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Abstract 4 

Bike-sharing systems have rapidly expanded around the world in recent years. However, 5 

bike-sharing research focusing on East Asia is limited. The impacts of bike-sharing on travelers’ 6 

usage of other transport modes in an integrated transportation system remain unclear. This 7 

study develops a spatial Agent-based model to simulate the use of bike-sharing services and 8 

other transport modes in Taipei city, considering their interactions through the modeling of the 9 

modal split based on the heterogeneous mode choice behaviors of travelers. Two scenarios are 10 

proposed for the development of a bike-sharing system: 1) bike infrastructure extensions; and 11 

2) bike-sharing incentives. Two scenarios are evaluated along with the corresponding12 

environmental and social impacts. The simulation results indicate that free use of bike-sharing 13 

to connect the transit system can be most sustainable with 1.5 million US dollars in 14 

transportation damage cost saved per year, and 22 premature deaths further prevented per year 15 

due to mode shift to cycling and walking based on the business as usual (BAU) scenario. 16 

However, bike-sharing has limited influence on the use of motorcycles, which is nearly 17 

invariable. This model can be a powerful tool to help policy-makers improve the sustainability 18 

of a multi-modal transportation system with bike-sharing. 19 
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1. Introduction 23 

The rapid growth in world population and increasing demand for transportation is putting 24 

great pressure on the transportation and fuel sectors, resulting in heightened traffic congestion, 25 

increasing fuel prices, and degraded air quality. In response, worldwide consciousness has risen 26 

on land use management, environmental emissions abatement, and climate change alleviation. 27 

It has become essential to develop new modes of transport and adapt existing ones to move 28 

people in more sustainable and economically feasible ways (Bauman, Crane, Drayton, & Titze, 29 

2016; DeMaio, 2009; Shaheen, Guzman, & Zhang, 2010). 30 

Bike-sharing, or public bicycle programs, is emerging as a partial solution. Bike-sharing 31 

allows people to rent a bicycle from one of many stations that are situated throughout a city, 32 

then ride and return it at any one of these stations. Bike-sharing services have grown in Europe, 33 

North America, South America, Asia, and Australia (Liu, Jia, & Cheng, 2012). Today over 500 34 

cities in 49 countries have well-established bike‑sharing programs that in aggregate provide 35 

more than 500,000 bicycles. Bike-sharing systems have evolved, often beginning as free-to-36 

use bike services that later became coin-deposit systems. Today’s bike-sharing services are 37 

typically IT-based systems, with some city services including demand-responsive and multi-38 

modal functionalities with real-time information, among other enhancements (Shaheen et al., 39 

2010). Bike-sharing can be characterized as a “three-S” system: a Sustainable transport mode 40 

that can Substitute for short trip modes and Seamlessly connect with public transit (Hu & Liu, 41 

2014). The reported benefits of bike-sharing include reduced greenhouse gas (GHG) emissions; 42 

reduced fuel consumption; enhanced accessibility; increased public transport use; decreased 43 

traffic congestion and noise; lower travel cost; increased physical activity and consequently 44 

improved health and physical fitness; and improved image of the urban environment  (Bauman, 45 

et al., 2016; Caulfield, O'Mahony, Brazil, & Weldon, 2017; DeMaio, 2009; El-Assi, Mahmoud, 46 
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& Habib, 2017; Faghih-Imani, Hampshire, Marla, & Eluru, 2017; Kumar, Kang, Kwon, & 47 

Nikolaev, 2016; Pal & Zhang, 2017; Shaheen, et al., 2010; Shaheen, Martin, & Cohen, 2013)  48 

However, some studies show that the benefits of bike-sharing are overstated. The mode 49 

shift to bicycling has clear health benefits, but it also may lead to a reduction in walking for 50 

some short-distance trips, while walking has greater health benefits (Fishman, Washington, & 51 

Haworth, 2014; Woodcock, Tainio, Cheshire, O'Brien, & Goodman, 2014). The effects of bike-52 

sharing on public transit are not consistent; in a dense urban area bike-sharing may replace 53 

rather than supplement public transit use and offer quicker, cheaper, and more direct 54 

connections for short distances. In suburban areas, where public transit can be sparse, bike-55 

sharing may provide better access to enhance the use of the existing public transit system 56 

(Martin & Shaheen, 2014). One promoted benefit of bike-sharing, namely reduction in carbon 57 

emissions, is often overstated given the limited mode share of bicycling (Ricci, 2015). Médard 58 

de Chardon, Caruso, and Thomas (2017) also found that bike-sharing has only a limited 59 

positive impact on health and modest impact on carbon dioxide emissions.  60 

It should be noted that every urban area has its distinct attributes and thus the benefits of 61 

bike-sharing can vary from city to city. Research on the impacts of bike-sharing in East Asia 62 

is particularly limited. Current studies also generally do not assess the interactions between 63 

bicycling and other modes with methods that incorporate the influence of passenger behaviors. 64 

Thus, it would be valuable to explore the effects of bike-sharing in an integrated transportation 65 

system in Asian cities.  66 

The objectives of this study are to understand how bike-sharing changes user travel 67 

behaviors and minimize the environmental and social impacts of an integrated transportation 68 

system. This study draws upon spatial agent-based modeling to observe how travel behaviors 69 

change in response to different bike-sharing strategies. Two kinds of behavior theories that are 70 

widely used in travel behavior modeling and prediction, which are random utility maximization 71 
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and bounded rationality, are applied to study passenger mode choice behaviors. The key factors 72 

influencing passenger mode choices, including travel cost, travel time, accessibility level, and 73 

automobile ownership, are evaluated and integrated into the model. After defining travel 74 

behaviors, two scenarios are constructed to simulate different strategies for bike-sharing, 75 

including bike infrastructure extensions and bike-sharing incentives. These scenarios are 76 

evaluated by environmental and social impacts. The greenhouse gas (GHG) emissions, and air 77 

pollution emissions, such as SOx, NOx, and CO emissions of each mode are calculated to set 78 

benchmarks. The human health benefits from physical activity including cycling and walking 79 

are investigated. Figure 1 shows the model framework based on a Taipei City map. As the 80 

model responds to real parameters, the user may amend basic input information to generate an 81 

optimum outcome and understand the required parameters, e.g., the most sustainable 82 

transportation scenario that has the minimum environmental impacts. 83 

 84 

 85 

Figure 1. Model framework 86 

 87 
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2. Related work 88 

Some studies have evaluated the environmental and cost impacts of bike-sharing 89 

separately. Montreal’s Bixi has claimed that its program has saved over 3 million pounds of 90 

GHG emissions since its launch in May 2009 (DeMaio, 2009). Lyon (2009) stated that its 91 

program, which began in 2005, had cut the equivalent of 18.6 million pounds of CO2 emissions 92 

from the atmosphere. Meanwhile according to the Earth Policy Institute, each shared bike user 93 

in Washington DC saves $800 in transportation costs per year on average (Davis, 2014).  94 

The environmental impacts of bike-sharing can instead be investigated more accurately 95 

when taking into consideration its mode share in an integrated transportation system. Some 96 

studies indicate that bike-sharing mainly acts as a competitor to private modes. As Martin and 97 

Shaheen (2014) stated, bike-sharing has been found to decrease driving. A survey conducted 98 

by Shaheen, et al. (2013) revealed that 41% of respondents in Montreal, Canada reported using 99 

public transit with bike-sharing to complete a trip that would have previously been made by 100 

car. Faghih-Imani, Anowar, Miller, and Eluru (2017) also found that during weekdays bike-101 

sharing for over half of trips less than 3 km is either faster or comparable to taxi service. The 102 

impacts of bike-sharing on shifts in public transit have been mixed. Campbell and Brakewood 103 

(2017) found that for routes in Manhattan and Brooklyn, every thousand bike-sharing docks 104 

along a bus route were associated with a 2.42% decline in daily unlinked bus trips.  Martin and 105 

Shaheen (2014) found that bike-share members living in Washington D.C.’s high population 106 

density urban core were more likely to report reductions in bus use as a consequence of bike-107 

sharing, while members living in lower-density regions in the urban periphery were more likely 108 

to report additional bus use. However, this pattern did not emerge in the results for Minneapolis, 109 

where respondents reported rising and falling usage in almost equal proportion regardless of 110 

residence in the urban core or periphery. Modal shifts identified in Hangzhou bike-sharing can 111 

act as both a competitor and complement to other available public transport options (Shaheen, 112 
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Zhang, Martin, & Guzman, 2011). Some studies also found that bike-sharing has a greater 113 

impact on transit in these competitive relationships. Fuller, Gauvin, Morency, Kestens, and 114 

Drouin (2013) found that bike-sharing was associated with a small (0.3 – 0.4%) modal shift 115 

away from car use, but most of the apparent behavioral shift was seen from public transport, 116 

walking or private bike use. Similarly, Pai (2012) also reported that in Taipei, with the 117 

introduction of YouBike, 35.97% of YouBike trips shifted from bus traveling and 34.60% of 118 

YouBike trips shifted from walking. Only 8.72% of YouBike trips shifted from riding a private 119 

bike and 6.81% from riding a motorcycle.  In order to more accurately evaluate the impacts of 120 

bike-sharing, the mode shares between bike-sharing and other transpiration modes were 121 

explored during the first stage of the current study. 122 

The key factors that influence mode share choices have been investigated. Heinen, Maat, 123 

and Van Wee (2011); Kumar et al. (2016) found that time, price, and convenience were the 124 

main concerns of travelers in the mode choice process. Adverse weather conditions such as 125 

cold temperatures, heavy rain, high humidity, and stormy weather decreased bike-share 126 

activities, and more regionally specific comfortable temperatures (close to 90°F) increased 127 

bike-share trips (Godavarthy & Taleqani, 2017). Zhang, Yu, Desai, Lau, and Srivathsan (2016) 128 

also found that precipitation had a significant short-term impact on trip numbers: after heavy 129 

rainfall, bookings declined considerably below average and would take around three hours 130 

before rebounding to average trip rates again. But research by Heinen, van Wee, and Maat 131 

(2010); Miranda-Moreno and Nosal (2011); Nankervis (1999) suggested that weather does not 132 

typically deter regular cycle commuters unless conditions are particularly severe, i.e. 133 

temperatures below 4-5°C or above 35°C.  Raviv and Kolka (2013) asserted that the primary 134 

factor that determines the success of a bike-sharing system is the ability to meet the demand, 135 

which can be pursued by providing a sufficient number of available bicycles and vacant lockers 136 

at each station. Inadequate cycling infrastructure decreased bike-sharing and private utility 137 
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cycling (Goodman & Cheshire, 2014). As Heinen, et al. (2011); Stinson and Bhat (2003) found, 138 

travelers’ mode choice is not only influenced by the external environment, but also by travelers’ 139 

socio-demographic characteristics. In particular, car ownership has been shown to have the 140 

greatest impact on bicycle usage among all studied socio-demographic variables, accounting 141 

for significantly low use of a bicycle as a mode for commuting. The same applies to motorcycle 142 

owners. Koppelman and Bhat (2006) emphasize that it is important to identify factors whose 143 

values may be changed through proactive policy decisions. Passenger environmental 144 

awareness, attitude towards bad weather, and other psychological factors are not considered in 145 

this study, as these factors are more challenging to quantify and incorporate into this model. 146 

Thus, in this study, the four factors influencing mode choice include travel cost, travel time, 147 

accessibility level, and automobile ownership.   148 

 149 

3. Material and method 150 

3.1 Definition of the Simulation 151 

This study simulates the impacts of bike-sharing under alternative transport policy 152 

initiatives by using agent-based modeling—a bottom-up approach that draws upon the spatial 153 

information. Bike-sharing embedded in transportation systems has been studied from a top-154 

down viewpoint, either for system optimization (such as optimization of station locations) or 155 

for a deeper statistical understanding of their working mechanisms (such as logistics operations 156 

to identify and remedy zones with a surplus or shortage of bikes). Yet bottom-up approaches 157 

to studying bike-sharing that incorporate the behavior of users have not typically been applied 158 

so far (Shimizu, Akai, & Nishino, 2014). Agent-based modeling (ABM) is used for simulating 159 

the evolution of passenger mode choices as influenced by different transport policies (Lu & 160 

Hsu, 2017). An integrated transportation model is thus generated to simulate the interactions 161 

between passengers and transport modes. As distinguished from system dynamics, ABM can 162 
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reflect the heterogeneity of travelers’ characteristics and the complex interactions in a 163 

passenger transportation market. The behavior theories of random utility maximization and 164 

bounded rationality, which are widely used in travel behavior modeling and prediction, are 165 

applied to model passengers’ mode choice behaviors. A geographic information system (GIS) 166 

is also employed to enhance the reality of the ABM model. 167 

In the model, there are two types of agents: passengers and transport modes. The 168 

passengers commute during weekdays based on their different socio-economic status, which is 169 

generated from a representative distribution in the model (Guo, 2015). Each passenger has its 170 

preferential weights for choosing a mode for a commute. Six kinds of transport modes are 171 

included in the model. The first four modes are used for end-to-end trips, including bicycle, 172 

walk, motorcycle, and car. The other two modes are transit, i.e., bus and metro, which might 173 

need first/last mile connections to complete a trip. This study focuses on walk and bicycle 174 

serving as the first/last mile connect modes for the public transit modes.  To show the mode 175 

choice processes based on the interactions between passenger and mode agents, the model 176 

excludes other irrelevant factors that may occur in reality. 177 

To calibrate the agents’ traveling behaviors, two kinds of data are collected. The first kind 178 

encompasses the attributes of passenger agents, which include income level, automobile 179 

ownership, time to travel, and origin and destination of the trip. The second kind consists of 180 

the variables of model agents, which include travel speed; travel cost; emission factors; spatial 181 

distribution of bike stations, metro stations and bus stops; and the corresponding routes. The 182 

spatial distribution data for bikes, metro, and the bus is especially important in accurate 183 

transportation map construction and highly related to the performances of transport modes. The 184 

model enables life-cycle impact assessments of these transport modes by using environmental 185 

performance data for the transport modes, including SOx, NOx, CO, and GHG emission factors.   186 
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As indicated previously, the key factors that influence passengers’ mode choice are travel 187 

time, travel cost, accessibility level, and automobile ownership. Travel time in the model refers 188 

to the on-board time of the travel mode. The travel cost sums up all the explicit costs incurred 189 

during the commute trip. Accessibility level represents a locational characteristic that permits 190 

a station to be reached through the effort of those at other places using connected modes such 191 

as walking or bicycling. Automobile ownership means the ownership of a private car or 192 

motorcycle. For ease of comparison, the travel time and accessibility level are evaluated by 193 

how each agent values its time, defined as the value of time (VOT). Empirical studies have 194 

firmly established that travelers are much more sensitive to out-of-vehicle time than to in-195 

vehicle time, meaning that a higher disutility is generated from a minute of out-of-vehicle time 196 

compared to a minute of in-vehicle time (Koppelman & Bhat, 2006). In this study, the VOT in 197 

vehicle and out of vehicle are evaluated as 60% and 100% of the passenger’s hourly salary 198 

level. The four factors are defined in eq. (1) to eq. (4). 199 

 time = d𝑡𝑟𝑎𝑣𝑒𝑙/𝑣𝑡𝑟𝑎𝑣𝑒𝑙 × 𝑠 × 60% 

 

(1) 

  𝑐𝑜𝑠𝑡 = 𝑐𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑐𝑐𝑜𝑛𝑛𝑒𝑐𝑡 

 

(2) 

  𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡/𝑣𝑐𝑜𝑛𝑛𝑒𝑐𝑡 × 𝑠 × 100% 

 

(3) 

 
own = {

1 (ℎ𝑎𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒,   𝑒. 𝑔. 𝑐𝑎𝑟 𝑜𝑟 𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
 

 

(4) 

Where 𝑑𝑡𝑟𝑎𝑣𝑒𝑙 and 𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡 represent the travel distance and connect distance, 𝑐𝑡𝑟𝑎𝑣𝑒𝑙 and 200 

𝑐𝑐𝑜𝑛𝑛𝑒𝑐𝑡 represent the cost of travel mode and cost of connect mode respectively, and 𝑠 refers 201 

to the hourly salary of the passenger agent. 202 

The four factors of the transport modes vary between time periods due to changes in the 203 

external environment. For example, the bike accessibility level could change due to the 204 

redistribution of bike stations. In addition to the four factors, actual traffic conditions affect 205 

travelers’ choices. Faghih-Imani, Anowar, et al. (2017) found that individuals were unlikely to 206 

consider bike-sharing for long trips (>5 km or so). Thus, the bike mode is only deemed of 207 
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utility if the one-way trip distance is under 5 km. Similarly, as stated by Boris and Zupan (1977), 208 

walking is considered of utility when the one-way trip distance is less than 1 km. Based on 209 

statistics of trip information (Department of Transportation, 2016), only when the end-to-end 210 

trip distance is longer than 500m will it be regarded as one trip. For example, if one traveler 211 

rides a bike to a nearby store and the cycling distance is less than 500m, the bike is not 212 

considered a transport mode in this study. In the first/last mile trips, the connect mode is also 213 

counted when the connect distance is longer than 500m. For example, in the case of one traveler 214 

taking a public bike from home to a metro station to connect to a metro trip, the bike is regarded 215 

as the connect mode when the cycling distance is longer than 500m. Hence, 500m is taken as 216 

the minimum trip distance for one specific mode. 217 

3.2 Behavior theories 218 

With the key factors influencing the passengers’ mode choices defined, two behavior 219 

theories constructing the passengers’ mode choice processes were implemented: random utility 220 

maximization (RUM) and bounded rationality (BR). RUM represented as perfect rationality 221 

(PR) has been widely applied in modeling travel behavior, assuming people assess and choose 222 

the best available mode of transport by considering all related factors such as cost, time, and 223 

the person’s socioeconomic traits. However, this approach is not able to explain why 224 

individuals in similar situations and with similar socioeconomic traits make different mode 225 

choices. As opposed to RUM, BR takes into account the cognitive limitations of the decision-226 

maker, limitations of both knowledge and computational capacity. When one person with 227 

bounded-rationality “satisfices,” he seeks the alternatives that are satisfactory or “good enough” 228 

and not necessarily optimal. These two behavior theories were applied in the passengers’ travel 229 

behavior simulation for comparison. And based on the historical data, the theory with the best 230 

fitness simulation results was selected for the subsequent scenario simulations. 231 

Random utility maximization 232 
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Daniel Mcfadden parameterized and applied random utility maximization (RUM) into 233 

transportation demand in the early 1970s, work for which in part he later won the Nobel Prize 234 

in Economics. The utility maximization rule rests on two main concepts. The first is that the 235 

attribute vector characterizing each alternative can be reduced to a scalar utility value for each 236 

of those alternatives. The second concept is that the individual chooses the alternative with the 237 

highest utility value (Koppelman & Bhat, 2006). In a RUM model, the utility of one alternative 238 

mode is comprised of two parts: (1) the utility solely related to the attributes of alternatives, (2) 239 

the utility solely related to the characteristics of the decision maker, as shown in Eq. (5): 240 

 𝑉𝑖,𝑗 = 𝑉(𝑀𝑗) + 𝑉(𝑃𝑖) (5) 

 241 

Where  𝑉𝑖,𝑗 is the utility of mode j of the people i, 𝑉(𝑃𝑖) is the utility associated with the 242 

characteristics of people i, and 𝑉(𝑀𝑗) is the utility associated with the attributes of mode j. 243 

Based on the above four key factors, the mode utility is extended in Eq. (6): 244 

 245 

 𝑉𝑖,𝑗 = 𝛽1 × 𝑐𝑜𝑠𝑡𝑗 + 𝛽2 × 𝑡𝑖𝑚𝑒𝑗 + 𝛽3 × 𝑎𝑐𝑐𝑒𝑠𝑠𝑗 + 𝛽4 × 𝑜𝑤𝑛𝑖 (6) 

 246 

Where 𝛽𝑘  is the weights of corresponding attributes; 𝑐𝑜𝑠𝑡𝑗 , 𝑡𝑖𝑚𝑒𝑗  and 𝑎𝑐𝑐𝑒𝑠𝑠𝑗  are the 247 

travel cost, travel time, and accessibility level of mode j respectively, which are normalized 248 

between zero and one; and 𝑜𝑤𝑛𝑖 is a dummy variable for automobile ownership (automobile 249 

here refers to the car or motorcycle), one if the passenger has a car or motorcycle and zero 250 

otherwise.  251 

Finally, the people choose the mode has the highest utility after comparing all the modes’ 252 

utilities. 253 

Bounded rationality  254 

Bounded rationality (BR) was introduced by Herbert Simon in the 1950s. It has recently 255 

recaptured researchers’ attention since it was first introduced in transportation research in the 256 
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1980s due to its ability to more realistically model and predict travel behavior. Through a 257 

comparative analysis of commuter departure time and route choice switch behavior between 258 

laboratory experiments and field surveys in Dallas and Austin, Texas, Mahmassani and Jou 259 

(2000) were able to demonstrate that boundedly rational route choice modeling generates valid 260 

representations of real commuter daily behavior. Three principle parameters were used in 261 

modeling the BR behavior in this study. They are aspiration level, stress threshold, and 262 

activation level. The aspiration level also called an indifference band, can change in the process 263 

of learning and interaction with the environment (Gifford & Checherita-Westphal, 2008). The 264 

deviation between the aspirations of an agent and the utility of a mode is defined as “stress” 265 

(Habib, Elgar, & Miller, 2006). If stress exceeds the stress threshold, the agent selects the 266 

choice with the maximum expected utility and its aspiration level falls. As long as the stress is 267 

within the stress threshold of the agent, the alternative will be selected and implemented again. 268 

Memory activation level is a habit indicator, as the mode with the maximum activation level 269 

in the choice set becomes the habitual option for that individual (Psarra, Arentze , & 270 

Timmermans, 2015). The updated activation level of agent i in time t is defined as follows: 271 

 𝐴𝐿𝑖
𝑡 = log(𝐴𝐿𝑖

𝑡−1 + 1 + 𝛽), 

if the mode has been selected at this time step 

 

(7) 

 𝐴𝐿𝑖
𝑡 = log(𝛼𝐴𝐿𝑖

𝑡−1 + 1), otherwise 

 

(8) 

where β > 1 is the recency weight and 0 < α < 1 is the retention rate. 272 

A logarithmic transformation is used because it is assumed that when the mode is newly 273 

selected, its activation level rapidly increases until it reaches a saturation point at which the 274 

activation level surge slows down. On the other hand, when the mode is no longer selected, its 275 

activation level dramatically falls (Psarra et al., 2015). Details about the procedure of bounded 276 

rationality behavior can be found in the Supplementary material. 277 
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3.3 Case study 278 

The majority of people in Taiwan rely on cars, motorcycles, and scooters as the preferred 279 

mode of transport. Growing populations in cities have resulted in increased traffic congestion, 280 

air pollution, and car accidents. To address the negative impacts of motorized transport, the 281 

Taipei City Government has started promoting sustainable transport modes since 2008. The 282 

Public Bike System “YouBike” was officially launched in Taipei City in 2009. Taking 283 

advantage of Taipei Open Data, the spatial information of bike stations and bike lanes from 284 

2009 to 2015 were collected. Other modes’ stations and corresponding traffic lines were also 285 

incorporated into the model. The trips simulated are mainly based on the home-based work trip. 286 

The main transportation modes in Taipei include bike, walk, motorcycle, car, bus, and metro, 287 

which account for more than 95% of market share in the Taipei transportation system. The 288 

operating parameters such as the speed and cost of the studied modes were derived from Chang 289 

and Guo (2007); Huang (2016). 290 

3.4 Model calibration and validation 291 

The model was calibrated and validate through the comparison of two types of empirical 292 

data: a travel survey of respondents’ daily used transport modes, and findings from previous 293 

Taipei transport system research literature. The travel surveys of daily used transport modes 294 

were collected from 2009 to 2015 in Taiwan, which include the mode shares of walk, bike, 295 

motorcycle, car, bus, and metro (Department of Transportation, 2010, 2011, 2012, 2013, 2014, 296 

2015, 2016). In this survey, more than 30,000 people were interviewed by telephone every year. 297 

This data was used for model calibration. The calibration experiment was conducted by varying 298 

the combinations of four weights of the key factors. Exhaustive algorithms and heuristic 299 

algorithms were implemented to find the best parameter combination.  The historical data of 300 

mode share in 2013 and 2015 were used as representative data to compare with the respective 301 

simulation results. The four key factors of the transport modes varied between 2013 and 2015. 302 
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For example, bike stations increased from 136 to 212. In addition, before April 2015, using 303 

YouBike was free for the first 30 min. Since April 1, 2015, the charge for the first and each 304 

subsequent 30-minute increment use was 5 NTD (New Taiwan Dollar) (roughly 1.66$). Thus, 305 

the travel cost, travel time, and accessibility level of bike and its connected transit changed 306 

accordingly. The ownership of motorcycles and cars also varied between these two years. 307 

Motorcycle ownership fell from 411 to 363 per 1,000 people from 2013 to 2015, while car 308 

ownership rose from 283 to 293 per 1,000 people. Figure 2 compares the historical mode 309 

shares and their corresponding simulated mode shares of these two behavior theories with the 310 

best fitting parameter combination in 2013 and 2015.  311 

 312 

 313 

Figure 2. Calibration results of mode shares in 2013 and 2015 314 

Note: 2015H/2013H means the historical date of the year 2015 and 2013. 2015S/2013S means 315 

the simulated results of the year 2015 and 2013.  316 

 317 

As for the research findings from the literature review, in Taipei City, the average trip 318 

distances of bike, metro, motorcycle, and car are 2  km, 8.1 km, 9 km, and 12 km, respectively 319 

(Huang, 2016). The studies found that the cars and motorcycles in Taiwan are usually used for 320 

long-distance traveling given their faster speed and higher accessibility level. These travel 321 

patterns are used for model validation (see Table.1). 322 

 323 
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Table1. Validation results of average trip distance in 2015 324 

Average trip 

distance (km) 

Empirical study   

(Huang, 2016) 2015S-BR 2015S-RUM 

Metro 8.10 7.29 7.19 

Car 12.00 10.42 7.93 

Motorcycle 9.00 7.64 10.92 

Bike 2.00 1.72 2.31 

 325 

The simulation results for BR demonstrated better fitness according to both of the 326 

calibration and validation procedures applied in this study. Thus the corresponding parameters 327 

and behavior theories of BR are applied to the following scenario simulation. The details about 328 

parameter configuration and statistical calibration and validation processes can be found in the 329 

supplementary material. 330 

 331 

3.5 Scenarios  332 

Based on the calibrated configuration of the model, two scenarios related to the key factors 333 

were simulated. The following scenarios are represented quantitatively in the simulation. Table 334 

2 summarizes the simulation results of the following scenarios. 335 

Table 2. Simulation results of the two scenarios 336 

Mode 2015 BAU Scenario1 Scenario2 

Infrastructure 

extensions 

 Free for transit 

connection 

2 NTD coupon 

Bike% 5.40 5.79 6.30 5.60 

Walk% 16.40 15.70 20.47 20.00 

Motor% 27.30 31.40 24.41 33.60 

Car% 16.90 12.40 10.24 12.80 

Bus% 17.20 21.49 19.69 14.40 

Metro% 16.90 13.22 18.90 13.60 

Notes: BAU represents business as usual, and NTD refers to the New Taiwan Dollar. 337 
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3.5.1 Bike infrastructure extensions 338 

High bicycle modal share can be achieved through maintaining and continually improving 339 

safe and extensive bicycling infrastructure. Castillo-Manzano and Sánchez-Braza (2013) 340 

described Seville’s high bicycling modal share as the result of the implementation of extensive 341 

new bicycling infrastructure. Public bicycle stations are usually located on a sidewalk near a 342 

transit station (Liu et al., 2012). In Taipei, most of the bike-sharing stations are located at 343 

nearby metro stations, with a few also located at bus stations. Such integration of bicycling 344 

infrastructure with other modes of public transit could enable stakeholders economic and other 345 

benefits (Chow & Sayarshad, 2014; Pucher & Buehler, 2009). Thus, 369 new bike-sharing 346 

stations were added close to the bus stations except for the remote mountainous areas in the 347 

north of Taipei.  With the spatial data-driven model, travelers (agents) can measure the distance 348 

between home/workplace and stations based on the real road network, which relates to one of 349 

the key factors—the accessibility level of the mode. Lin, Yang, and Chang (2013) showed that 350 

bicycle stations should not be located more than 300–500m from important origins and 351 

destinations of traffic. The average distance between the bike-sharing stations and users’ 352 

home/workplace in 2015 was calculated to be approximately 818 meters. After the extension 353 

of bike-sharing stations, the average distance between bike-sharing stations and users’ 354 

home/workplace decreased to 604 meters. The travel cost, travel time, and accessibility level 355 

of bikes and their connected transits changed accordingly. Compared to the BAU scenario in 356 

2015, the bike mode share increased from 5.40% to 5.79%, and bus mode share increased from 357 

17.20% to 21.49%. As an alternative mode to bus, metro market competitiveness thus 358 

weakened. 359 

bike-sharing can extend the catchment area of public transit (Shaheen et al., 2013). Huang 360 

(2016) found that 48% of YouBike trips started or ended at a metro station in Taipei, which 361 

can be speculated that almost half of YouBike services were used in the first/last mile service 362 
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of transit. In this scenario, with the extension of bike-sharing stations, 63% bike is used to 363 

connect the first/last mile of the transit. But it should be noted 85% connecting bike is used for 364 

the first/last mile service of metro although the strategy is focused on building more bike 365 

sharing stations around the bus stations. This phenomenon can be explained by the spatial 366 

function of the model. It can be found the average distance between bus stations and users’ 367 

home/workplace in Taipei is 203m, which is less than 1,000m and can be connected by walk. 368 

While the average distance between home/place and metro is much longer, 1,373 meters, even 369 

longer than the maximum walking distance 1,000 meters, that’s why most connecting trips 370 

occur around the metro stations. 371 

 372 

3.5.2 Bike-sharing incentives 373 

Huang (2016) found that average bike-sharing trips declined by 26%, and trip distances—374 

around 1-2 km—did not significantly change, after the cancellation of the “free use in the first 375 

30 min” policy in April 2015. With consideration of this finding, some incentive strategies to 376 

encourage people using bike-sharing could consist of the free use of YouBike when used to 377 

connect the transit with the smart travel card, or a 2NTD (roughly 0.66$) coupon for every 378 

completed trip that can be used on subsequent trips. With one or the other incentive strategies 379 

simulated in the present study, the travel costs of the bike and its connected transit changed 380 

accordingly.  381 

Compared to the BAU scenario in 2015, the simulation results show that the bike mode 382 

share increases from 5.40% to 6.30% with the first incentive strategy, and the shares of bus and 383 

metro also increase by 2.49% and 2.00%. Correspondingly, the motorcycle mode share 384 

decreases by 2.89% with the first incentive strategies. The bike mode share increases from 5.40% 385 

to 5.60% with the second incentive strategy. With the first bike-sharing incentive strategy, 75% 386 

bike is used to connect the first/last mile trips of the transit, but the connecting percentage in 387 
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the second bike sharing incentive strategy is only 45%, which has little change compared with 388 

the BAU scenario. This is because bike-sharing and transit become complementary modes in 389 

the first incentive scenario, which can encourage more people to use bike and transit compared 390 

to implementing an incentive strategy that only targets cycling.  391 

In Taiwan, motorcycles are the primary transport mode and known to be the biggest single 392 

source of vehicular pollution. Despite the introduction of bike-sharing through YouBike in 393 

2009, bike-sharing exhibits limited influence on motorcycle use based on the simulation results 394 

for the above two scenarios. As for the motorcycle and car, there are no first/last mile problems. 395 

The travel speeds of motorcycle and car are even faster than bus. However, it should be noted 396 

that the transit mode shares increased by 2%-4% with the strategies encouraging the use of 397 

bike-sharing to connect to transit. 398 

 399 

4. Results and Discussion 400 

4.1 Results analysis 401 

The environmental impacts of these three scenarios were analyzed, with the associated 402 

SOx, NOx, CO, and GHG emissions estimated. Table 3 shows the emission factors with the 403 

unit of per passenger-kilometer traveled (PKT) (Chester, Horvath, & Madanat, 2010; Lin, Su, 404 

Chang, Chang, & Huang, 2011), and Table 4 shows the damage cost of the respective pollutant 405 

measured in NTD (Lin et al., 2011). Thus, the corresponding environmental impacts are 406 

transferred to the total damage cost for comparison (see Eq. (9)). The minimized total damage 407 

cost is achieved in the scenario of free use of bike sharing to connect transit. The total damage 408 

cost can be reduced by 16%, equal to 1.5 million US dollars reduction in transportation damage 409 

cost per year compared to the 2015 BAU scenario. Thus, free use of bike sharing to connect 410 

transit could be more environmental-friendly than other traffic policies that only target bike-411 

sharing.  412 
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Table 3. Emission factors of respective modes 413 

Modes Bike Walk Motorcycle Car Bus Metro 

NOx (g/PKT) 0.00 0.00 0.34 0.64 0.60 0.09 

SOx (g/PKT) 0.00 0.00 0.00 0.01 0.00 0.14 

CO (g/PKT) 0.00 0.00 6.12 7.96 0.14 0.02 

GHG (CO2eg/PKT) 0.00 0.00 138.51 231.28 78.24 77.48 

 414 

Table 4. Damage cost of the respective pollutant 415 

Damage cost (2009NTD/g) 

NOx 0.101342 

SOx 0.252785 

CO 0.001198 

GHG 0.000590 

 416 

 TDC = ∑ 𝐸𝐹𝑖 × 𝐷𝐶𝑖 × 𝑇𝑑𝑗 
(9) 

Note: Here TDC, 𝐸𝐹𝑖, and 𝐷𝐶𝑖 represent total damage cost, emission factor of the pollutant i, 417 

and damage cost of the pollutant i.  𝑇𝑑𝑡𝑟𝑎𝑣𝑒𝑙𝑗 means the total travel distance of the mode j. 418 

 419 

The benefits of physical activity including cycling and walking were compared between the 420 

minimized environmental impacts scenario (free use of bike sharing to connect transit) and the 421 

BAU scenario. The World Health Organization’s Health Economic Assessment Tool (HEAT) 422 

was used to estimate avoided premature deaths due to physical activity from walking or cycling 423 

(World Health Organization, 2017). With this tool, the economic values of the health benefits 424 

that occur as a result of the reduction in mortality due to their physical activity are explored. In 425 

the minimized environmental impacts scenario, the average daily cycling and walking time for 426 

regular commuters are 16 and 36 minutes, respectively. Thus, the relative risk for cycling is 427 

0.89 for regular commuter cycling for 16 minutes per week, that is, a population of regular 428 

cyclists is 11% less likely to die from all causes combined than a population of non-cyclists. In 429 

the same way, the relative risk for walking is 0.90 for regular walking of 180 minutes per week. 430 
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Compared with the BAU scenario, 7,488 and 33,862 people shift to cycling and walking in the 431 

minimized environmental impacts scenario. As a result, in the minimized environmental 432 

impacts scenario, 22 premature deaths can be further prevented per year compared with the 433 

BAU scenario. The detailed premature death calculation processes can be found in the 434 

Supplementary material. The human health impacts taking into consideration both physical 435 

activity and ambient air pollution were also analyzed (see Supplementary material).  436 

4.2 Future directions  437 

To resolve current methodological limitations, future model development could first 438 

incorporate weather effects. Individuals hesitate to ride a bike when facing adverse weather 439 

(Faghih-Imani, Anowar, et al., 2017). When there is favorable weather, the number of trips and 440 

travel time have both been shown to be greater (Caulfield, et al., 2017). Several weather 441 

conditions (such as precipitation) should be simulated based on comprehensive historical 442 

weather data. Second, in addition to the commute activities modeled in this study, leisure travel 443 

also contributes to the usage of bike-sharing. People using bike-sharing for tourism also have 444 

different values for travel time, travel cost, and so on, often being less sensitive to travel time 445 

compared to commuting citizens. Tourists’ travel patterns can be modeled further in the course 446 

of bike-sharing system development. Third, some studies have revealed that psychological 447 

factors (such as comfort and perceptions of safety) have a significant influence on bicycling 448 

behavior and should be given further attention (Heinen et al., 2011). In future research, agent 449 

decision-making should also incorporate these psychological factors.   450 

 451 

5. Conclusion 452 

In this study, a multidisciplinary approach to spatial multi-agent simulation for improving 453 

the sustainability of an integrated transportation system with bike-sharing was developed using 454 

real spatial information, and modeling disaggregated passenger behaviors. An ABM type 455 



21 

 

model was developed to examine the usage of bike-sharing in a city’s integrated transportation 456 

system by simulating the interactions between passengers and transport modes. The model can 457 

dynamically display how passengers’ mode choices evolve under the influences of different 458 

transport policy strategies. In this model, all the modes operate in their traffic lines based on 459 

real road network data, and all the potential passengers commute by starting their trips from 460 

home and finishing at the workplace. The inclusion of these spatial behaviors enables the model 461 

to more accurately reflect the real transportation system.  462 

Comparative analysis of the simulation results for two scenarios provide insights into the 463 

application of three traffic system measures, namely building more dockings near bus stations, 464 

free use of bike sharing to connect transit, and a 2NTD coupon for every completed trip. The 465 

results indicate that the second strategy is the most sustainable one, with the corresponding 466 

total damage cost of commute pollution reduced by 1.5 million US dollars per year compared 467 

to the 2015 BAU scenario, and 22 premature deaths further prevented per year due to the mode 468 

shift to cycling and walking. However, bike-sharing has limited influence on the use of private 469 

modes in Taipei, especially for motorcycle owners. Discouraging motorcycle use may produce 470 

the most immediate positive effects from an environmental perspective. This study provides an 471 

advanced tool to simulate bike-sharing decision making and understand environmental 472 

consequences under various policy scenarios. The model can be applied to other cities to aid 473 

in improving the sustainability of integrated transportation systems with bike-sharing.  474 

 475 

Acknowledgment 476 

The authors appreciate the financial support from the Hong Kong Research Grants Council 477 

(Grant No. 25220615). 478 

 479 



22 

 

References 480 

Bauman, A., Crane, M., Drayton, B. A., & Titze, S. (2016). The unrealised potential of bike 481 

share schemes to influence population physical activity levels - A narrative review. 482 

Preventive Medicine. 483 

Campbell, K. B., & Brakewood, C. (2017). Sharing riders: How bikesharing impacts bus 484 

ridership in New York City. Transportation Research Part A: Policy and Practice, 100, 485 

264-282. 486 

Castillo-Manzano, J. I., & Sánchez-Braza, A. (2013). Managing a smart bicycle system when 487 

demand outstrips supply: The case of the university community in Seville. 488 

Transportation, 40, 459-477. 489 

Caulfield, B., O'Mahony, M., Brazil, W., & Weldon, P. (2017). Examining usage patterns of a 490 

bike-sharing scheme in a medium sized city. Transportation Research Part A: Policy 491 

and Practice, 100, 152-161. 492 

Chang, S.-K., & Guo, Y.-J. (2007). Development of Urban Full Trip Cost Models. 493 

Transportation Planning Journal, 36, 147-182. 494 

Chester, M. V., Horvath, A., & Madanat, S. (2010). Comparison of life-cycle energy and 495 

emissions footprints of passenger transportation in metropolitan regions. Atmospheric 496 

Environment, 44, 1071-1079. 497 

Chow, J. Y. J., & Sayarshad, H. R. (2014). Symbiotic network design strategies in the presence 498 

of coexisting transportation networks. Transportation Research Part B: 499 

Methodological, 62, 13-34. 500 

Davis, L. S. (2014). Rolling along the last mile: Bike-sharing programs blossom nationwide. 501 

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal 502 

of Public Transportation, 14, 41-56. 503 

Department of Transportation (2010). 2009 Travel Survey in Taiwan. Taiwan. 504 

Department of Transportation (2011). 2010 Travel Survey in Taiwan. Taiwan. 505 

Department of Transportation (2012). 2011 Travel Survey in Taiwan. Taiwan. 506 

Department of Transportation (2013). 2012 Travel Survey in Taiwan. Taiwan. 507 

Department of Transportation (2014). 2013 Travel Survey in Taiwan. Taiwan. 508 

Department of Transportation (2015). 2014 Travel Survey in Taiwan. Taiwan. 509 

Department of Transportation (2016). 2015 Travel Survey in Taiwan. Taiwan. 510 

Di, X., & Liu, H. X. (2016). Boundedly rational route choice behavior: A review of models 511 

and methodologies. Transportation Research Part B: Methodological, 85, 142-179. 512 

El-Assi, W., Mahmoud, M. S., & Habib, K. N. (2017). Effects of Built Environment and 513 

Weather on Bike Sharing Demand: Station Level Analysis of Commercial Bike Sharing 514 

in Toronto. Transportation, 44, 589-613. 515 

Faghih-Imani, A., Anowar, S., Miller, E. J., & Eluru, N. (2017). Hail a cab or ride a bike? A 516 

travel time comparison of taxi and bicycle-sharing systems in New York City. 517 

Transportation Research Part A: Policy and Practice, 101, 11-21. 518 

Faghih-Imani, A., Hampshire, R., Marla, L., & Eluru, N. (2017). An empirical analysis of bike 519 

sharing usage and rebalancing: Evidence from Barcelona and Seville. Transportation 520 

Research Part A: Policy and Practice, 97, 177-191. 521 

Fishman, E., Washington, S., & Haworth, N. (2014). Bikeshare's impact on active travel: 522 

Evidence from the United States, Great Britain, and Australia. Journal of Transport 523 

and Health, 2, 135-142. 524 

Fuller, D., Gauvin, L., Morency, P., Kestens, Y., & Drouin, L. (2013). The impact of 525 

implementing a public bicycle share program on the likelihood of collisions and near 526 

misses in Montreal, Canada. Preventive Medicine, 57, 920-924. 527 



23 

 

Gifford, J. L., & Checherita-Westphal, C. D. (2008). Boundedly- and Non-Rational Travel 528 

Behavior and Transportation Policy. 529 

Godavarthy, R. P., & Rahim Taleqani, A. (2017). Winter bikesharing in US: User willingness, 530 

and operator’s challenges and best practices. Sustainable Cities and Society, 30, 254-531 

262. 532 

Goodman, A., & Cheshire, J. (2014). Inequalities in the London bicycle sharing system 533 

revisited: Impacts of extending the scheme to poorer areas but then doubling prices. 534 

Journal of Transport Geography, 41, 272-279. 535 

Guo, Y. (2015). The investigation of employees' movements in 2015. Directorate-General of 536 

Budget, Accounting and Statistics, Executive Yuan (Taiwan). 537 

Heinen, E., Maat, K., & Van Wee, B. (2011). The role of attitudes toward characteristics of 538 

bicycle commuting on the choice to cycle to work over various distances. 539 

Transportation Research Part D: Transport and Environment, 16, 102-109. 540 

Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by bicycle: An overview of the 541 

literature. Transport reviews, 30, 59-96. 542 

Hu, S. R., & Liu, C. T. (2014). An Optimal Location Model For The Bicycle Sharing System: 543 

A Case Study of the KaoSiung City-Bike System. Transportation Planning Journal, 544 

43, 367-392. 545 

Huang, C. L. (2016). Trip Characteristics Analysis of the Taipei City Public Bike System. 546 

Tamkang University. 547 

Koppelman, F., & Bhat, C. (2006). A self instructing course in mode choice modeling: 548 

multinomial and nested logit models: FTA. 549 

Kumar, A. A., Kang, J. E., Kwon, C., & Nikolaev, A. (2016). Inferring origin-destination pairs 550 

and utility-based travel preferences of shared mobility system users in a multi-modal 551 

environment. Transportation Research Part B: Methodological, 91, 270-291. 552 

Lin, J. R., Yang, T. H., & Chang, Y. C. (2013). A hub location inventory model for bicycle 553 

sharing system design: Formulation and solution. Computers & Industrial Engineering, 554 

65, 77-86. 555 

Lin, K. S., Su, C. W., Chang, C. W., Chang, S. Y., & Huang, W. W. (2011). The Survey of 556 

Vehicle Operation Cost and Application for Economical Benefits Evaluation of 557 

Transportation Projects(2/2). In P. Division (Ed.),  (p. 316). Taiwan. 558 

Liu, Z., Jia, X., & Cheng, W. (2012). Solving the Last Mile Problem: Ensure the Success of 559 

Public Bicycle System in Beijing. Procedia - Social and Behavioral Sciences, 43, 73-560 

78. 561 

Lu, M., & Hsu, S. C. (2017). Spatial agent-based model for environmental assessment of 562 

passenger transportation. Journal of Urban Planning and Development, 143. 563 

Lyon, G.  (2009). Velo’v la newsletter.  March. 37. Available: 564 

https://velov.grandlyon.com/Newsletter-Velo-v-numero-37.134.0.html/. Last accessed: 565 

August 4, 2017. 566 

Mahmassani, H. S., & Jou, R. C. (2000). Transferring insights into commuter behavior 567 

dynamics from laboratory experiments to field surveys. Transportation Research Part 568 

A: Policy and Practice, 34, 243-260. 569 

Martin, E. W., & Shaheen, S. A. (2014). Evaluating public transit modal shift dynamics in 570 

response to bikesharing: a tale of two U.S. cities. Journal of Transport Geography, 41, 571 

315-324. 572 

Médard de Chardon, C., Caruso, G., & Thomas, I. (2017). Bicycle sharing system ‘success’ 573 

determinants. Transportation Research Part A: Policy and Practice, 100, 202-214. 574 

Miranda-Moreno, L., & Nosal, T. (2011). Weather or not to cycle: Temporal trends and impact 575 

of weather on cycling in an urban environment. Transportation Research Record pp. 576 

42-52). 577 

https://velov.grandlyon.com/Newsletter-Velo-v-numero-37.134.0.html/


24 

 

Nankervis, M. (1999). Effects of weather and climate on urban bicycle commuters' decision to 578 

ride. A pilot survey. Road and Transport Research, 8, 85-97. 579 

Pai, S. Y. (2012). User Behavior Analysis and Bike-Friendly environment Built of the Public 580 

Bike System in Taipei. National Chengchi University. 581 

Pal, A., & Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static 582 

rebalancing problems. Transportation Research part C: emerging technologies, 80, 92-583 

116. 584 

Psarra , I., Arentze , T., & Timmermans, H. (2015). Incorporating Bounded Rationality in a 585 

Model of Endogenous Dynamics of Activity-Travel Behaviour. In S. Rasouli  & H. 586 

Timmermans (Eds.), Bounded Rational Choice Behaviour: Applications in Transport. 587 

Emerald Publishing Limited. 588 

Pucher, J., & Buehler, R. (2009). Integrating Bicycling and Public Transport in North America. 589 

Journal of Public Transportation, 12, 79-104. 590 

Pushkarev Boris, & Zupan, J. M. (1977). Public Transportation and Land Use Policy. Indiana, 591 

US: Indiana University Press from a study by Regional Plan Association of New York 592 

(RPA). 593 

Raviv, T., & Kolka, O. (2013). Optimal inventory management of a bike-sharing station. IIE 594 

Transactions, 45, 1077-1093. 595 

Ricci, M. (2015). Bike sharing: A review of evidence on impacts and processes of 596 

implementation and operation. Research in Transportation Business and Management, 597 

15, 28-38. 598 

Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia. 599 

Transportation Research Record pp. 159-167). 600 

Shaheen, S., Martin, E., & Cohen, A. (2013). Public Bikesharing and Modal Shift Behavior: A 601 

Comparative Study of Early Bikesharing Systems in North America. International 602 

Journal of Transportation, 1, 35-54. 603 

Shaheen, S., Zhang, H., Martin, E., & Guzman, S. (2011). Hangzhou Public Bicycle: 604 

Understanding Early Adoption and Behavioral Response to Bikesharing in Hangzhou, 605 

China. Transportation Research Record, 2247, 34-41. 606 

Shimizu, S., Akai, K., & Nishino, N. (2014). Modeling and Multi-agent Simulation of Bicycle 607 

Sharing. In M. Mochimaru, K. Ueda & T. Takenaka (Eds.), Serviceology for Services 608 

pp. 39-46). Tokyo: Springer. 609 

Stinson, M. A., & Bhat, C. R. (2003). Commuter Bicyclist Route Choice: Analysis Using a 610 

Stated Preference Survey. Transportation Research Record pp. 107-115). 611 

Woodcock, J., Tainio, M., Cheshire, J., O'Brien, O., & Goodman, A. (2014). Health effects of 612 

the London bicycle sharing system: Health impact modelling study. BMJ (Online), 348. 613 

World Health Organization.  (2017). Health economic assessment tool (HEAT) for walking 614 

and for cycling. Available: http://www.heatwalkingcycling.org. Last accessed: January. 615 

8, 2018. 616 

Zhang, D., Yu, C., Desai, J., Lau, H. Y. K., & Srivathsan, S. (2016). A time-space network 617 

flow approach to dynamic repositioning in bicycle sharing systems. Transportation 618 

Research Part B: Methodological. 619 

 620 

http://www.heatwalkingcycling.org/



