(θt)dt +Γ(θt)◦dY (t)}, (19)

where Ξ(θt) and Γ(θt) are both m−dimensional column

vector of real functions on θt . The jth element of them are

given by

Ξ j(θt) = Tr

{
ρ̄θt

(
i[H,A j]− A j(L+L†)L+L†(L+L†)A j

2

)}
,

and

Γ j(θt) = Tr(ρ̄θt (A jL+L†A j)),

respectively.

Proof. Submitting the chain rule (13) into (18) yields

dρ̄θt =
m

∑
i=1

∂̄i ◦dθi(t)

=
m

∑
i=1

m

∑
j=1

gi j(θ)Tr((i[ρ̄θt ,H]−SL(ρ̄θt ))A j)∂̄idt (20)

+
m

∑
i=1

m

∑
j=1

gi j(θ)Tr((Lρ̄θt + ρ̄θt L
†)A j)∂̄i ◦dY (t)

=
m

∑
i=1

m

∑
j=1

gi j(θ)Tr(ρ̄θt (i[H,A j]−S †
L (A j)))dt∂̄i

+
m

∑
i=1

m

∑
j=1

gi j(θ)Tr(ρ̄θt (A jL+L†A j))◦dY (t)∂̄i, (21)

from which (19) can be concluded. �
The stochastic differential equation (19) combined with

the equation (13) determines the unnormalized projection

quantum density operator. In this paper, (19) is called the

unnormalized projection quantum filter. The approximation

quantum information state ρ̃t can be then simply obtained

as ρ̃t = ρ̄θt/Tr(ρ̄θt ). It can be observed that only a system

of stochastic differential equation with the dimension m is

needed to be calculated in order to determine ρ̃t . Thus the

computational cost would be reduced significantly if the

number m is chosen to be small.

C. Design of the Submanifold

The design procedure in Subsection III-B requires a

predesign of the submanifold operators Ai, i = 1, ...,m. A

convenient design of these self-adjoint operators will be

given in this subsection.

In fact, the proposed approximation scheme in Subsection

III-B is implemented through two steps. First, the right-

hand side of (11) is evaluated at the current projection filter

quantum density operator ρ̄θ(t) on S, instead of the true

density operator ρ̄t . However, the right-hand side vectors

−i[H, ρ̄t ]−SL(ρ̄t) and Lρ̄t + ρ̄tL† will generally make the

solution leave the manifold S. Thus a second approximation

is made by projecting these vector fields onto the linear

tangent vector space Tρ̄θ (S). In this section, we will present

a design of the submanifold S by concerning the local error

for the quantum projection filter occurring in the second
approximation step at time t.

Following the similar idea as in [5], we define at each

point ρ̄θt the prediction residual as

P(ρ̄θt ) = Πθt (i[H, ρ̄θt ])− i[H, ρ̄θt ], (22)

and the correction residuals as

C1(ρ̄θt ) = Πθt (SL(ρ̄θt ))−SL(ρ̄θt ) (23)

and

C2(ρ̄θt ) = Lρ̄θt + ρ̄θt L
† −Πθt (Lρ̄θt + ρ̄θt L

†), (24)

respectively.

We will first show below that the submanifold can be

designed in such a way that the correction residual C2 is

identically zero for all t ≥ 0, which allows us to estimate the

local error from the projection in terms of a single residual

operator P+C1.

For any given real vector θt , denote Λ = ∑m
i=1 θiAi. Define

the adjoint operator adΛ by iterated commutators:

ad0
Λ(X) = X , and ad j

Λ(X) = [Λ,ad j−1
Λ (X)], j ≥ 1. (25)
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Theorem 2. The correction residual C2 ≡ 0 for all t ≥ 0

if there exists a set of scalar functions {ξi(θt), i = 1, ...,m}
such that

L+ f (adΛ)(L†) =
m

∑
i=1

ξi(θt)h(adΛ)(Ai), (26)

where the generating functions f and h are given by

f (t) = et and h(t) =
et −1

t
.

Proof. By using the nested-commutator relation

ρ̄θ L†ρ̄−1
θ = eΛL†eΛ

= L† +[Λ,L†]+
1

2!
[Λ, [Λ,L†]]+ ...

=
∞

∑
k=0

1

k!
adk

Λ(L
†) = f (adΛ)(L†). (27)

Similarly,

∂ ρ̄θ
∂θi

=
∫ 1

0
ρ̄λ

θ Aiρ̄1−λ
θ dλ

=
∫ 1

0
ds

(
Ai + s[Λ,Ai]+

s2

2!
[Λ, [Λ,Ai]]+ ...

)
ρ̄θ

=

(
Ai +

1

2!
[Λ,Ai]+

1

3!
[Λ, [Λ,Ai]]+ ...

)
ρ̄θ

=
∞

∑
k=0

1

(k+1)!
adk

Λ(Ai)ρ̄θ = h(adΛ)(Ai)ρ̄θ . (28)

Thus (26) implies that Lρ̄θt + ρ̄θt L
† = ∑m

i=1 ξi(θt)∂̄i, which

means that the vector Lρ̄θt + ρ̄θt L
† already lie in the tangent

vector space Tρ̄θ (S). It then follows from the definition of

the projection operation in (17) that C2 ≡ 0. �
The Lie algebraic equation (28) provides a general guide-

line for the submanifold design. For a special class of open

quantum systems, we have the following result.

Theorem 3. Suppose the coupling operator L is self-

adjoint and admits a spectral decomposition L = ∑n0
i=1 λiPLi ,

where n0 ≤ n is the number of the nonzero eigenvalues of L.

The correction residuals C1 and C2 are both identically zero

for all t ≥ 0, if the submanifold has a dimension m = n0 and

the submanifold operators {Ai} are designed as

Ai = PLi , i = 1, ...,n. (29)

Moreover, the unnormalized projection quantum filter re-

duces to

dθt = G(θt)
−1 Tr(iρ̄θt [H,A j])dt −2αdt +2βdY (t), (30)

where α = (λ 2
1 , ...,λ

2
n0
)′ and β = (λ1, ...,λn0

)′.
Proof. Theorem 3 follows from Theorems 1 and 2, and

the proof is omitted here due to space limitation. �

IV. NUMERICAL SIMULATIONS

In this section, simulation results from a spin- 1
2 system

example is used to illustrate the performance of the proposed

approximation filtering method. With the spin- 1
2 system, the

Hilbert space of the system is given by HS = C
2 and the

quantum density matrix can be represented as

ρt =
1

2
(I2 + xtσx + ytσy + ztσz), (31)

where (xt ,yt ,zt) = (Tr(ρtσx),Tr(ρtσy),Tr(ρtσz)) ∈ R
3 is the

Bloch vector of ρt , and σx,σy,σz are Pauli matrices described

by

σx =

(
0 1

1 0

)
,σy =

(
0 −i
i 0

)
and σz =

(
1 0

0 −1

)
.

The representation described in (31) forms an isomor-

phism between the state space of a two-level quantum system

and the state space of Bloch vectors which is described by

{(x,y,z) ∈ R
3 : x2 + y2 + z2 ≤ 1}.

Following the similar experimental settings as in [10],

where the spin- 1
2 system interacts with a laser field along

the z−axis, the coupling operator L =
√μσz, where μ > 0

represents the coupling strength of the interaction between

the atomic system and the field. Let the system Hamilto-

nian be H = ωz
2 σy, where ωz is the two-level pulsation. A

straightforward computation yields

LρtL† − 1

2
L†Lρt − 1

2
ρtL†L = μ(−xtσt − ytσy)

−i[H,ρt ] =
ωz

2
(ztσx − xtσz)

√
μ(−xtztσx − ytztσy +(1− z2

t )σz) = DL(ρt)

Then the filter equation in (1) can be equivalently written as⎧⎨
⎩

dxt = (−2μxt +ωzzt)dt −2
√μxtztdW (t)

dyt =−2μytdt −2
√μytztdW (t)

dzt =−ωzxtdt +2
√μ(1− z2

t )dW (t)

Since L is self-adjoint, Theorem 3 can be used to design

the submanifold. According to Theorem 3, the two subman-

ifold operators can be given by

A1 = PL1
=

(
1 0

0 0

)
and A2 = PL2

=

(
0 0

0 1

)
,

respectively, where PL1
and PL2

are the two projection

operators of L though spectral decomposition. As a result,

the unnormalized quantum projection filter becomes that in

(30) with λ1 =
√μ and λ2 =−√μ .

In the simulation, the photocurrent is simulated from

dY (t) = Tr(ρt(L+L†))dt + dW (t) and is used to drive the

unnormalized quantum projection filter. Monte Carlo sim-

ulations have been conducted by using the discretization

approach as in [11]. The simulation parameters used are

as follows: the simulation interval t ∈ [0,T ] with T = 5,

the normally distributed variance is δ t = T/N0 with N0 =
212, and the step size is chosen to be Δt = 2δ t. Let the

initial quantum density matrix be given by a Bloch vector

(x0,y0,z0) = (−0.5,0.5,0), μ = 1, and ωz = 0.2.

The performance of the proposed approximation filtering

scheme is demonstrated by comparing the probabilities that

the atomic system is in the excited state, calculated using

the quantum filter equation and the quantum projection filter

equation, respectively. A number of simulations have been
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Fig. 2. Trajectories of the quantum filter and the quantum projection filter
respectively
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Fig. 3. Approximation error between the quantum filter and the quantum
projection filter

conducted and it is found that the two probabilities are very

close along the time. Simulation results from one particular

experiment are presented in Fig. 2 and Fig. 3, respectively.

V. CONCLUSIONS

In this paper, a quantum projection filtering strategy is

developed for open quantum systems subject to continuous

homodyne detection. The quantum information geometry

theory is used as the basic tool for deriving the quantum

projection filter equation. Simulation results from a two-

level quantum system suggest that the quantum projection

filter is able to approximate the quantum filter with high

accuracy. Further research topics include analysis of the

approximation error bounds and extension of the approach

to infinite dimensional quantum systems case.

APPENDIX

Proof of Lemma 1. Let t0 < t1 < t2... < tp < T be a partition

of any time interval [t0,T ] and let the positive integer p be

big enough. A direct discretization of the filter equation (10)

yields

ρ̄ti+1
� ρ̄ti +(−i[H, ρ̄t ]−SL(ρ̄t))Δti

+
(
Lρ̄t + ρ̄tL†

)
ΔY (ti), i = 0,1, ..., p−1, (32)

where Δti = ti+1 − ti and ΔY (ti) = Y (ti+1)−Y (ti).
It is noted that Y (t) is a classical Wiener process. Thus,

when p → ∞, one has ΔY (ti)ΔY (ti) = Δti and ΔY (ti)Δti = 0.

From the definition of Stratonovich integral and (32), one

has

(s)
∫ T

t0
Lρ̄t + ρ̄tL† ◦dY (t)

= lim
p→∞

p

∑
k=0

L(ρ̄tk+1
+ ρ̄tk)+(ρ̄tk+1

+ ρ̄tk)L
†

2
ΔY (tk)

= (I)
∫ T

t0
Lρ̄t + ρ̄tL†dY (t)

+ lim
p→∞

p

∑
k=0

L(Lρ̄tk + ρ̄tk L†)+(Lρ̄tk+1
+ ρ̄tk L†)L†

2
Δt(tk)

= (I)
∫ T

t0
Lρ̄t + ρ̄tL†dY (t)

+
1

2

∫ T

t0
LLρ̄t + ρ̄tL†L† +2Lρ̄tL†dt. (33)

Lemma 1 can be obtained by submitting (33) into (10). �
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