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Abstract: A novel approach, termed frequency subspace amplitude flow (FSAF), is proposed to
reconstruct complex-valued signal from “phaseless” measurements. The proposed FSAF consists of
two stages: The first stage approximates low-frequency coefficients of an unknown signal by spectral
method, and the second stage refines the results by truncated conjugate gradient of amplitude-
based nonconvex formulation. FSAF is easy to implement and applicable to natural images, where
no additional constraint is needed. Extensive experiments with 1D signals, 2D images and natural
images corroborate significant improvements by using the proposed FSAF method over the state
of the art. Especially for sample complexity, FSAF pushes state-of-the-art for exactly reconstructing
complex natural signals (with a size of n) from 3.2n to 2.2n under Gaussian model, and from 5n
to 3n under coherent diffraction pattern (CDP) model without increasing computational complexity.
More importantly, the proposed method is highly flexible and can be easily adapted to the existing
algorithms under different noise models.

Index Terms: Phase retrieval, frequency subspace, spectral method, coherent diffraction pattern.

1. Introduction
Phase retrieval (PR), which aims to reconstruct an unknown signal or image from phaseless
measurements, is related with quadratic equations of the form:

yi = |aHi z|2, i = 1, 2, ...,m, (1)

where m is the total number of measurements, superscript H denotes the Hermitian transpose, z
is a complex vector with the size of n× 1 to be recovered, ai is the ith measurement vector, and
yi is the ith magnitude-squared observation of the linear measurement of any complex vector z.
Algorithmic PR plays an important role in science and engineering, such as coherent diffraction
imaging [1], [2], digital holographic microscopy [3], and optical encryption [4], [5], [6].

Due to the significance of PR problem, numerous algorithms have been developed. Alternating
projection method, which was proposed by Gerchberg and Saxton (GS) [7], is most widely used.
Later, Fienup has improved GS algorithm and proposed a hybrid input-output method (HIO) [8] by
applying certain constraints. Over the years, numerous PR algorithms have been proposed based
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on GS and HIO, such as difference map [11], guided HIO [12], and particle swarm optimization
[13]. The major drawback of GS algorithm and its modified methods would be that it is very difficult
to ensure the convergence theoretically due to the use of projections onto nonconvex constraint
set [9], [10]. In addition, these methods combined with oversampling tend to return solutions that
depend on an initial guess, which means that different runs return different solutions [14]. Thus,
different random values are widely used in the initial step to obtain a better reconstruction result.
In many cases, it is difficult to distinguish a better reconstruction result since one does not know
the details of specimen under test.

Recently, some theoretically convergent algorithms have also been proposed. Among them,
PhaseLift algorithm converts the non-convex problem into a convex one by using lift technique
of semi-definite programming (SDP) [15]. However, this approach requires a lift of matrix and
thus highly increases computational cost. A gradient descent scheme, i.e., Wirtinger flow (WF)
algorithm, has later been reported and is demonstrated to allow exact recovery of the phase
from magnitude measurements [16]. Recently, to reduce sample complexity and increase conver-
gence rate of WF, improved algorithms have been proposed such as conjugate gradient Wirtinger
flow (CGWF)[17], truncated Wirtinger flow (TWF) [18], truncated amplitude flow (TAF) [19], and
stochastic truncated amplitude flow (STAF) [20]. Moreover, signal priors, such as sparsity or
constraints, are incorporated into the algorithms [21], [22], [23].

In this paper, we propose a frequency subspace amplitude flow (FSAF) approach to reconstruct
natural signals from “phaseless” measurements. The proposed FSAF consists of two stages: The
first stage approximates low-frequency coefficients of an unknown signal by spectral method,
and the second stage refines the results by truncated conjugate gradient of amplitude-based
nonconvex formulation.

The motivation of the first stage of FSAF lies in the fact that, from the statistics [24], most
information of natural images is concentrated in low spatial frequency bands. At the first stage,
there are some well-known algorithms such as WF [16], TWF [18], TAF [19], and STAF [20], which
focus on finding the approximation of a complex signal z with a size of n× 1. Instead, this paper
finds the approximation of low-frequency coefficients c of z at the first stage, where c is with a size
of s×1. Since low spatial frequency bands can be represented by using only a few low-frequency
coefficients, we have s� n, which means a significant reduction in the number of unknowns. Thus,
the proposed FSAF is able to largely reduce sample complexity compared with other algorithms.
The motivation for the second stage of FSAF is that, in previous algorithms with amplitude gradient
such as TAF [19] and STAF [20], a gradient descent direction is used, which makes the methods
easily take steps in the same direction as the earlier steps and consequently move zigzag to the
solution. Instead, this paper adopts conjugate gradient of the amplitude-based objective function,
which combines the derivative linearly with previous search directions, and move to the solution
with fewer steps. Moreover, an adaptive optimized step size is used in FSAF instead of a constant
step size in TAF [19].

Notation: We use bold uppercase and lowercase letters to represent matrices and vectors,
respectively. Re(·) represents real part of a complex valued number, and | · | denotes absolute
value of a real number or the modulus of a complex number. Furthermore, we use || · || and || · ||F
to denote Euclidean norm and Frobenius norm, respectively. Finally, j =

√
−1 is used to denote

imaginary unit.

2. Algorithm: Frequency Subspace Amplitude Flow
To recover an unknown signal z in (1), the following intensity-based objective function [16], [18]:

min f1(z) =
1

2m

m∑
i=1

(|aHi z|2 − yi)
2
, (2)
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or the amplitude-based objective function [19], [20] is usually used

min f2(z) =
1

2m

m∑
i=1

(|aHi z| − √yi)
2
. (3)

2.1. Frequency Subspace Initialization
Let A be the m× n matrix whose ith row is aHi , (1) can be easily transformed as y = |Az|2 with
the ith element in y be yi. In WF method [16], the initialization z0 is calculated via a spectral
method, i.e., z0 calculated as the leading eigenvector of AH diag(y)A by power iteration method.

In the first stage of FSAF, z0 is approximated by its the low-frequency coefficients c0 by power
iteration method with

z0 = f1c1 + f2c2 + ...+ fscs = Flc0. (4)

Here, Fl is low-frequency subspace matrix with the size of n × s, and is composed by low-
frequency Fourier bases as [f1, f2, ..., fs]. Specifically, for one dimension (1D) case, element Fg,h
in Fourier matrix F is calculated as Fg,h = e(−2πj((g−1)(h−1)/n)). [f1, f2, ..., fs] is the low-frequency
bases chosen from F. In practice, Flc0 can be easily calculated by using fast Fourier transform
(FFT) by padding c0 with zeros for high-frequency coefficients. The details of padding methods
for both 1D and 2D cases will be discussed in numerical experiments.

In the power iteration method of FSAF, truncated intensity yt = y ◦ γ{y ≤ α2φ} [18] is used to
approximate c0, where “◦” denotes Hadamard product. Here, γ is a logical matrix with element
being 1 when the condition y ≤ α2φ is satisfied. If the condition is not satisfied, then the value
is equal to zero. φ is the mean value of y and α is a constant parameter around 2.5. The
implementation procedure of initialization in the proposed FSAF method is to calculate the leading
eigenvector of (AFl)

H
diag(yt)AFl by power iteration method, and the details can be described

as:

• Step 1) Let n = 1, randomly generate a frequency coefficient vector c0, and normalize it with
c0 = c0/||c0||F .

• Step 2) Calculate c′0 = (AFl)
H(yt ◦AFlc0). Here, the multiplication of FHl or Fl with a vector

or matrix can be calculated by FFT or inverse fast Fourier transform (IFFT), respectively.
• Step 3) Update c0 as c0 = c′0/||c′0||F .
• Step 4) If n =Mite (Mite = 20 in this paper), stop the iteration and z0 =

√
φFlc0. Otherwise,

let n = n+ 1, and go to step 2).

2.2. Truncated conjugate gradient stage
In TAF [19], the second stage iteratively updates zk+1 for k = 0, 1, 2, ... by using the following
equation:

zk+1 = zk − αkdtk, (5)

where stepsize αk is empirically chosen around 0.6 for TAF method. The search direction dtk is
the truncated gradient of amplitude-based objective function [19]

dtk =
1

m

∑
i∈βk

(aHi zk −
√
yi

aHi zk
|aHi zk|

)ai, (6)

where βk := {1 ≤ i ≤ m| |a
H
i zk|√
yi
≥ 1

1+γ0
} with a constant parameter γ0 around 0.7.

In the second stage of the proposed FSAF method, instead of directly using truncated derivative
of amplitude-based objective function, Polak-Ribière-Polyak (PRP) direction [25] is used as the
direction for updating zk+1 in (5). Specifically, dtk in Eq. (5) is replaced by vk, where vk is
calculated as follows: If k = 0, then v0 = dt0; Otherwise [26],

vk = dtk − (Re[dHtk · (dtk − dtk−1)]/||dtk−1||2)vk−1 (7)
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Fig. 1. Original signals: (a) Real and imaginary part of complex signal zs1 with 1000 × 1 pixels; (b)
Amplitude and (c) phase part of complex image zs2 with 300 × 300 pixels1; (d) Natural image zs3
with 1080× 1920× 3 pixels2.

The stepsize in FSAF method is chosen as the same as that used in modified Wirtinger flow
(MWF) method [27] instead of a empirical value, which is one of the roots of the following univariate
cubic equation of αk:

acα
3
k + bcα

2
k + ccαk + dc = 0, (8)

where various constant coefficients are given by ac =
m∑
i=1

|hi|4, bc = −3
m∑
i=1

µi|hi|2, cc =
m∑
i=1

ri|hi|2+

2µ2
i , and dc = −

m∑
i=1

uiri. Here, hi = aHi vk, µi = Re((aHi zk)
∗hi), and ri = |aHi zk|2 − yi with “∗”

denoting complex conjugate. A closed-form solution of cubic equation (8) can be easily calculated.
Finally, the complete implementation procedures of the proposed FSAF method are summarized

as follows:

• Step 1) Initial step, k = 0; Calculate the initial value c0 based on the power iteration method
and obtain z0 =

√
tFlc0.

• Step 2) Determine the search direction: Calculate truncated gradient of amplitude-based ob-
jective function dtk according to (6). Then determine the Polak-Ribière-Polyak (PRP) direction
vk according to (7).

• Step 3) Determine the search length αk according to the roots in (8).
• Step 4) Update zk+1 = zk − αkvk.
• Step 5) If the predefined termination condition (such as reaching a maximum iteration) is

satisfied, stop the iteration. Otherwise, let k = k + 1, and go to step 2).

2.3. Computational complexity
For algorithms such as TWF, TAF, and STAF under Gaussian model, it requires at most O(log(1/ε))
iterations to achieve ε-accuracy with iteration cost O(mn) [18], [19], [20]. For the proposed method,
the only difference with TAF in terms of computational complexity is that an addition FFT operation

1https://homepages.cae.wisc.edu/ ece533/images
2Downloaded from http://pics-about-space.com/milky-way-galaxy.
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Fig. 2. Low-frequency coefficients c0 in FSI for 1D signal and 2D signal.

is added before two matrix-vector multiplications at the initial stage. The computational cost for
the FFT operation is O(n log(n)), which is much smaller than O(mn) considering n ≤ m. Thus,
the proposed method has the same computational cost with TAF.

3. Numerical Experiments
We present numerical experiments to illustrate the performance of the proposed FSAF algorithm.
Both Gaussian and CDP models are considered. For the Gaussian model, ai ∼ N(0, I/2) +
jN(0, I/2). For CDP models, we collect the data in the form of [18], [19]

y(l) = |FD(l)z|2, 1 ≤ l ≤ L, (9)

which means that m = nl. Here, F is the DFT matrix and D(l) is a diagonal matrix whose
diagonal entries are randomly drawn from {1, −1, j, −j}, which models signal modulation before
diffraction.

Two performance evaluation metrics were used: the first one is normalized mean square error
(NMSE) as a function of number of iterations, where NMSE is calculated by

NMSE = ||zk − z||F /||z||F , (10)

where z is the true signal, and zk is the signal recovered at the kth iteration. It should be noted
that zk is multiplied by a constant value to get rid of the effect of a constant phase shift. The
second one is empirical success rate among 100 independent runs with different random initials,
in which success is declared when the returned NMSE is less than 10−5 [16], [20].

Tests with noise models are also conducted. Specifically, we consider and discuss two noise
models: The first one adds Gaussian noise by amplitude-type [19], [20], [28] with

√
y = |Az+ na|, (11)

and the amplitude-based noise ratio Ra is quantified by Ra = (||na||F /||
√
y||F )×100%. The second

one adds Gaussian noise by intensity-type [18], [29] with

y = |Az|2 + ni (12)

and the intensity-based noise ratio Ri is quantified by Ri = (||ni||F /||y||F )× 100% .
As shown in Fig. 1, three complex signals including 1D signal, 2D image, and natural image

are considered in this section. PR for 1D signals arises in various fields, such as fiber optics [30],
speech recognition [31], and terahertz communications [32]. In coherent diffractive imaging [1],
[2], [33] or Fourier ptychography [34], PR of 2D images and natural images also plays a crucial
role. The first complex signal zs1 shown in Fig. 1(a) is a combination of a few sinusoids with
1000 × 1 pixels and represents a transfer function one might encounter in optics [15]. The 2D
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Fig. 3. The average NMSEs obtained from 100 independent trials with: frequency subspace
initialization (FSI) proposed in this paper, variance-reducing orthogonality-promoting initialization (VR-
OPI) in STAF [20], orthogonality-promoting initialization (OPI) in TAF [19], truncated spectral (TS) in
TWF [18]. (a) Average NMSE after initialization for zs1 varying with sampling complexity m/n under
Gaussian model; (b) Average NMSE after initialization for zs2 varying with sampling complexity m/n
under CDP model.

Fig. 4. Empirical probability of success based on 100 random trials for 1D complex signal zs1 under
Gaussian model with a varied number of measurements.

complex signal zs2 tested under CDP model consists of the widely used “Cameraman” amplitude
in Fig. 1(b) and “Baboon” phase in Fig. 1(c), where both amplitude and phase are with 300× 300
pixels. Finally, the natural image Milky Way Galaxy zs3 in Fig. 1(d) with 1080× 1920× 3 pixels is
studied under CDP model, and results are compared with those reported in [16], [35], [19], [20].

3.1. Performance of Frequency Subspace Initialization
We study the performance of the proposed frequency subspace initialization (FSI) for recovering
zs1 and zs2 under Gaussian and CDP models, respectively. As shown in Fig. 2, the high-frequency
coefficients part of c0 are padded with zeros, where s is empirically chosen around 10 and 30 for
1D and 2D signals, respectively. Besides the proposed FSI, three other initialization schemes are
also studied, including variance-reducing orthogonality-promoting initialization (VR-OPI) in STAF
[20], orthogonality-promoting initialization (OPI) in TAF [19], truncated spectral (TS) in TWF [18].
For fair comparisons, all the parameters pertinent to implementation of each algorithm are set to
their suggested values. The average NMSEs varying with sample complexity (m/n) obtained from
100 independent trials using the four initialization schemes are presented in Fig. 3. Apparently,
the proposed initialization method returns much more accurate and robust estimates than the
existing methods in the literatures, where the returned NMSEs after initialization are 0.2 and 0.5
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TABLE I
COMPARISONS OF SAMPLE COMPLEXITY UNDER CDP MODEL FOR RECOVERING 2D COMPLEX IMAGE zs2 AND NATURAL

MILKY WAY GALAXY IMAGE zs3 .

Algorithm L (zs2) L (reported for zs3)
WF [16] 13 20 [16]

TWF [18] 7 6 [35]
TAF [19] 5 6 [19]

STAF [20] NA1 8 [20]
The proposed FSAF method 3 3

Fig. 5. Performance of the proposed FSAF algorithm on natural Milky Way Galaxy image zs3 with
1080× 1920× 3 pixels for (a) L = 2 masks and (b) L = 3 random masks at the 150th iteration. For
L = 2 case, NMSEs after initialization and 150 iterations are 0.43 and 0.15, respectively. For L = 3
case, NMSEs after initialization and 150 iterations are 0.43 and 7.9e−16, respectively.

in FSI for Gaussian and CDP models, respectively.

3.2. Phase Retrieval via Frequency Subspace Amplitude Flow
The second experiment evaluates performance of PR via the proposed FSAF method. Fig. 4
presents the empirical probability of success based on 100 random trials for 1D complex signal
zs1 under Gaussian model with a varied number of measurements. It shows that 2.2n Gaussian
phaseless measurements suffice for exact recovery (NMSE ≤ 10−5) with high probability (≥ 95%)
via the proposed FSAF approach. On contrary, it needs around 3.2n and 3.4n for exact recovery
via STAF and TAF, respectively. For TWF and WF methods, around 4.4n and 4.7n phaseless mea-
surements are needed, respectively. These results verify significant improvement of the proposed
FSAF method on 1D complex signal.

We further test the method on various images with different sizes. Table I presents sample
complexity (L) under CDP model for recovering 2D complex image zs2 and natural Milky Way
Galaxy image zs3. To recover complex image zs2, 100 independent random trials with different
initializations are conducted to compare the success rate of different algorithms. For an exact
recovery (NMSE ≤ 10−5) with high probability (≥ 95%), it needs only L = 3 masks for the
proposed method, which is much smaller than state-of-the-art, where L = 5 masks are needed
for TAF method. Fig. 5 presents the reconstructed results of the proposed FSAF algorithm on
natural image Milky Way Galaxy zs3 with 1080×1920×3 pixels for both L = 2 and L = 3 cases at
the 150th iteration. Specifically, for L = 2 case, NMSEs after initialization and 150 iterations are
0.43 and 0.15, respectively. For L = 3 case, NMSEs after initialization and 150 iterations are 0.43
and 7.9e−16, respectively. It suggests that L = 3 is sufficient for the proposed FSAF method to
reconstruct Milky Way Galaxy image, which significantly outperforms the reported results in Table
I when the same image is tested.

1There are no reported implementation details for recovering 2D complex image under CDP model for STAF, and we
mark it as not applicable (NA) in order not to underestimate the method.
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Fig. 6. NMSEs varying with iterations with m = 5n for reconstructing zs1 with 5% (a) amplitude-type
and (b) intensity-type Gaussian noise.

3.3. Noisy Measurements
The measurements contaminated by both amplitude-type and intensity-type Gaussian noises are
also studied. Fig. 6(a) shows NMSEs varying with iterations for Rn = 5% amplitude-type noise
with m = 5n for reconstructing zs1 under Gaussian models. The error curves show clearly that
the proposed FSAF and STAF methods converge much faster than other methods. However, the
final returned NMSE for STAF is apparently larger than other methods, and this phenomenon can
also be observed in [20]. We repeat this experiment with intensity-type noise with Rn = 5% in
Fig. 6(b), and from all numerical simulations we have performed so far, we find that, the proposed
FSAF method outperforms the other reported methods considering both convergence rate and
accuracy.

More interesting, it is observed that the returned NMSEs for intensity-type noise in Fig. 6(b)
are larger than those of amplitude-type noise in Fig. 6(a) for the proposed FSAF method. One
reason is that amplitude-based gradient is used in the proposed FSAF method, and the objective
function is different with the formulation of intensity-type noise. Since the proposed FSAF is highly
flexible, we can simply replace the amplitude gradient dtk in FSAF by Wirtinger derivative [16]

dwk = ∇f1(zk) =
1

m

m∑
i=1

(|aHi zk|2 − yi)(aiaHi )zk (13)

with all other parameters and procedures unchanged. We mark the method as frequency subspace
Wirtinger flow (FSWF). The FSWF method is found to be much more effective in dealing with
intensity-type noise, which can be observed from the dashed NMSE curves in Fig. 6(b). Similar
results have also been observed when zs2 is reconstructed under CDP models.

It is noted that, although both the noisy models are widely used in literatures, it has at least
been demonstrated in Fourier ptychography that amplitude-type noise model is more accurate
than intensity-based model in practical situation [36]. Thus, the choice of gradient type plays a
critical role in different situations, and a flexible algorithm such as FSAF is highly desirable.

4. Conclusions
This paper introduces a novel framework for PR, which has been shown to work very well in
numerous tests. It pushes forward the state-of-the-art of sample complexity in PR of natural
signals without increasing computational complexity. No additional constraint is needed in the
proposed FSAF method, and it is applicable to natural images. Furthermore, from all numerical
simulations we have performed so far, we find that, the proposed FSAF method outperforms the
other reported methods considering both convergence rate and accuracy. Most importantly, the
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results demonstrate that the proposed method is highly flexible, and can be easily adapted in both
amplitude-type and intensity-type noise models.
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