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Abstract—Low-density parity-check (LDPC) codes are nor-
mally categorized into random structure or regular structure.
In this paper, we introduce a new type of LDPC codes which
is of semi-regular style. The parity-check matrices of the new
LDPC code type are composed of sub-matrices termed tree-
permutation matrices (TPMs). These TPMs are “semi-regular”
and are constructed in a systematic way. Using the2×2 identity
matrix and anti-diagonal matrix as an example, we illustrate
how 2

M
× 2

M TPMs are formed. During the formation of the
2
M

× 2
M TPMs, we further apply the hill-climbing algorithm to

avoid short cycles. Finally, we construct a girth-8 TPM-LDPC
code with a base matrix of size4×24 and a girth-10 TPM-LDPC
code with a base matrix of size3× 10. We implement the TPM-
LDPC decoders on a FPGA and compare the simulation results
and decoder complexity with other LDPC codes.

Index Terms—FPGA implementation, low-density parity-check
code, tree-permutation matrix

I. I NTRODUCTION

As one of the two known classes of Shannon limit-
approaching codes, low-density parity-check (LDPC) code
has been widely studied and used [1–4]. Most commonly
used LDPC codes are of quasi-cyclic nature. The parity-
check matrices of quasi-cyclic LDPC (QC-LDPC) codes use
circulant permutation matrices (CPMs) as their sub-matrices
[1, 2, 5]. Due to the regular structure of these parity-
check matrices, simple and high-throughput encoders/decoders
can be implemented [3, 6, 7]. LDPC codes can also be
constructed from random matrices or random permutation
sub-matrices [8, 9]. While better error performance could
be obtained, encoder/decoder complexity and throughput are
the major issues. For example, the FPGA simulation re-
sults in [9] have shown that random-permutation-matrix-based
cyclically-coupled LDPC (RP-CC-LDPC) codes can outper-
form cyclically-coupled QC-LDPC (CC-QC-LDPC) codes in
terms of bit error performance. However, the RP-CC-LDPC
decoder requires much more memory storage and does not
support parallel decoding compared with the CC-QC-LDPC
decoder.

In this paper, we propose a new type of matrices called
tree-permutation-matrices(TPMs) and apply them in the con-
struction of LDPC codes. TPMs are not as regular as CPMs
but also not as random as random-permutation matrices. Thus
we describe TPMs assemi-regularmatrices. Like QC-LDPC
codes, TPM-based LDPC codes allow decoding operations
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to be conducted in parallel and can achieve a high decod-
ing throughput. Moreover, there are more choices of TPMs
compared with CPMs for a given matrix size. Hence, a larger
girth and/or a fewer number of short cycles can potentially be
achieved for TPM-based LDPC codes.

In Sect. II, we will introduce a way to construct TPMs,
representations and characteristics of TPMs, and simple algo-
rithms for computing the products and transpose of TPMs. In
Sect. III, we define TPM-LDPC codes and show the sufficient
condition for cycles to exist. After that we propose an efficient
way to construct a high-girth TPM-LDPC code systematically.
Then we explain how to avoid the RAM access conflicts in the
decoder design. Finally in Sect. IV, we show the simulation
results of our proposed TPM-LDPC codes and compare the
results and decoder complexity with other regular and irregular
LDPC codes.

II. T REE PERMUTATION MATRICES

We first make use of2×2 permutation matrices to illustrate
how to construct TPMs. There are only two different2 × 2
permutation matrices — the identity2× 2 matrix (denoted by
I2×2) and the anti-diagonal2 × 2 matrix (denoted bỹI2×2).
To construct TPMs, we refer to Fig. 1 and start with a matrix
that contains only a single element “1” as shown at the top.

1) To construct Layer-1 TPMs, we replace the ‘1’ at the top
with either Ĩ2×2 (a1,0 = 1) or I2×2 (a1,0 = 0). There
are only two possibilities and henceN1 = 2 possible
Layer-1 TPMs, the size of which are2× 2.

2) To construct Layer-2 TPMs, the 1’s in each Layer-
1 TPM are replaced with either̃I2×2 or I2×2. For
each Layer-1 TPM, there are22 = 4 possible choices
(a2,0a2,1 = 11, 10, 01, 00). Hence the total number of
Layer-2 TPMs equalsN2 = 22 × N1 = 23 = 8. The
size of each Layer-2 TPM is22 × 22.

3) To construct Layer-3 TPMs, the 1’s in each Layer-
2 TPM are replaced with either̃I2×2 or I2×2 again.
For each Layer-2 TPM, there are22

2

= 16 possible
choices. Hence the total number of Layer-3 TPMs equals
N3 = 22

2

×N2 = 27 = 128. The size of each Layer-3
TPM is 23 × 23.

4) TPMs in subsequent layers are generated in a similar
manner. It can be easily shown that at LayerM , there are
22

M
−1 different TPMs, the size of which are2M × 2M .

The tree expansion is illustrated in Fig. 2. We also denote
PM
2 as a Layer-M TPM matrix formed byĨ2×2 and

I2×2.

In our study, we consider only TPMs formed bỹI2×2 and
I2×2. In general, TPMs can be constructed byZ × Z per-
mutation matrices. In Fig. 3, we further show the expansion
tree if every ‘1’ in the previous layer is replaced by aZ × Z
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Fig. 1. Forming tree-permutation matrices by replacing each ‘1’ in the upper
layer with a2× 2 permutation matrix.

Fig. 2. The full tree representation ofPM

2
.

permutation matrix. At LayerM , each TPM will have a size
of ZM × ZM .

Referring to Fig. 2, a Layer-M TPM formed by expanding
2× 2 permutation matrices repeatedly can be defined by the
“tree” vector

V = (a1,0, a2,0, a2,1, a3,0, a3,1, a3,2, a3,3, . . . ,
aM,0, aM,1, . . . , aM,22

M−1
−1) (1)

in which each element is either a “1” or “0”. When the element
assumes the value “1” and “0”, it represents an expansion with
Ĩ2×2 andI2×2. respectively. It can be readily shown that

• a 2M × 2M identity matrix will be associated with the
all-zero tree vector with2M − 1 elements; and

• a 2M × 2M TPM has a fixed column1 if and only if at
least one branch transversing from the top to the bottom
of the tree (in Fig. 2) assumes all “0” values, e.g., the
brancha1,0 = a2,0 = a3,0 = · · · = aM,0 = 0.

1A permutation matrix has a fixed column (or row) if and only if it overlaps
with the identity matrix in at least one column (or row) [10].

Fig. 3. The general tree representation of a tree permutation matrix.

Algorithm 1 Multiplication of two PM
2 TPMs

1: PM [0]← PA[0]⊕PB [0],V[0]← 0
2: for node = 1;node < 2M − 2;node++ do
3: parent← (node − 1)/2
4: if node is odd then
5: V[node]← V[parent]× 2 +PA[parent]
6: else
7: V[node]← V[parent]× 2−PA[parent]

8: PM [node]← PA[node]⊕PB [node+V[node]]

A. Multiplication of TPMs

It can be easily verified that TPMs formed by2× 2 per-
mutation matrices are closed under multiplication. One wayis
to consider all possible multiplications and then build a look-
up table to simplify the computation. The table can be large
depending on the value ofM . On the other hand, each TPM
is represented by a tree vector. To find the product of two
TPMs, we can make use of their corresponding tree vectors,
perform appropriate and simple module-2 additions, and arrive
at a new tree vector that represents the TPMs’ product. The
procedures to compute the product of two TPMs with size
2M × 2M are shown in Algorithm 1. In Algorithm 1,PA and
PB denote the tree vectors of the two TPMs to be multiplied;
V is a vector used to locate the corresponding elements in
the two tree vectors; andPM represents the tree vector of the
product of the two TPMs.

B. Transpose of a TPM

Similar to multiplication, the transpose operation on a TPM
can be conducted effectively based on its tree vector. The
transpose of a TPM with size2M × 2M is computed with
the method shown in Algorithm 2. In Algorithm 2,P and
PT represent the tree vectors of a TPM and its transpose,
respectively; andV is a vector used to locate the corresponding
elements in the two tree vectors.
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Algorithm 2 Transpose of aPM
2 TPM

1: PT [0]← P[0],V[0]← 0
2: for node = 1;node < 2M − 2;node++ do
3: parent← (node− 1)/2
4: if node is odd then
5: V[node]← V[parent]× 2 +P[parent]
6: else
7: V[node]← V[parent]× 2−P[parent]

8: PT [node +V[node]]← P[node]

III. TPM- BASED LDPC CODES

We define a TPM-based parity-check matrixHTPM as

HTPM =









T0,0 T0,1 ... T0,L−1

T1,0 T1,1 ... T1,L−1

... ... ...
TJ−1,0 TJ−1,1 ... TJ−1,L−1









(2)

where eachTi,j indicates a TPM matrix, andJ and L
correspond to the number of rows and columns of the parity-
check base matrix. We further define the corresponding LDPC
code of the TPM-based parity-check matrix as a TPM-based
LDPC code.

A. Cycle Evaluation

To evaluate the cycles of a TPM-based LDPC code, we can
apply the following theorem [11].

Theorem 1:Let C be a code which can be described by a
parity-check matrixH = (Qi,j), where the(i, j)-th entryQi,j

represents aq × q permutation matrix. If there exists a cycle
of length 2l which including the indicesi0, i1, . . . , il−1 and
j0, j1, ..., jl−1 (is 6= is+1, js 6= js+1, for all s ∈ 0, 1, . . . , l −
1), then the product of the matrices

Qi0,j0Q
T
i1,j0

Qi1,j1Q
T
i1,j1
· · ·Qil−1,jl−1

QT
i0,jl−1

(3)

has a fixed column.
Moreover, in the previous section, we have stated that a

TPM has a fixed column if and only if there exists an all-
zero branch in its tree representation. Therefore, a cycle exists
if the tree vector corresponding to (3) contains an all-zero
branch. Furthermore, the tree vector can be readily evaluated
based on the tree vectors of the component TPMs in (3) using
Algorithms 1 and 2.

B. Code Construction

Recall that a2M × 2M TPM has22
M

−1 different combi-
nations. In the design of a TPM-based parity-check matrix
HTPM shown in (2), there will be a tremendous number of
possible combinations to consider ifM is large. Fortunately,
it can be readily shown that if aHTPM has already achieved
a girth ofg, expanding each ‘1’ inHTPM with Ĩ2×2 andI2×2

will result in a newH′

TPM with girth no less thang.
Hence, we can start our code construction using small-size

TPMs and consider small girth first. Then we expand the
TPMs and try to achieve a higher girth. Since the expansion
will not lead to new cycles whose length is smaller than the

current girth, we do not need to consider the previous portion
(i.e., original tree vector) of a TPM when searching for a
higher girth, but only need to focus on the expanded part (i.e.,
new elements in the tree vector that define the expansion).
Because of this advantage, hill-climbing algorithms [12, 13]
can be easily used in searching for high-girth TPM-LDPC
codes. In the hill-climbing algorithms, the process is divided
into several steps and in each step, each element is optimized
with an adaptive cost. For TPMs, this adaptive cost can be
simplified because after we have achieved a girth-2l TPM-
LDPC code, we do not need to consider cycles shorter than
2l after expanding the code.

In order to reduce the computational intensity when search-
ing for high-girth TPM-LDPC codes using hill-climbing algo-
rithms, we first focus on small-size TPMs. When the size of
TPMs is small, the conditions of each sub-matrix we need to
consider is relatively small. Then we expand the TPMs to try
to achieve a larger girth. For example, the construction of a
girth-8 TPM-LDPC code with3×10 base matrix is presented
as follows. We replace each ‘1’ in the3 × 10 base matrix
with a randomly chosen23 × 23 TPM. Note that there are
22

3
−1 = 128 different 23 × 23 TPMs. Then we minimize

the number of cycle-4 by varying the TPMs one-by-one. If
all cycle-4s are eliminated and a girth-6 TPM-LDPC code is
found, we expand the TPMs to the size of24×24 and attempt
to minimize the number of cycle-6. At this step, the initial
part of the matrix (or tree vector) is fixed and we only need
to consider the expanded part. In addition, all the choices of
the expanded part will not lead to new length-4 cycles so the
calculation only includes the paths of potential length-6 cycle.
Then the conditions to traverse will be reduced distinctly.If
all cycle-6s cannot be eliminated after a number of iterations,
we expand each TPM again to become25× 25 and repeat the
operation.

When the size of a TPM becomes large, there will be
an enormous number of possible combinations after each
expansion. It can be very time-consuming to try all the possible
combinations. Therefore, we will randomly pick some of these
combinations and select the one with the minimum cost. In this
way, the TPM-LDPC code can be further “optimized” with the
fast hill-climbing algorithm even when the size is large. With
this method, we obtain a girth-8 TPM-LDPC code with a base
matrix of size4 × 24, and a girth-10 TPM-LDPC code with
a base matrix of size3× 10.

C. Parallel Decoding and Message Storage

In [9] it has been shown that during the decoding pro-
cess, conflicts of RAM access for messages will occur when
random-permutation matrices are used to replace the circulant
permutation matrices in QC-LDPC codes. In the case of
TPM-based LDPC codes, such conflicts can be avoided when
the messages are properly stored and the number of parallel
processors are chosen with care.

For TPM-LDPC codes, aPM
2 TPM has a size2M × 2M .

It can also be characterized by2M1 smaller TPMs each of
size2M2 × 2M2 whereM1 +M2 = M . For example, each of
the23× 23 TPMs shown in Fig. 4 can be characterized by (i)
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Fig. 4. Illustration of possibility of parallel decoding ofTPM-based LDPC
code.

21(= 2) smaller22×22(= 4×4) TPMs, or (ii)22(= 4) smaller
21 × 21(= 2 × 2) TPMs. To avoid conflicts of RAM access,
the degree of parallelismG must equal2M2 for someM2.
Moreover, the2M2 check-to-variable/variable-to-check (C ↔
V ) messages corresponding to each2M2 × 2M2 small TPM
must be assigned toG = 2M2 different RAMs. Then, the
condition that twoC ↔ V messages in the same RAM are
needed at the same time will never happen. From Fig. 4, it can
be visualized why parallel decoding can be performed without
RAM access conflicts whenG = 2. In fact, it can also be seen
that parallel decoding can be performed whenG = 4.

In addition, we need to use a group of RAMs (calledaddress
RAMs) to store the address information of the RAMs storing
C ↔ V messages. Due to the possibility of parallel decoding,
the number and size of such kind of RAMs in a TPM-LDPC
decoder are reduced compared with those needed in random-
permutation-matrix LDPC decoders [9].

IV. SIMULATION RESULTS

We first construct and simulate TPM-LDPC codes with the
following parameters.

• J = 4, L = 24,M = 12 (sub-matrix sizez×z = 4096×
4096), g = 8, a code rate of5/6 and a code length of
98304

• J = 4, L = 24,M = 11(z = 2048), g = 6, a code rate
of 5/6 and a code length of49152

For both cases, we optimize the girth of the LDPC codes
using the fast hill-climbing method [13]. The decoder is
implemented on an Altera Stratix IV E FPGA. Throughout
our simulations,an additive white Gaussian noise (AWGN)
channel is assumed. Moreover,10 belief propagation decoding
iterations are used and 4-bit quantization is applied in FPGA
decoding. The BER results are plotted in Fig. 5. We also plot
the BER of the following codes for comparison.

• Regular4 × 24 QC-LDPC codes withz = 4096, g = 8
and length98304

Fig. 5. Bit error rates of different codes.

Fig. 6. Bit error rates of QC-LDPC code and TPM-based LDPC code with
a 3× 10 sub-matrix.

• 16 × 96 CC-QC-LDPC code withz = 1024, andg = 8
and length98304

• 16 × 96 CC-QC-LDPC code withz = 512, g = 6 and
length49152

Comparing codes with length98304, the CC-QC-LDPC
code accomplishes the best BER, outperforming our proposed
TPM-based LDPC code by about 0.015 dB and QC-LDPC
code by about 0.03 dB. Comparing codes with length49152,
the CC-QC-LDPC code outperforms our proposed TPM-based
LDPC code by about 0.02 dB. However, the CC-QC-LDPC
code reaches an error floor at around10−13 whereas our
proposed TPM-based LDPC code does not show an error floor
below 10−13.

Next, we construct and simulate a TPM-based LDPC code
with the following parameters:J = 3, L = 10, z = 4096, g =
10, code rate of7/10, and a code length 40960. The BER
curve is plotted in Fig. 6. We also show the BER of a3× 10
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TABLE I
HARDWARE INFORMATION OF THEDECODERIMPLEMENTATIONS.

Code A B C D

Parallelism degree 32 32 4 32
ALUTs 65,178 87,479 31,660 70,342

Registers 45,336 49,322 13,564 43,801
Memory bits 1,796,372 2,589,891 4,297,289 2,395,296

Clock 100 MHz 100 MHz 100 MHz 100 MHz
Throughput 1.55 Gbps 1.55 Gbps 0.182 Gbps 1.55 Gbps

regular QC-LDPC code withz = 4096 and g = 10 in the
same figure. Both codes cannot achieve a girth of12 at z =
4096 using the fast hill-climbing algorithm. The results show
that the proposed TPM-LDPC code not only outperforms the
regular QC-LDPC code, but also shows a lower error floor.

In Table I, we show the hardware complexity of the different
decoders. The details of the codes are as follows.

• Code A: 4 × 24 regular QC-LDPC code, girth=8,z =
4096

• Code B:4× 24 TPM-LDPC code, girth=8,z = 4096
• Code C:16× 96 RP-CC-LDPC code,z = 1024
• Code D:16× 96 CC-QC-LDPC code,z = 1024

In general, the complexity becomes lower when fewer address
RAMs are used during the decoding. The decoder complexity
of the regular QC-LDPC code (Code A) is the lowest. The CC-
QC-LDPC decoder (Code D) is more complex than the regular
QC-LDPC decoder, but is slightly simpler than the TPM-
LDPC decoder (Code B) and much more simpler the random-
permutation-based CC-LDPC (RP-CC-LDPC) decoder (Code
C). The decoder complexity of the TPM-LDPC codes is lower
than that of the RP-CC-LDPC codes. In addition, the degree
of parallelism has a great impact on the throughput of the
decoder. The TPM-LDPC code has the same throughput as
the regular QC-LDPC code and the CC-QC-LDPC code. Their
throughputs are much higher than that of the RP-CC-LDPC
code.

V. CONCLUSION

In this paper, a new type of LDPC code called tree-
permutation-matrix (TPM)-LDPC code has been proposed.
We introduce the construction and properties of TPMs and
we define TPM-LDPC codes. We have also described sim-
ple methods for computing the product and transpose of
TPMs. According to these basic characteristics of TPMs, we
have proposed a systematic way of finding large-girth TPM-
LDPC codes based on fast hill-climbing algorithm. Using this
method, we obtain a girth-8 TPM-LDPC code with a base
matrix of size4× 24 and a girth-10 TPM-LDPC code with a
base matrix of size3× 10. We have shown how RAM access
conflicts can be avoided when designing parallel TPM-LDPC
decoders.

We have shown our simulation results of three TPM-LDPC
codes with different parameters. We have also compared the
BER results and decoder complexity of the proposed TPM-
LPDC codes with other LDPC codes under the same code
length and code rate. Simulation results have shown that

TPM-LDPC codes make use of fewer memory resources and
have a higher throughput compared with RP-CC-LDPC codes.
Compared with QC-LDPC codes, TPM-LDPC codes require
more resources in implementation but can provide a slightly
better BER performanceunder a base-matrix size of4 × 24
and an expansion factor ofz = 4096.

The target application of the proposed TPM-LDPC codes is
optical communication. Thus codes with medium code rates
and relatively long lengths are simulated in the paper. In the
future, we will look into the TPM-LDPC code performance
and decoder complexity for (i) code rate of 0.9 (for data
storage applications) and 0.5 (for wireless communications)
and also (ii) short code lengths of 4K bits and 1K bits. We
plan to publish these new results soon.
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