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Abstract: In this paper, a three-dimensional chaotic system with a hidden attractor is introduced.
The complex dynamic behaviors of the system are analyzed with a Poincaré cross section, and the
equilibria and initial value sensitivity are analyzed by the method of numerical simulation. Further,
we designed a new algorithm based on complementary ensemble empirical mode decomposition
(CEEMD) and permutation entropy (PE) that can effectively enhance digital chaotic sequence
complexity. In addition, an image encryption experiment was performed with post-processing of the
chaotic binary sequences by the new algorithm. The experimental results show good performance of
the chaotic binary sequence.
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1. Introduction

With the rapid development of computer technology and network communication technology,
information has become an important asset in today’s society. Therefore, the confidentiality of personal
information has become more and more essential. For example, internet data transmission and
confidential phone and bank cards require adequate security and confidentiality measures. Therefore,
the study of secret communication and cryptography has become an urgent issue. At present, the
chaotic signal has benefits such as intrinsic stochasticity, initial value sensitivity, and synchronizing
characteristics. Therefore, some traditional chaotic systems with a self-excited attractor are widely
used in secret communication and have significant advantages [1–5]. Further, in recent years a hidden
chaos attractor has been found, which makes the development of a high-dimensional nonlinear system
an attractive challenge [6–9]. At present, most scholars primarily study the dynamic characteristics of
hidden attractors. In this paper, we aimed to study chaos with a hidden attractor from the perspective
of secure communication and cryptography. Chaos with a hidden attractor is used as a digital
chaotic sequence generator with the purpose of encrypting private data. However, in the process of
quantization, calculation precision is a crucial factor that degenerates the dynamic characteristics of a
chaotic system so that the complexity of a digital chaotic sequence does not satisfy the requirements of
information security and cryptography [10,11]. Aiming to solve this problem, Du [12] put forward an
algorithm to improve the performance of chaotic binary sequences based on Karhunen–Loève (K–L)
transformation. Zhou [13] proposed to scramble the chaotic binary sequence by m sequence in order to
improve the complexity of the digital chaotic sequence. Cernak [14] came up with a method to improve
the randomness and periodic length of the chaotic binary sequence by perturbing parameters of the
chaotic system. Based on the above analysis, these algorithms improve the performance and complexity
of digital chaotic sequences by reconstructing the binary sequence method. In this paper, we attempted
to generate high complexity in the chaotic sequence based on digital signal processing technology.
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Empirical mode decomposition (EMD) in digital signal processing has been extensively applied in
nonlinear signal processing [15–18]. EMD was first proposed by Huang et al. [19–21]. It is an effective
tool for analyzing nonlinear and non-stationary signals. The EMD method is closely related to the
corresponding Hilbert transform method. Through the decomposition of nonlinear and non-stationary
signals, a series of intrinsic mode functions (IMFs) are obtained, which makes each IMF a stable signal
for narrowband [22]. The IMFs play a crucial role in the analysis of non-stationary or nonlinear signals.
However, there are some problems with the EMD method, of which the main one is mode mixing.
Complementary ensemble empirical mode decomposition (CEEMD) can effectively restrain the mode
mixing of EMD at a certain level [23–25]. Based on the above considerations, we proposed a new
algorithm which combines CEEMD with permutation entropy (PE) [26] to effectively improve the
complexity of the digital chaotic sequence.

The rest of this paper is organized as follows: Section 2 describes a hidden chaos attractor with no
equilibria. The dynamic characteristics of a complex chaotic system are studied by means of numerical
simulation and theoretical analysis. Section 3 proposes a new algorithm to improve the complexity
of the digital chaotic sequence. Section 4 considers image encryption with post-processing of the
chaotic binary sequences by the algorithm outlined in Section 3. The security of the encrypted image is
analyzed through key sensitivity, information entropy, and histogram analysis. Section 5 summarizes
the discussions of this paper.

2. The Characteristic Analysis of a Chaotic System

In this section, a system can be expressed as the following set of differential equations:
x = −y

y = cx + z
z = ay2 + xz− b

(1)

where a, b, c are real parameters. When a = 2, b = 0.35, c = 1 and the initial value is (−1.6, 0.82, 1.9),
the system displays a single-scroll chaotic system [27]. Different projections of the chaotic attractor for
this system are shown in Figure 1.
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Figure 1. The different projections of chaotic attractor with: (a) x-y; (b) x-z; (c) y-z.

Equilibria of the chaotic system can be obtained by solving x = y = z = 0. The equation is shown
as follows: 

x = 0
y = 0
z = 0

→


0 = −y

0 = cx + z
0 = ay2 + xz− b

, (2)

However, it is easy to see in the chaotic system that when a = 2, b = 0.35, c = 1, Equation (2)
has no solution. Therefore, the chaotic system has no equilibria in this case. For the classification
of chaotic attractors, if the basin of chaotic attraction intersects with any open neighborhood of an
equilibrium, this attractor is called a self-excited attractor. However, if the basin of chaotic attraction is
not connected with any equilibrium, this attractor is called a hidden attractor [28–30]. Therefore, the
above chaotic system displays a hidden attractor in this case because it is a system with no equilibria.
In addition, the Poincaré map of the system can be obtained in the P = {y = 0|(x, z) ∈ R2} plane.
For the above three-dimensional chaotic system (x, y, z) ∈ R3, all (x, 0, z) points were calculated by
a MATLAB (R2012a, MathWorks, Natick, MA, USA) numerical simulation to obtain the Poincaré
map. The Poincaré cross section projected in x-z is shown in Figure 2. The Poincaré cross section
indicates that the system is a chaotic system through some dense points. Further, for the above chaotic
system, the maximal Lyapunov exponent was calculated by a MATLAB numerical simulation. The
maximal Lyapunov exponent can indicate the degree of the average divergence of the chaotic trajectory.
If the exponent is more than zero, it denotes that the system has the sensitivity of the initial value.
According to the result of the MATLAB calculation, this exponent is 0.081. For instance, the time series
of x generated from two very close initial values (−1.6, 0.82, 1.9) and (−1.601, 0.82, 1.9) are shown in
Figure 3, with the purpose of verifying the initial value sensitivity for the chaotic system. Figure 3
is plotted by the MATLAB numerical simulation. According to the Differential Equation (1), the
“t” presents the number of iterations. As can be seen from Figure 3, the chaotic system is sensitive
dependence on initial value.
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Figure 3. Initial value sensitivity for the time series x with the initial values (−1.6, 0.82, 1.9) and (−1.601,
0.82, 1.9).

3. A New Algorithm to Improve the Complexity of Digital Chaotic Sequences

In this section, we designed a novel algorithm based on CEEMD that can effectively enhance
the complexity of digital chaotic sequences. CEEMD can adaptively decompose a non-stationary
or non-linear signal into different IMFs. The oscillating frequency of each IMF decreases according
to the decomposition order of each IMF. We present a new algorithm to enhance the complexity of
chaotic discrete sequences by combining CEEMD with permutation entropy (PE). At the same time, the
digital chaotic sequences are converted into chaotic binary sequences through a quantitative method
with the purpose of encrypting images or private data. The essential novelty of this algorithm is to
eliminate all low complexity IMF components in a chaotic time series, with the purpose of improving
the randomness and complexity of the sequence.

3.1. The Basic Principles of EMD

Empirical mode decomposition (EMD) is an adaptive method to decompose non-stationary and
non-linear signals into a set of IMFs (intrinsic mode functions) and a residual component. Each
IMF should satisfy the following two conditions: (1) For the whole data set, the number of zero
crossing and extrema must either be equal or differ at most by one. (2) For any data point, the mean
value of the upper and lower envelope determined by the local maxima and minima is zero [31].
The implementation process of the EMD method is shown as follows:



Entropy 2018, 20, 295 5 of 14

1. All the local maxima and minima of the signal s(t) are calculated to construct the upper envelopes
e+(t) and lower envelopes e−(t) by the cubic spline interpolation. Further, m11(t) represents the
mean of the upper and lower envelopes and is shown as follows:

m11(t) =
e+(t) + e−(t)

2
(3)

s(t)−m11(t) = h11(t) (4)

where h11(t) denotes a temporary signal. If h11(t) satisfies the above two crucial factors, it is
a first-order IMF component. Otherwise, h11(t) will serve as an initial signal and the above
procedures are repeated until the h1k(t) is an IMF and sets the h1k(t) as c1(t).

c1(t) = h1k(t) (5)

2. Next, the first-order IMF has a high frequency, which can be extracted from s(t) by

s(t)− c1(t) = R1(t) (6)

R1(t) is processed as the new signal and the above procedures are repeated so that the other IMFs
can be generated Ri(t), i = 2, · · · , n.

3. When the residual Rn(t) becomes a monotonic function or constant, EMD decomposition is
terminated. The s(t) can finally be shown as follows:

s(t) =
n

∑
i=1

ci(t) + Rn(t) (7)

Thus, a non-linear signal s(t) can be decomposed into n IMFs and a residual Rn(t). However,
there are some problems with the EMD method, and one of these is mode mixing. Generally
speaking, each IMF component represents a specific physical quantity. If an IMF component
contains a large number of different frequencies of signals then this phenomenon is called mode
mixing, which seriously affects the performance of EMD decomposition. Aiming to resolve
this issue, the complementary ensemble empirical mode decomposition (CEEMD) method can
effectively restrain mode mixing of EMD at a certain level. The CEEMD method was used by
adding two opposite white noise signals to an original signal s(t), and to the adopted EMD, with
the purpose of restraining mode mixing.

3.2. The Implementation of the New Algorithm

First, suppose x(t) is a time series of chaotic systems. The white noise signal wi(t) and −wi(t)
with a zero mean value are added to the signal x(t), and the following equation is defined:{

x+i (t) = x(t) + aiwi(t)

x−i (t) = x(t)− aiwi(t)
1 ≤ i ≤ Np , (8)

where wi(t) shows the added white noise signal, and ai and Np denote the amplitude and number of
the noise signals, respectively. In addition, the variance of the white noise is 1. {I+1i (t)} and {I−1i (t)}
(1 ≤ i ≤ Np) represent the first order component sequence, which can be generated by decomposing
x+i (t) and x−i (t) with the EMD method. The mean value of all components is defined as follows:

I1(t) =
1

2N

Np

∑
i=1

[I+1i (t) + I−1i (t)]. (9)
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I1(t) is sampled to generate a discrete time sequence I1(n). Then, it is checked whether I1(n) is a
low complexity discrete sequence based on the PE value. The PE is widely applied in the measurement
of discrete sequence complexity because of its high robustness and rapid and simple algorithm
characteristics. PE can be described as follows:

1. For a discrete time sequence XN = { X1, X2, · · · XN }, where m and τ represent the
embedding dimension and a delay factor, respectively, the sequence XN can be reconstructed as

X(n), X(n + τ), · · · , X(n + (m− 1)τ) 1 ≤ n ≤ N −m + 1 , (10)

2. Each sequence of Equation (10) is placed depending on an ascending order.

X(n + (k1 − 1)τ) ≤ X(n + (k2 − 1)τ) ≤ · · · ≤ X(n + (km − 1)τ), (11)

3. Further, πn = { k1, k2, · · · , km

}
displays the original position index of each element,

which is one of the possible order types of all m! permutations. Suppose Pg is a symbol permutation

and
w
∑

g=1
Pg = 1, where g = 1, 2, · · · , w, w ≤ m!. Then, PE Hp is defined as

Hp = −
w

∑
g=1

Pg ln Pg. (12)

When Hp = 1/m!, then Hp obtains the maximum value ln(m!). Further, the normalized PE hp is
defined as hp = Hp/ ln(m!).

Based on a large amount of MATLAB simulation data, when the PE value of the I1(n) is less than
θ ∈ [0.5, 0.6], the amplitude of I1(n) changes slowly and takes on a lower frequency. After this, the
above method is used to find all the low complexity signals in the IMFs. All low complexity IMF
signals are separated from the target signal x(t) to generate the signal r(t). Then, the r(t) can be
written as

r(t) = x(t)−
p

∑
j=1

Ij(t). (13)

where p is the sum total of low complexity signals in the IMFs.

3.3. Experimental Results

The time series (x(t), y(t), z(t)) are generated from the chaotic system as experimental data. The
generated x(t), y(t) and z(t) time series signals are shown in Figure 4.Entropy 2018, 20, x 7 of 14 
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Next, these chaotic time series are processed by the above method. All the low complexity signals
in the IMFs are shown in Figure 5a–c, where RS (Logogram of Residual Rn(t)) is a residual signal.
As can be seen from the figure, the amplitude of these IMF signals changes slowly with time and
the frequency of the signals reduces. These IMF components are sampled to generate discrete time
sequences with the purpose of calculating the PE value. For the x(t), y(t) and z(t) time series, the
calculation results of the PE value of each IMF component are shown in Table 1. This table shows that
the PE values of these IMFs are less than θ ∈ [0.5, 0.6]. Therefore, based on the essential novelty of the
above method, these IMFs will be removed from the original chaotic time series.
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Figure 5. All the low complexity signals in the intrinsic mode functions (IMFs) with: (a) x(t); (b) y(t);
(c) z(t).

Table 1. The permutation entropy (PE) value of each intrinsic mode function (IMF) with x(t), y(t),
and z(t).

IMF Component x(t) y(t) z(t)

IMF1 0.1181 0.1959 0.1658
IMF2 0.1116 0.1153 0.1198
IMF3 0.1096 0.1113 0.1102
IMF4 0.1069 0.1076 0.1072
RS5 0.0542 0.0997 0.1066

The time series rx(t), ry(t) and rz(t) will be generated by removing the low complexity IMF
components from the original signals in x(t), y(t) and z(t). The time series rx(t), ry(t) and rz(t) are
shown in Figure 6. Moreover, these time series are also sampled to generate discrete time sequences
with the purpose of calculating the PE values, and Figure 7 denotes the comparison of the PE values
to the original signals x(t), y(t), z(t) and the post-processing signals rx(t), ry(t), rz(t). It can be seen
from Figure 7 that the entropy value of the latter is significantly greater than that of the former and
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shows a good level of complexity. These high-complexity discrete time sequences can be quantized to
generate a good performance in the chaotic binary sequences. These binary sequences will serve as
useful key stream sequences of the stream cipher to encrypt private data.
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3.4. The Generation and Performance Test of the Chaotic Binary Sequence

The three outputs rx(t), ry(t), and rz(t) are quantized by the interval quantization method, and
its mathematical equation is shown below.

Q0−1(t) =


1, x(t) ∈

2m−1
∪

k=0
Dm

2k

0, x(t) ∈
2m−1
∪

k=0
Dm

2k+1

; k = 0, 1, 2, · · · , (14)

where Q0−1(t) and m are a quantized chaotic binary sequence and arbitrary integer, and
Dm

0 , Dm
1 , Dm

2 · · · are 2m consecutive equal intervals on the range of the real value of x(t). If the
real value falls on the odd range the result of quantization is 0, otherwise it is 1. rx(t), ry(t), and
rz(t) are quantized as Qx(t), Qy(t), and Qz(t) through the interval quantization method. Then, the
NIST-800-22 test suite is performed to evaluate the performance of the random binary sequences Qx(t),
Qy(t), and Qz(t). The NIST-800-22 is composed of 16 different tests, including approximate entropy,
linear complexity, and the discrete Fourier transform tests [32,33]. If the p-value of the test is greater
than 0.01, the test is successful. The NIST-800-22 test results are shown in Table 2. As can be seen from
the table, the chaotic random sequences Qx(t), Qy(t), and Qz(t) passed all the tests. These chaotic
sequences can be used in high security fields such as network security and multimedia encryption.

Table 2. NIST-800-22 tests.

Test Item Qx(t) p-Value Qy(t) p-Value Qz(t) p-Value Result

Approximate Entropy 0.28711 0.01063 0.41042 Success
Block Frequency 0.02501 0.43924 0.64085 Success

Cumulative Sums 0.14372 0.56658 0.64761 Success
FFT 0.52063 0.37221 0.11875 Success

Frequency 0.28014 0.48392 0.87461 Success
Linear Complexity 0.22374 0.46932 0.78321 Success

Longest Run 0.70665 0.51078 0.26541 Success
Non-Overlapping Template 0.32974 0.75331 0.11253 Success

Overlapping Template 0.24088 0.70399 0.32227 Success
Random Excursions 0.43747 0.51791 0.82733 Success

Random Excursions Variant 0.64578 0.11253 0.66691 Success
Binary Matrix Rank 0.15319 0.58700 0.44130 Success

Runs 0.88206 0.84530 0.71884 Success
Serial Test-1 0.10056 0.17826 0.81473 Success
Serial Test-2 0.15538 0.15538 0.69926 Success

Maurer’s Universal 0.75331 0.14268 0.56553 Success

4. Image Encryption with a Chaotic Binary Sequence

This subsection describes the experiments used to demonstrate the performance of the chaotic
binary sequence by encrypting images. The Lena and Baboon images, with a size of 256× 256, are
encrypted by the above chaotic random sequences—Qx(t), Qy(t), and Qz(t). Then, Qx(t), Qy(t), and
Qz(t) serve as the key stream sequences of the stream cipher with the purpose of encrypting the R, G,
and B components of the color images.

4.1. Key Sensitivity

The sensitivity of chaos to the initial value can support the effective avoidance of tentative attacks.
Using the Lena and Baboon images with a size of 256 × 256 as examples, Figure 8a,d shows the
plain-images, while the cipher-images are given in Figure 9b,e. However, a 10−5 change of the initial
value will lead to incorrect decryption results, as shown in Figure 9c,f. The experimental results show
that the chaotic binary sequence shows high key sensitivity.
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Figure 9. Histogram test with: (a) R component of the plain-image; (b) R component of the cipher-image;
(c) B component of the plain-image; (d) B component of the cipher-image; (e) G component of the
plain-image; (f) G component of the cipher-image.
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4.2. Histogram Analysis

The image histogram can be approximated as the density function of the gray value, which is an
important indicator in the analysis of an image’s statistical properties [34]. The histogram test is shown
in Figure 9, and the horizontal and vertical coordinates of the histogram represent the pixel values and
number of pixel values, respectively. Figure 9 show that the gray histogram of the encrypted image
is relatively uniform, which indicates that the security performance of this key sequence is relatively
high, and the image is not easily able to be tampered with and decrypted during transmission.

4.3. Correlation Analysis of Adjacent Pixels

Generally speaking, the smaller the adjacent pixel correlation of the cipher-image, the more
obvious the effect of resisting statistical attack [35]. The mathematical equation can be shown as follows:

ρxy =
cov(x, y)√
D(x)D(y)

. (15)

where cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y)), D(x) = 1

N

N
∑

i=1
(xi − E(x))2, E(x) = 1

N

N
∑

i=1
xi, xi and yi

represent the different gray values of two adjacent pixels and N denotes the number of randomly
selected adjacent pixels.

The above equation was used and some pairs of adjacent pixels in different directions were
randomly chosen, and the test results are listed in Table 3. It can be seen from the experimental data
that the correlation of adjacent pixels of a cipher-image tends to be zero.

Table 3. Correlation analysis of adjacent pixels for the Lena and Baboon images.

Direction Plain-Image for
Lena

Cipher-Image for
Lena

Plain-Image for
Baboon

Cipher-Image for
Baboon

Horizontal 0.9712 0.0392 0.9287 0.0133
Vertical 0.9655 0.0091 0.9004 0.0522

Diagonal 0.9401 0.0215 0.8711 0.0093

4.4. Information Entropy Analysis

Information entropy can reflect the randomness of the information in images, namely the
uncertainty of the distribution of pixel values in a cipher-image. Its mathematical equation is shown
below [36].

H(φ) =
2L−1

∑
i=0

p(φi) log2
1

p(φi)
. (16)

where L is the number of bits required to store each pixel value, and p(φi) presents the probability of
the symbol φi. When the probability of each symbol φi is equal, the information entropy (H(φ) = 8)
is at its largest. When the information entropy is closer to 8, the gray value tends to be distributed
randomly. Table 4 provides a comparison of this data with other experiments. This comparison shows
that the information entropy of our method is closer to 8. Therefore, it can effectively resist information
entropy attacks.
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Table 4. Information entropy analysis for the Lena and Baboon images.

Methods R Component G Component B Component

The paper for Lena 7.9972 7.9971 7.9972
The paper for Baboon 7.9970 7.9968 7.9971

Reference [37] 7.9914 7.9914 7.9915
Reference [38] 7.9851 7.9852 7.9832

5. Discussion

Some traditional chaotic systems with a self-excited attractor have been widely used in secret
communication. However, for chaotic systems with hidden attractors, most of the current research
has focused on studying the dynamic characteristics of the system rather than its application in
the field of information security. Therefore, in this paper, we aimed to study chaos with a hidden
attractor from the perspective of secure communication and data encryption. First, we introduced
the dynamic characteristics of a chaotic system with hidden attractors by means of a numerical
simulation and theoretical analysis, including equilibria, a Poincaré cross section, and initial value
sensitivity. After that, a new algorithm was designed to enhance the complexity of digital chaotic
sequences with the purpose of satisfying the requirements of data encryption. The essential novelty
of the algorithm is to eliminate all low complexity IMF components of a chaotic time series by
using digital signal processing technology. PE value comparisons between the original signal and
post-processing signal show the performance of the algorithm is good. In addition, the NIST-800-22
test was performed to demonstrate the randomness and complexity of the chaotic binary sequence.
The chaotic binary sequence can serve as a good key stream sequence of a stream cipher to encrypt
private data. Furthermore, an image encryption experiment was undertaken to show the security of
the above method. However, some weaknesses in this technique remain, and we believe that the new
algorithm should be optimized in operation efficiency.
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