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ABSTRACT The relative importance of each risk factor in failure mode and effects analysis (FMEA)
should be addressed properly. Intuitively, in the assessments coming from the FEMA experts, there exists a
potential judgement on which risk factor has a higher weight for the FMEA item. Based on this cognition and
perspective, a new ambiguity measure weighted risk priority number (AMWRPN) for FMEA is proposed.
AMWRPN takes into consideration of the relative weight of different risk factors bymeasuring the ambiguity
degree of the experts’ assessments. If the assessment of an expert has a certain belief on the judgement, then
the relative importance of the corresponding risk factor will be higher than the uncertain one; and vice versa.
The ambiguity measure (AM) in the framework of the Dempster–Shafer evidence theory (DST) has been
used to construct the exponential weight of each risk factor in AMWRPN. In comparison with the weight
factor basing on fuzzy sets theory or other theories in the DST framework, the AM-based weight factor for
uncertainty measure of the subjective assessment ensures the internal coordination of the proposed method.
An application of the proposed method in aircraft turbine rotor blade verifies the effectiveness of the new
risk priority number model.

INDEX TERMS Failure mode and effects analysis (FMEA), risk priority number (RPN), Dempster-Shafer
evidence theory (DST), ambiguity measure.

I. INTRODUCTION
As a typical tool of potential risk modelling andmanagement,
failure mode and effects analysis (FMEA) is widely used in
practical applications such as medical treatment [36], [62],
nuclear industry [54], software engineering [39] and so
on [21]. In general, five typical steps are included in FMEA
process, including (1) identifying a FMEA team, (2) defining
the scopes and customers of a FMEA process, (3) identifying
potential failuremodes and effects, (4) assessing FMEA items
by ranking and (5) making recommendations on the action of
each potential failure modes [25]. Among the processes of
FMEA approach, the subjective assessments on the ranking
of risk levels and the classical risk priority number (RPN)
model are sometimes not that efficient for a variant range of
practical applications [18], [19], [29].

The subjective assessments information in FMEA pro-
cesses can be regarded as uncertain information in practical

applications. Thus, it should be modelled reasonably by
a proper method for the following procedures of uncer-
tain information processing. In the previous researches,
apart from FMEA processes, uncertain information should
be well addressed in practical applications such as logis-
tics and supply chain networks [2], [20], reliability anal-
ysis and assessment [13], [38], [65], [66], [68], pattern
recognitions [32], [71], clinical diagnosis [56], control
strategy designing [3], [50] and so on [15], [37], [48].
Many theories and methods have been used to deal with
uncertainty in information processing, including proba-
bility theory [11], [41], information entropy [43], [52],
fuzzy sets theory [1], [40], [64], Dempster-Shafer evi-
dence theory (DST) [5], [42], [44], belief functions [30],
[31], [72], random sets theory [33], [55], rough sets
theory [17], [23] and so on [12], [34], [51], [67]. Among
these methods, DST is widely used in uncertain information
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processing, especially for uncertain information fusion [9],
[35], [49], [53]. However, how to measure the uncertain
degree in the framework of DST while doing information
fusion is an open issue. Many measures for uncertainty
modelling and quantification have been proposed, includ-
ing specificity measure [10], [61], the measure of aggregate
uncertainty (AU) [16], the ambiguity measure (AM) [22],
Deng entropy [7], the interval probability-based uncertainty
measure [58], the improved belief entropy [70], and so
on [8], [24], [46]. All these measures have some advan-
tages according to previous researches [7], [16], [22], [58].
However, some properties of the aforementioned measures
are still need further research. For example, the limitation
of some typical uncertainty measures in DST framework is
solved by [7], while the shortcoming of the measure in [7] is
discussed in [70]. It should be noted that, in comparison with
other uncertainty measures, AM has some advantages. AM
satisfies all the five requirements for AU measures including
probability consistency, set consistency, the range of AU,
subadditivity and additivity. In addition, AM allows for sen-
sitivity changes in evidence and distinguishes discord and
non-specificity better than AU and some other uncertainty
measures. In this paper, AM will be adopted to measure the
uncertain degree of experts’ subjective assessment in the DST
framework.

Many researches focus on applying the methods of uncer-
tain information processing to improve the efficiency of clas-
sical RPNmodels in FMEA process [4], [25], [27], [28], [57].
In [47], [63], [69], Dempster-Shafer evidence theory (DST) is
modified and adopted to aggregate the subjective assessments
of the FMEA items coming frommultiple experts in a FMEA
team. The mean value of RPN (MVRPN) is proposed as a
new RPN in [63], where the Dempster’s combination rule
in DST is modified to fuse the belief structure of FMEA
experts’ uncertain assessments. In [47], the MVRPN method
is improved by adding a new process of generating basis
probability assignment (BPA) to improve the conflict infor-
mation fusion method in [63]. The concept of generalized
combination rule in [6] is adopted to model and fuse poten-
tial uncertain risk factor in a FMEA process in [69], which
is accomplished by the generalized evidential risk priority
number (GERPN). In [14], DST and the intuitionistic fuzzy
sets theory are combined to model the uncertain information
in FMEA. None of the above methods handle the weight
factor among different risk factors by the uncertainty measure
in the framework of DST. Thus, a new RPN model model
named ambiguity measure weighted risk priority number
(AMWRPN) is proposed to model the relative importance of
each risk factor in the FMEA item.

In AMWRPN approach, AM is applied to measure the rel-
ative importance of each risk factor by the FMEA expert. The
AM-based weight factor is an objective factor for quantifica-
tion of uncertain degree coming from the expert. If an expert
assesses the risk factor with a belief structure, which means
uncertainty in information representation; then, the corre-
sponding uncertain degree modelled by AM-based weight

factor will have an effect on the relative weight of the cor-
responding risk factor. Intuitively, the higher the AM value,
the bigger the corresponding uncertain degree. If the uncer-
tain degree of a risk factor by an expert is very high, the rel-
ative weight of the corresponding risk factor should be a low
value. The AMWRPN can decrease the same value of RPN in
comparison with the DST-based methods in [47], [63], which
is accomplished by modelling the relative importance of the
risk factors. In addition, the AM-based weight factor is more
reasonable than the Pignistic probability-based weight factor
in [69] and the evidence distance-based weight factor of
FMEA experts in [14], because the AM is especially designed
for uncertainty measure in DST framework. For uncertain
information modelled in DST framework, the uncertainty
measure AM coming from DST framework ensures the inter-
nal coordination in comparison with those methods based
on fuzzy set theory and so on [14], [25]. It should be noted
that, although fuzzy set theory is popular among previous
researches, it is usually adopted for uncertain assessments
modelling instead of weight factor calculation of RPN in
FMEA approach [25], [27], [29], because fuzzy set theory
is a powerful tool in modelling uncertain information with
linguistic variables. Above all, the AMWRPN is reasonable
and applicable for building a more accurate method in mod-
elling and processing the weight of risk factors based on the
original subjective assessments of FMEA experts in the DST
framework.

The rest of this paper is organized as follows. The pre-
liminaries are introduced in Section II. In Section III, a new
ambiguity measure weighted risk priority number approach
for FMEA model, named AMWRPN, is proposed. Then,
the AMWRPN-based FMEA approach is used to analyze a
case study of the aircraft turbine rotor blade in Section IV.
Section V is the conclusion of this paper.

II. PRELIMINARIES
A. DEMPSTER-SHAFER EVIDENCE THEORY
Some basic definitions in DST are presented as fol-
lows [5], [42].
Definition 1: Assume that �={θ1, θ2, . . . , θi, . . . , θN } is

a nonempty set with N mutually exclusive and exhaustive
events, � is the frame of discernment (FOD). The power
set of � consists of 2N elements denoted as follows:

2� =
{
∅, {θ1} , {θ2} , . . . , {θN } , {θ1, θ2} ,

. . . , {θ1, θ2, . . . , θi} , . . . , �

}
. (1)

Definition 2: A mass function m is a mapping from the
power set 2� to the interval [0,1]. m satisfies:

m (∅)=0,
∑
A∈�

m (A)=1. (2)

Ifm (A) > 0, then A is called a focal element.m (A) indicates
the support degree of the evidence on the proposition A.
Definition 3: The body of evidence (BOE), also known

as basic probability assignment (BPA) or basic belief
assignment (BBA), is defined as the focal sets and the
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corresponding mass functions:

(<,m) =
{
〈A,m (A)〉 : A ∈ 2�,m (A) > 0

}
. (3)

where < is a subset of the power set 2�.
Definition 4: A BPA m can also be represented by the

belief function Bel or the plausibility function Pl , defined
as follows:

Bel (A)=
∑

φ 6=B⊆A

m (B), Pl (A)=
∑

B∩A 6=φ

m (B). (4)

Definition 5: In DST, 2 independent mass functions m1
and m2 can be fused with Dempster’s rule of combination:

m(A)= (m1 ⊕ m2) (A) =
1

1− k

∑
B∩C=A

m1(B)m2(C), (5)

where k is a normalization factor defined as follows:

k=
∑

B∩C=∅

m1(B)m2(C). (6)

B. FAILURE MODE AND EFFECTS ANALYSIS
Failure mode and effects analysis (FMEA) is a widely used
tool for potential risk analysis and risk identification in
product design (DFMEA), system management (SFMEA),
process management (PFMEA) and so on. One of the most
important issues in applying FMEA method is determining
the risk priorities of failure modes based on the risk priority
number (RPN) model [25].
Definition 6: In FMEA, the risk priority number (RPN)

is defined as follows [26], [60]:

RPN = O× S × D, (7)

where O means the probability of the occurrence of a FMEA
item, S means the severity degree if a failure happens with
respect to the corresponding FMEA item, and D is the prob-
ability of a potential FMEA item being detected.
Generally, each risk factor is divided into 10 ranking levels
from 1 to 10 [60]. For more information about how a FMEA
item is assessed, please refer to [14], [26], [59], [60].

C. AMBIGUITY MEASURE
Ambiguity measure (AM) is proposed by Jousselme et al.,
which satisfies some necessary requirements of uncertainty
measures in DST framework including probability consis-
tency, set consistency, the range of AU, subadditivity and
additivity [16], [22].
Definition 7: AM is defined as follows [22]:

AM (m) = −
∑
x∈X

BetPm (x) log2 (BetPm (x)), (8)

where BetPm is the pignistic probability distribution of the
mass function m [45], denoted as follows:

BetPm (A) =
∑
B⊆X

m (B)
|A ∩ B|
|A|

, (9)

where |A| means the cardinality of the set A.

III. AMBIGUITY MEASURE WEIGHTED
RISK PRIORITY NUMBER FOR FMEA
In order to handle the relative weight of each risk factor
in FMEA model, a new RPN model is proposed based on
the AM in the DST framework. Firstly, the uncertain degree
of the assessments which is expressed as BPAs in the DST
framework is measured by the AM. After that, the relative
weight of each risk factor will be modelled as an exponential
weight factor of O, S and D respectively based on the results
of the uncertainty measure. Finally, the AMWRPN can be
calculated based on the Definition 8.
Definition 8: Among n (n ≥ 1) independent experts

in a FMEA team, assume that each team member has an
equal weight on final assessments, the ambiguity measure
weighted risk priority number (AMWRPN) for each fail-
ure mode is defined as follows:

AMWRPN =
n∑
i=1

1
n
Oie

−AM(Oi)
× Sie

−AM(Si)
× Die

−AM(Di)
,

(10)

where AM (·) is the ambiguity degree of an expert with
respect to the corresponding risk factor. e−AM(·) is the rela-
tive weight of each risk factor assessed by the same expert;
e−AM(·) means the uncertainty and ambiguity on the assess-
ments of the corresponding risk factor. Oi, Si and Di are the
aggregated assessment rating values of each risk factor O, S
and D assessed by the ith expert.

According to the definition of Eq.(8), the ambiguity mea-
sure of each risk factor by the ith expert can be calculated as
follows:

AM (Oi) = −
∑

Oi∈A⊆X

BetPm (A) log2 (BetPm (A)),

AM (Si) = −
∑

Si∈A⊆X

BetPm (A) log2 (BetPm (A)) ,

AM (Di) = −
∑

Di∈A⊆X

BetPm (A) log2 (BetPm (A)), (11)

where A is the proposition corresponding to the required risk
factor. X is the frame of discernment of risk factors, and X =
{O, S,D}. BetPm (A) is the pignistic probability distribution
of a mass function m (A). The aggregated assessment rating
value of each risk factor Oi, Si and Di by the ith expert can be
calculated as follows:

Oi =
10∑
j=1

Rjmj (Oi),

Si =
10∑
j=1

Rjmj (Si),

Di =
10∑
j=1

Rjmj (Di), (12)

where j = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), Rj is the rating value
assessed by FMEA experts (R1 = 1, R2 = 2, . . . ,R10 = 10).

VOLUME 6, 2018 27105



Y. Tang et al.: AMWRPN: Ambiguity Measure Weighted Risk Priority Number Model

mj (Oi), mj (Si) and mj (Di) are the mass functions of the
corresponding rating values assessed by the ith expert.
It should be noted that, in AMWRPN, the number of

experts is not a matter, because the weight factor of the risk
factor comes from the assessment of an expert itself. In other
words, the assessment from different experts has no effect on
the other FMEA item’s weight factor. Of course, the current
research does not consider the weights of experts. This is
because the relative importance of FMEA expert has limited
impact in some cases. For example, all the decision maker
are top experts, in this case, the weight factor can be assigned
the same value. Furthermore, we argue that the objective
weights of criteria can come from the assessments because it
is hidden information consisted in the subjective assessments
of experts.

IV. APPLICATION AND DISCUSSION
A. APPLICATION
Five typical steps are included in a FMEA process related to
the calculation of the RPNs.

• Step 1. FMEA experts give assessment on each FMEA
item.

• Step 2. In DST framework, the subjective assessments
coming from FMEA experts are modeled as BPAs. AM
is applied to measure the uncertainty of the assessments.

• Step 3. Calculate the RPNs based on the proposed
AMWRPN model.

• Step 4. Rank FMEA items based on the AMWRPN.
• Step 5. Actions on FMEA items based on the priorities
of AMWRPN.

The case study in [47] is adopted to verify the effectiveness
and some superiorities of the proposed method in this paper.

Step 1. In the adopted case study, the assessments of
FMEA experts on each FMEA item in detail are presented
in [63].

Step 2. The improved method for generating BPA of
experts’ assessments in [47] can express the conflicting
evidence effectively, thus the constructed BPAs of evalua-
tion information in [63] is used to verify the efficiency of
AMWRPN. Take the first FMEA item (denoted as fmea1) as
an example, of which the BPAs are shown in Table 1. With
AMWRPN, for fmea1, the ambiguity measure of each risk
factor by Expert 1 can be calculated with Eq.(11), shown as

TABLE 1. BPAs of experts’ assessment information for fmea1 (adopted
from [47]).

follows:

AM (O1) = −
∑

O1∈A⊆X

BetPm (A) log2 (BetPm (A))

= −0.4log20.4− 0.6log20.6 = 0.9710,

AM (S1) = −
∑

S1∈A⊆X

BetPm (A) log2 (BetPm (A))

=−0.1log20.1−0.8log20.8−0.1log20.1=0.9219,

AM (D1) = −
∑

D1∈A⊆X

BetPm (A) log2 (BetPm (A))

=−0.1log20.1−0.8log20.8−0.1log20.1=0.9219.

(13)

The aggregated assessment rating value of each risk factor by
Expert 1 can be calculated with Eq.(12), shown as follows:

O1 =

10∑
j=1

Rjmj (O1)

= R3m3 (O1)+ R4m4 (O1)

= 3× 0.4+ 4× 0.6 = 3.6000,

S1 =
10∑
j=1

Rjmj (S1)

= R6m6 (S1)+ R7m7 (S1)+ R8m8 (S1)

= 6× 0.1+ 7× 0.8+ 8× 0.1 = 7.0000,

D1 =

10∑
j=1

Rjmj (D1)

= R1m1 (D1)+ R2m2 (D1)+ R3m3 (D1)

= 1× 0.1+ 2× 0.8+ 3× 0.1 = 2.0000. (14)

Similarly, with Eq.(11) and Eq.(12), the ambiguitymeasure
and aggregated assessment rating value of fmea1 by Expert 2
and Expert 3 can be calculated respectively, the results are
presented in Table 2.
Step 3. Calculate the AMWRPN values. According to the

definition of AMWRPN in Eq.(10) as well as the calculation
results of Step 2, the AMWRPN of fmea1 can be calculated
as follows:

AMWRPN =
3∑
i=1

1
3
Oie

−AM(Oi)
× Sie

−AM(Si)
× Die

−AM(Di)

=
1
3

(
3.60.9710 × 7.00.9219 × 2.00.9219

)
+

1
3

(
3.10.4690 × 7.00.9219 × 2.00.9219

)
+

1
3

(
3.20.7219 × 7.00.9219 × 2.00.9219

)
= 5.1551. (15)

Applying the aforementioned computation process of
AMWRPN method to the other 16 failure modes in [47], and
the AMWRPN values of all the 17 failure modes (denoted as
fmea1, fmea2, . . . , fmea17) can be calculated, and the results
are presented in Table 3. For the convenience of comparison,
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TABLE 2. AM and aggregated rating values of each expert for fmea1.

TABLE 3. RPN of the compressor rotor blade with different methods.

the RPN values with other methods are also listed in Table 3.
According to the calculation results presented in Table 3,
only AMWRPN can distinguish all the 17 FMEA items in
the sense of RPN-based priorities. The priorities based on
MVRPN, the improved MVRPN and GERPN have repeated
RPN values among some FMEA items. This feature indicates
that AMWRPN is more accurate in modelling and processing
the ambiguity information of the subjective assessments from
experts.

Step 4. Rank FMEA items based on the AMWRPN.
FMEA analysis with RPN should be applied to each indepen-
dent component or system. According to [63], FMEA items
fmea1, fmea2, fmea3, fmea4, fmea5, fmea6, fmea7 and fmea8
are for the compressor rotor blade; fmea9, fmea10, fmea11,
fmea12, fmea13, fmea14, fmea15, fmea16 and fmea17 are for
the turbo rotor blade. The priorities based on AMWRPN as
well as the methods in [47], [63], [69] are presented in Fig.1.
It should be noted that the methods in [47], [63], [69] has the
same priorities for all the 17 FMEA items. This is because
that the improved method in [47] mainly focus on express-
ing the conflicting BPAs more compatible for the fusion
method in [63]. Both the improved MVRPN and GERPN
focus on applying the experiment data and results in [63]
for verifying the effectiveness of the corresponding methods.
The AMWRPN steps farther by analyzing the ambiguity
degree of each piece of evidence for a more accurate pro-
cess of uncertain information processing. Fig.1 shows the
AMWRPN-based priorities for the compressor rotor blade is
fmea2 � fmea1 � fmea6 � fmea3 � fmea7 � fmea4 �
fmea8 � fmea5, and the AMWRPN-based priorities for the

turbo rotor blade is fmea9 � fmea15 � fmea14 � fmea12 �
fmea10 � fmea17 � fmea13 � fmea11 � fmea16, where
‘‘�’’ denotes a higher priority.

Step 5. Actions on FMEA items based on the priorities
of AMWRPN. For practical engineering, attentions and the
finite resource should be assigned to the FMEA item with a
higher priority according to the AMWRPN. In this example,
the FMEA item fmea2 for the compressor rotor blade as
well as the fmea9 for the turbo rotor blade has the highest
priority, thus these FMEA items should be well addressed
preferentially; et cetera.

B. DISCUSSION
In general, the priorities based on AMWRPN is consistent
with the methods in [47], [63], [69]. Among all the 8 FMEA
items of the compressor rotor blade, fmea5 has the small-
est value and fmea2 has the biggest value by AMWRPN,
which is the same with MVRPN, GERPN and the improved
MVRPN. However, there exists a little difference for fmea1
and fmea6. For fmea6, it is obvious that there is no uncertainty
among different risk factors according to the FMEA experts’
assessments in [63]. While the uncertainty of FMEA experts’
assessments for fmea1 is captured and well addressed by the
AMWRPN, which contributes to the increasing of its risk
level.

The largest and smallest RPN values for the turbo rotor
blade by AMWRPN are the same with those of MVRPN,
GERPN and the improved MVRPN. The divergence of belief
structures in fmea15 leads to a higher risk level according to
the AMWRPN,which suggests unstable assessment may lead
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FIGURE 1. Priorities based on AMWRPN, MVRPN, Improved MVRPN and GERPN.

to a higher risk level. The differences of the rankings among
different experts for fmea12 also leads to a higher risk level
according to the proposed method. The discordance among
the experts measured by the AM leads to a higher priority of
fmea17. In comparison with the methods in [47], [63], [69],
the similarity and stability of the belief structures result in
a lower risk level for fmea10 and fmea11 according to the
AMWRPN. This is reasonable because it means consistency
among different experts. If all the experts assess a FMEA
item similarly, which means the knowledge of this FMEA
item among each experts is almost complete; thus, the risk
level is under control. Other FMEA items’ priorities change
along with the aforementioned FMEA items. The feature
of sensitivity of the proposed method on the almost certain
subjective judgement contributes to a higher risk level for
fmea1, fmea15 and fmea17, which should be overcome in
practical applications.

According to the AMWRPN, the relative importance of
each risk factor, which is the open issue for existed FMEA
methods in the DST framework, e.g. in the MVRPN [63] and
the improved MVRPN [47], has been handled by the weight
factor of each risk factor based on the AM. The AM-based
weight factor for uncertainty modelling in the DST frame-
work ensures the internal coordination, because the AM is
especially proposed for uncertainty measure in the DST [22].
For engineering applications, the practical implication of
the study is almost the same with the other methods in the
framework of Dempster-Shafer evidence theory. The only
difference is the step of calculating the RPNs. The classi-
cal RPN will be replaced by the AMWRPN, which can be
accomplished by software program easily. According to the
working experience in an automotive engineering institute in

China, the limitation of the AMWRPN exists not in choosing
the AMWRPN model; in DST framework, the limitation of
using this study in practical field exists in choosing a proper
way to generate BPAs for applying the AMWRPN model.
Because, in practical implications, most of the engineers have
been used to classical assessments with the 10 level marks
method. In the following work, how to generate BPAs with a
simple way will be also taken into consideration.

V. CONCLUSIONS
A new RPN model named AMWRPN for FMEA approach
is proposed in this paper. AMWRPN models the potential
priority judgement of each risk factor in FMEA as the expo-
nential weight factor of each risk factor. The uncertainty
measure AM in the framework of DST is used to measure the
ambiguity degree of FMEA experts’ subjective assessments.

The novelty of the proposed method can be summarized
as follows. On the one hand, the weight factor of different
risk factors is based on the AM which is a typical uncertainty
measure in the framework of DST, which ensures the internal
coordination of the proposed method in comparison with
those weight factors basing on fuzzy sets theory; on the
other hand, compared with other DST-based RPN models,
the proposed approach can be more accurate in processing
the uncertain assessments of FMEA experts modelled in
DST framework. A case study in aircraft turbine rotor blade
verifies the efficiency of the new RPN model.

The ongoing work of this paper is applying the proposed
method to many more practical engineering problems. Also,
the current research does not consider the weights of experts,
as well as other potential risk factors apart from the O, S
and D. In some cases, these conditions are key issues which
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should be handled cautiously. Thus, in the following work,
we will apply appropriate methods to determine the deci-
sion makers’ weights, where the ordered weighted averaging
(OWA) operator will be taken into consideration.
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