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Abstract We derived a theoretical solution of the shock stand-off distance for a non-equilibrium

flow over spheres based on Wen and Hornung’s solution and Olivier’s solution. Compared with pre-

vious approaches, the main advantage of the present approach is allowing an analytic solution with-

out involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects

of some important physical quantities therefore can be fully revealed via the analytic solution. By

combining the current solution with Ideal Dissociating Gas (IDG) model, we investigate the effects

of free stream kinetic energy and free stream dissociation level (which can be very different between

different facilities) on the shock stand-off distance.
� 2018 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When a supersonic/hypersonic flow over a blunt body like a
sphere, a detached bow shock forms around the body, and

the level of the non-equilibrium of the flow is measured by
the following dimensionless reaction rate parameter,1

X � da
dt

� �
s

D
2u1

, where a is the dissociation fraction, D the diam-

eter of the sphere, u the velocity; and the subscripts ‘‘1” and
‘‘s” means the corresponding quantities at freestream and
immediately behind the shock, respectively. Depending on

the value of X, the flow can be categorized into nearly frozen
flow (X� 1), nearly equilibrium flow (X� 1), and non-
equilibrium flow (otherwise). The distance between the bow

shock and the stagnation point of the nose was referred to
as the Shock Stand-off Distance (SSD). The SSD is much
smaller than the size of the tested model, and hence experimen-

tal measurement admits large errors. Generally speaking, if
there is no significant dissociation in the free stream, a larger
free stream kinetic energy leads a smaller SSD, due to a higher

level of vibrational excitation and chemical dissociation. But
an increased SSD is observed in high enthalpy shock tunnels
under the same free stream velocity and this phenomenon is
attributed to the inevitable free stream dissociation in such

facilities.2,3 In order to understand the physics behind, it is cru-
cial to explore the effects of the important flow parameters
through theoretical analysis. Olivier et al.2 first gave an

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2018.02.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cywen@polyu.edu.hk
https://doi.org/10.1016/j.cja.2018.02.013
https://doi.org/10.1016/j.cja.2018.02.013
http://www.sciencedirect.com/science/journal/10009361
https://doi.org/10.1016/j.cja.2018.02.013
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Schematic of control volume and associated notations.
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estimation of the effect of free stream dissociation on SSD, but
no quantitative solution was provided.

For frozen flows, Lobb4 performed extensive experiments

on the SSD for spheres of various diameters using a schlieren
photography technique and derived the following correlation

D
D

¼ L
q1
qs

where D is the SSD, q density, L a constant with a value of 0.41
for spheres. For dissociating flows, the accuracy of Lobb’s cor-
relation is significantly degraded.5,6

Wen and Hornung5 proposed an analytic correlation

between generalized dimensionless SSD ~D � D
D
� qs
q1

� �
and the

generalized reaction rate parameter ~X � dq
dt

� �
s

D
qsu1

� �
, which

comprises two branches, namely a frozen-side and an
equilibrium-side. The frozen-side solution is given by

~D ¼ 1

~X
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2L~X

p� �
which implies the SSD is independent of all parameters other
than L. Meanwhile, the equilibrium-side solution is given by

~D ¼ qs

qe

Lþ 1

2~X

qe

qs

� 1

� �2
" #

which implies the importance of the density ratio qs/qe (note
that the subscript ‘‘e” denotes the corresponding quantities
at fully equilibrium states). This simple correlation is well val-
idated by experiments,5,7 CFD results8,9 and a quasi-one-
dimensional model.10 However, it relies on the semi-

empirical parameter L measured by experiments, and therefore
cannot completely reveal the embedded physics.

Based on a differential analysis of the governing conserva-

tion equations, Olivier11 proposed the following analytic solu-
tion for the SSD in frozen and equilibrium flows:

~D ¼ qs
q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
1þ @�u

@/

� �
b

h i2
� 1

3
� qsqb �

q1
qs

1þ 2 @�u
@/

� �
b

h ir(

� 1
2
1þ @�u

@/

� �
b

h i
qs
q1

þ qs
qb

o
4
3
þ 2

3
@�u
@/

� �
b
� 2 qs

qb
� q1qs

h i�1

where @�u
@/ is the dimensionless tangential velocity gradient and

the subscript ‘‘b” represents corresponding values at the stag-
nation point (body). For frozen air flows, i.e., qs/qb = 1 and
qs/q1 = 6, the Olivier’s analytic solution has a value of
~D ¼ 0:4, and is thus in good agreement with the solution
obtained from Lobb’s correlation. Significantly, Olivier’s

model shows that the parameter L is not constant but depends
on the gas properties. Nevertheless, since non-equilibrium pro-
cesses increase the complexity of the conservation equations to

such an extent that even for a quasi-one-dimensional
approach, analytic solutions cannot be obtained for the whole
non-equilibrium flow regimes.12

In view of the discussions above, the present study has two
aims: (A) to derive a comprehensive analytic solution for the
whole non-equilibrium flow regime without using the semi-

empirical parameter L; (B) to investigate the effect of two fun-
damental flow parameters, namely the freestream kinetic
energy, and the freestream dissociating level, on the SSD using
a simple Ideal Dissociating Gas (IDG) model.13,14
2. Analytic solution for shock stand-off distance

Consider the control volume DV in the stagnation region
between the shock and the body, as shown in Fig. 1. The rate

at which mass enters the control volume from the left-hand

side is equal to q1u1b or q1u1b2, depending on whether the
flow is two-dimensional or axisymmetric, respectively. Mean-

while, the rate at which mass leaves the control volume
through the right-hand side is equal toZ RþD

R

qus dr or 2
Z RþD

R

qusr sin/dr

where us is the tangential velocity (i.e., the component of veloc-
ity normal to the ray from the center of curvature), R is the
radius of the sphere and dr is the differential element of the
radius. Consequently, the mass balance is given as

q1u1b ¼
Z RþD

R

qus dr ð1Þ

and

q1u1b
2 ¼ 2

Z RþD

R

qusr sin/dr ð2Þ

for two-dimensional and axisymmetric flows, respectively. The
integral terms in Eqs. (1) and (2) can be approximated using
the average value, i.e.,Z RþD

R

qus dr ¼ qusD ð3Þ

andZ RþD

R

qusr sin/dr ¼ qus
1

2
ð2RDþ D2Þ sin/ ð4Þ

Furthermore, let only the flow region very close to the stag-
nation streamline be considered. Therefore, the following

approximations can be applied:

b � ðRþ DÞ tan/; sin/ � tan/ � /; us ¼ /
@us
@/

ð5Þ

As a result, the solution method is restricted to this area
since only the stand-off distance at the stagnation point is of

interest and Eqs. (1) and (2) can be re-written as



Table 1 Dimensionless SSD (~D) of frozen flows for gases with

different values of qs/q1.

Model Dimensionless SSD (~D)

CO2

(qs/q1 = 7.67)

Monoatomic gas

(qs/q1 = 4.0)

Ideal

dissociating gas

(qs/q1 = 7.0)

Present,

Eq. (9)

0.38 0.38 0.38

Present,

Eq. (12)

0.40 0.41 0.40

Olivier11 0.38 0.44 0.39
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v
D
R

� �
� 1 ¼ 0 ð6Þ

and

v
D
R

� �2

þ 2v
D
R

� �
� 1 ¼ 0 ð7Þ

with solutions

�D � D
R
¼ 1

v
ð8Þ

and

�D � D
R
¼

�2vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2vþ 1Þ2 � 1

q
2v

ð9Þ

respectively, where

v ¼ q
@us
@/

	
ðq1u1Þ � 1 ð10Þ

Since @us
@/ =u1 is O(1) (this point can be further verified later)

and q=q1 is very large for hypersonic flows, it follows thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2vþ 1Þ2 � 1

q
� 2vþ 1 ð11Þ

Substituting Eq. (11) into Eq. (9) yields the following simple
solution for SSD in axisymmetric flow:

�D � 1

2v
ð12Þ

Obviously, the parameter v is the measurement of the pro-
duct of density and the tangential velocity gradient. Eqs. (8)

and (12) imply that the dimensionless SSD is inversely propor-
tional to v. The above derivations using integral analyses are
obviously more succinct than Olivier’s correlation derived

from the differential analyses. Comparing Eqs. (8) and (12),
the SSD for a cylinder exhibits the same qualitative behavior
as that for a sphere. However, the tangential velocity gradient

for a cylinder is smaller than that for a sphere,12 and thus the
SSD is more than twice that of a sphere. The following deriva-
tion will be focused on the SSD for spheres.

To determine the SSD for spheres using Eq. (9) or (12), the

tangential velocity gradient must be solved. At the point imme-
diately behind the shock, the velocity gradient can be deter-
mined from the conserved tangential velocity component

across the shock, i.e.,

@us
@/

� �
s

¼ u1 cos/ � u1 ð13Þ

Meanwhile, from the momentum equation in the tangential
direction at the body, we have15

qbus
@us
@/

þ @pb
@/

¼ 0 ð14Þ

where p is the pressure. Utilizing the approximation of velocity

in Eq. (5) and assuming a Newtonian pressure distribution

over the surface, i.e., pb � p1 ¼ q1u21 cos2 /, Eq. (14) can be

written as

qb/
@us
@/

� �2

� 2q1u
2
1 cos/ sin/ ¼ 0 ð15Þ
From Eqs. (5) and (15), we can get the solution of tangen-
tial velocity gradient as

@us
@/

� �
b

¼ u1

ffiffiffiffiffiffiffiffiffi
2q1
qb

s
ð16Þ

FollowingOlivier,11 an assumption ismade here that the tan-
gential velocity gradient profile varies linearly with distance
between the body and shock wave. For frozen flows and fully

equilibrium flows, the density in the stagnant region can be trea-
ted constant and the expression of v can be simply written as

v ¼ qavg

2q1
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
q1
qs

� qs

qb

r� �
� 1 ð17Þ

where qavg is the average density along the stagnant line which is
equal to qs and qe for frozen flows and fully equilibrium flows,
respectively.For hypervelocity frozen air flows, qs/qb = 1 and
qs/q1 = 6. Hence, Eqs. (9) and (12) yield SSDs of
~D ¼ 0:38 and 0:40, respectively. Both solutions are in good
agreementwith the results obtained fromLobb’s approximation

andOlivier’s model, i.e., 0.41 and 0.40, respectively. The SSD of
~D ¼ 0:38 derived by themore rigorous Eq. (9) is slightly less than

Lobb’s approximation and Olivier’s model. Nevertheless, it is
interesting to note that for the frozen nitrogen flows, Hornung1

derived a value for SSD of ~D ¼ 0:39 which is also slightly less

than that given by Lobb’s approximation. Moreover, ~D calcu-
lated from Eqs. (9) and (12) has only a weak dependence on
qs/q1 for hypersonic frozen flows which is consistent with that
first reported by Olivier.11 When freestream Mach number

Ma1?1, the value of qs/q1 depends on the value of c (adia-
batic index). In order to compare the presentmodelwithOliver’s
model11, the dimensionless SSDs for different gases are listed in

Table 1. It is observed that the presentmodel is not as sensitive to
qs/q1 as Olivier’s model. For large value of qs/q1, the present
theory agrees well withOlivier’s theory. But for themonoatomic

gas flow (c = 5/3, qs/q1 = 4.0), the difference between the two
theories is more obvious.

The values of q/q1 for non-equilibrium and fully equilib-
rium flows are larger than that for frozen flows, and the solu-

tions obtained from Eqs. (9) and (12), respectively, tend to
converge. Therefore, only the concise correlation Eq. (12) is
employed in the following calculations. Eqs. (12) and (17)

show that the density ratio qs/qb plays an important role in
determining the SSD in non-equilibrium dissociating flows,
which is consistent with the observations of Wen and Hor-

nung5 and Olivier,11 respectively.



Table 2 Dimensionless SSD (~D) of fully equilibrium flows for gases with different values of qs/qb provided with qs/q1 = 6.0.

Model Dimensionless SSD (~D)

qs/qb = 0.4 qs/qb = 0.5 qs/qb = 0.6 qs/qb = 0.7 qs/qb = 0.8 qs/qb = 0.9

Present, Eq. (12) 0.162 0.201 0.241 0.280 0.320 0.361

Wen and Hornung5 0.164 0.205 0.246 0.287 0.328 0.369

Olivier11 0.164 0.203 0.241 0.280 0.319 0.359
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Table 2 compares the values of the dimensionless SSD,
~D � D

D
� qs
q1
, obtained by Eqs. (12), Wen and Hornung’s theory5

and Oliver’s theory,11 respectively, given various values of the

density ratio qs/qb ranging from 0.4 to 0.9 provided with
qs/q1 = 6.0. It is observed that a good agreement exists
between the three sets of results.

3. Correlation between shock stand-off distance and reaction

rate parameter

Eqs. (10) and (12) imply that if qs/q1 is known, the SSD can be

determined from the average value of q @us
@/=ðq1u1Þ. Note that,

the tangential velocity gradient is already solved in the last sec-
tion. On the other hand, the generalized reaction rate param-

eter, i.e., ~X � dq
dt

� �
s

D
qsu1

, can be rewritten as

~X ¼ dq
dy

� �
s

Dus
qsu1

ð18Þ

where y denotes the horizontal direction. In other words, the

reaction rate parameter is governed by the spatial gradient of
the density immediately behind the shock. As a result, the
SSD can be correlated with the generalized reaction rate

parameter by means of the density profile between the shock
and the body.
3.1. A correlation using exponential density profile

Wen and Hornung5 used a piecewise linear function to approx-
imate the density profile. They pointed out that the use of a
piecewise linear function to approximate the density profile

between the shock and the body results in an overestimation
of the average density, and hence an underestimation of the
SSD. This error can be reduced by replacing the piecewise lin-

ear function with the following exponential function:

q ¼ qe � ðqe � qsÞe�kyD 0 6 y 6 D ð19Þ
where k ranges from zero to infinity. As shown, Eq. (19) is a
monotonic function for q with respect to k and the density
reduces to qs (frozen flows) and qe (fully equilibrium flows)

when k = 0 and 1, respectively. In other words, every flow
regime within the range of the frozen flow to the fully equilib-
rium flow is represented by a specific value of k between 0 and
1.

Using Eq. (19), the density ratio between the shock and the
body and the product of density and tangential velocity gradi-
ent and can be given as

qb

qs

¼ qe

qs

� qe

qs

� 1

� �
e�k ð20Þ
and

q
@us
@/

	
q1u1ð Þ¼ 1�qe

qs

� �
qs

q1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
q1
qs

	
qe

qs

� qe

qs

�1

� �
e�k


 �s
1� e�k

k2
� e�k

k

� �

þ 1�qe

qs

� �
qs

q1

1

k
þ e�k�1

k2

� �
þ1

2

� qe

q1
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
q1
qs

	
qe

qs

� qe

qs

�1

� �
e�k


 �s !

ð21Þ
respectively. From Eq. (19), we can easily verify that

k ¼ dq
dy

� �
s

D
qe � qs

ð22Þ

which represents the dimensionless density gradient right after
the shock. Clearly, an explicit correlation is no longer possible.
But the following uniform implicit correlation can be derived

1
~D
¼ 4 1� qe

qs

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 q1

qs

.
qe
qs
� qe

qs
� 1

� �
e�k

h ir
1�e�k

k2
� e�k

k

� �

þ4 1� qe
qs

� �
1
k þ e�k�1

k2

� �
þ 2 qe

qs
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 q1

qs

.
qe
qs
� qe

qs
� 1

� �
e�k

h ir� �
� 4 q1

qs

k ¼ ~D~X qe
qs
� 1

� �.

8>>>>>>>><
>>>>>>>>:

ð23Þ
3.2. Comparison and discussion

Eq. (23) shows that the correlation between ~D and ~X depends
on the values of qs/q1 and qs/qe, respectively. Fig. 2 shows the

variation of ~D with ~X as a function of qs/qe given a constant qs/

q1 = 6. Notably, the physical significance of ~X is the ratio
between the energy absorption rate by chemistry and the input

rate of free stream kinetic energy.5 For small ~X, no chemical
reaction occurs in the flow and thus the scaled SSD remains

constant. However, as ~X increases, the amount of energy

absorbed by vibrational excitations and chemical reactions
also increases. As a result, the average density increases, while
~D decreases. As expected for the non-equilibrium regime, using
exponential density approach gives a higher value of SSD than
Wen and Hornung’s correlation5 using linear density
approach.

As described above, the scaled SSD is dependent on qs/q1
and qs/qe. For an ideal dissociating gas with no freestream dis-
sociation, qs/q1 is equal to 7. For CO2 with Ma1 ?1, qs/q1
is equal to 7.67. Fig. 3 plots ~D and �D versus ~X for different val-



Fig. 2 Scaled SSD ~D as function of reaction rate parameter ~X
given qs/q1 = 6.

Fig. 3 Effect of qs/q1 on scaled SSD ~D and �D for different

values of qs/qe.
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ues of qs/q1. It is seen that while ~D has a very weak depen-

dence on qs/q1, �D has a strong dependence on qs/q1. For a

constant ~X, when qs/q1 increases, �D decrease significantly,

but ~D almost remains the same. In other words, ~D is a more

universal dimensionless parameter than �D in estimating the
SSD.

4. Analytic solution for stand-off distance of nitrogen flows using

ideal dissociating gas model

4.1. Basic equations

The analytic solutions derived in the previous section are not

restricted to any specific gas model, and show that ~D is deter-
mined by both qs/q1 and qs/qe. However, in experimental and

simulation studies, the freestream condition is usually
expressed in terms of freestream values of q1, u1, T1 and
a1(T1 is the freestream temperature). Wen and Hornung5

qualitatively described the effect of free stream kinetic energy

on the scaled SSD ~D. However, no quantitative relation was

derived. Thus, in the present study, the simple IDG model is
used to quantify the effects of the main flow parameters on
the scaled SSD analytically, for the illustrative case of nitrogen
flows. The analysis is also suitable for other pure dissociating
diatomic gases and can be extended to multi-component gases

by using the approach proposed by Olivier and Gartz.16

The boundary conditions on the shock wave can be deter-
mined by enforcing the conservation of energy, momentum,

mass and dissociation fraction across the shock, i.e.,

h1 þ 1
2
u21 ¼ hs þ 1

2
u2s

p1 þ q1u21 ¼ ps þ qsu
2
s

q1u1 ¼ qsus

a1 ¼ as

8>>><
>>>:

ð24Þ

where h is the specific enthalpy. In general, the equation of

state for a mixture of molecular and atomic nitrogen is given as

p ¼ qð1þ aÞRu

M
T ð25Þ

where M is the molecular weight of N2, T is the temperature
and Ru is the universal gas constant. Meanwhile, the specific

enthalpy for an IDG is given by

h ¼ 4þ a
1þ a

� p
q
þ a

Ruhd
M

ð26Þ

where hd is the characteristic dissociating temperature for
nitrogen and has a value of 113200 K. The boundary condition

for h at the shock is then expressed as follows:

Mhs
Ruhd

¼ ð4þ a1ÞT1
hd

þ Mu21
2Ruhd

þ a1 ð27Þ

where the velocity component normal to the shock is neglected
in the shock layer.

Utilizing the state equation and the definition of enthalpy,

the temperature immediately behind the shock can be obtained
from Eq. (27) with as=a1 as

Ts

hd
¼ T1

hd
þ l
4þ a1

ð28Þ

where l � Mu21
2Ruhd

is the dimensionless kinetic energy parameter.

For hypersonic flows, the approximation ps
q1u21

¼ 1 is widely

adopted. Eqs. (25) and (28) thus yield the following expression
for the density:

qs

q1
¼ 2l

1þ a1
� hd
Ts

ð29Þ

From equilibrium theory of Lighthill,14 the equilibrium dis-

sociation fraction ae can be determined as

a2e
1� ae

¼ qd

qe

e�hd=Te ð30Þ

Here, qd is the characteristic dissociation density, and was

reported by Lighthill14 to have a value of 1.3 � 105 kg/m3 for
nitrogen.

To solve ae, qe and Te from Eq. (30), two more equations

are required. The first equation can be derived by enforcing
the conservation of the total enthalpy, i.e.,

Te

hd
¼

ð4þ a1Þ T1
hd

þ ða1 � aeÞ þ l

4þ ae
ð31Þ

Meanwhile, the second equation can be derived directly
from the state equation, i.e.,



Fig. 5 Effect of freestream dissociation level a1 on scaled SSD
qd
q1

¼ 106; T1
hd

¼ 2:6� 10�3
� �

.
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qe

q1
¼ 2l

ð1þ aeÞ Te

hd

ð32Þ

From Eqs. (30)–(32), ae, qe and Te can all be solved.

Although explicit solutions are impossible, they nevertheless
demonstrate the roles of the dimensionless parameters
T1=hd, qd/q1, l and a1 in determining the shock stand-off

position. Notably, T1 and a1 can be very different from the
real flight conditions in a free-piston shock tunnels.

4.2. Effects of l and a1 on SSD

In the following discussions, qs/q1 and qs/qe are derived from
(29) and (30)–(32), respectively. Then they are used as the

inputs of the correlation of ~D and ~X.

Fig. 4 shows the variation of ~D with ~X as a function of l
given qd

q1
¼ 106, T1

hd
¼ 2:6� 10�3 and a1 ¼ 0. It is seen that

the scaled SSD ~D depends very weakly on l on the frozen side

(~X� 1). However, ~D reduces significantly with increasing l on

the equilibrium side (~X� 1). When l= 0.15 (u1 = 3175 m/s),
~D on the frozen side and equilibrium side are almost equal. It
indicates that when the free stream velocity of nitrogen flow is
smaller than 3175 m/s, the dissociating reactions in the flow

can be neglected. Notably, although when the freestream
velocity decreases to around 3.2 km/s, the dissociation is very
weak, the vibrational excitation may decrease a few percent-

ages of ~D (see Houwing et al.17). When l increases to 1 and

beyond, the corresponding ~D-~X curves are approximately

superimposed. From the physics perspective, for nearly frozen
flow, no chemical reaction occurs to increase the average den-

sity. As a consequence, ~D is effectively independent of ~X and

remains almost constant. For non-equilibrium and nearly
equilibrium flows, the amount of energy absorbed by chemical
dissociation increases with increasing the freestream kinetic

energy parameter l. As a result, qe/qs increases and ~D
decreases. For the particular case of l = 1.0, the freestream

kinetic energy is equal to the specific dissociation energy of
the gas and the amount of energy absorbed by chemical disso-
ciation reaches to the upper limit. Consequently, qe/qs no

longer increases even when l increases, and ~D reaches its min-
imum value. Overall, Fig. 4 infers that the change in the scaled
Fig. 4 Effect of freesteam kinetic parameter l on scaled SSD
qd
q1

¼ 106; T1
hd

¼ 2:6� 10�3; a1 ¼ 0
� �

.

SSD ~D is due primarily to the energy absorption caused by

chemical reactions.
The solution shown in Fig. 4 is based on a1 = 0 which is

the case for the ballistic range experiment.18 However, in the
high enthalpy free-piston shock tunnel tests,19,20 the freestream

dissociation level is not zero anymore. Using the IDG model,
we can quantitatively estimate the influence of freestream dis-
sociation level on the SSD. Belouaggadia et al.12 investigated

the effect of the freestream dissociation level, a1, on the shock
stand-off distance for the cases of frozen flows and fully equi-

librium flows. In the present study, the effect of a1 on ~D is
investigated over the entire non-equilibrium flow regime. As

shown in Fig. 5, a1 has only a weak effect on ~D for the case
of nearly frozen flows, which is the case presented by Belouag-

gadia, et al..12 In addition, it is seen that ~D increases signifi-
cantly with increasing a1 for moderate values of l, but is
insensitive to a1 at larger values of l. When a1 = 0.3 and

l = 0.4, the SSD is even larger than that of a1 = 0 and l
= 0.3. It means the two opposite acting effects, decrease of
the SSD by high freestream kinetic effects and increase of

the SSD by free stream dissociation, may even cancel each
other.2 This finding is reasonable since in higher a1 flows, dis-
sociating chemical reactions occur less readily due to the

absence of educts, and hence the density change is less obvious
than that in the case of flows with low a1. When l is suffi-
ciently large (e.g., l = 1), dissociation anyway takes place
easily, for a1 ranging from 0 to 0.3, and hence no change of
~D-~X curve occurs. In general, the curves presented in Fig. 5
imply that the effects of possible freestream dissociation in
high-enthalpy wind tunnels must be considered, particularly

for the case of moderate l.

5. Conclusions

A comprehensive analytical solution has been derived to calcu-
late the SSD and to correlate the SSD of hypervelocity non-
equilibrium flows with the average density between the shock

and the body without the need for any specific gas model or
empirical parameters. Furthermore, using an exponential func-
tion to approach the density distribution between the shock

and the body, the scaled SSD ~D has been correlated with the
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reaction rate parameter ~X. In general, the results have shown
that:

(1) the correlation curve is strongly dependent on qs/qe, but
is only weakly dependent on qs/q1.

(2) ~D is a more universal dimensionless parameter than �D in
estimating the SSD. The effects on the SSD of the free-

stream kinetic energy parameter, l, and the freestream
dissociation level, a1, have been investigated using a
simple ideal dissociating gas (IDG) model. The results
imply an underlying physical mechanism which can be

described as the reduction of the scaled SSD ~D is due
to the greater energy absorption caused by chemical

reactions. The effects of possible freestream dissociation
in high-enthalpy wind tunnels must be considered; par-
ticularly for the case of moderate l.
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