
Polynomial Time Algorithms and Extended

Formulations for Unit Commitment Problems

Yongpei Guan‡, Kai Pan†∗, and Kezhuo Zhou‡

‡Department of Industrial and Systems Engineering, University of Florida

Gainesville, Florida 32611, USA. Emails: guan@ise.ufl.edu; zhoukezhuo@ufl.edu

†Department of Logistics and Maritime Studies, Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong. Email: kai.pan@polyu.edu.hk

Abstract

Recently increasing penetration of renewable energy generation brings challenges for power

system operators to perform efficient power generation daily scheduling, due to the intermittent

nature of the renewable generation and discrete decisions of each generation unit. Among all

aspects to be considered, a unit commitment polytope is fundamental and embedded in the

models at different stages of power system planning and operations. In this paper, we focus

on deriving polynomial time algorithms for the unit commitment problems with general convex

cost function and piecewise linear cost function respectively. We refine an O(T 3) time, where

T represents the number of time periods, algorithm for the deterministic single-generator unit

commitment problem with general convex cost function and accordingly develop an extended

formulation in a higher dimensional space that can provide an integral solution, in which the

physical meanings of the decision variables are described. It means the original problem can be

solved as a convex program instead of a mixed-integer convex program. Furthermore, for the case

in which the cost function is piecewise linear, by exploring the optimality conditions, we derive

more efficient algorithms for both deterministic (i.e., O(T) time) and stochastic (i.e., O(N)

time, where N represents the number of nodes in the stochastic scenario tree) single-generator

unit commitment problems. We also develop the corresponding extended formulations for both

deterministic and stochastic single-generator unit commitment problems that solve the original

mixed-integer linear programs as linear programs. Similarly, physical meanings of the decision

variables are explored to show the insights of the new modeling approach.

Key words: Unit commitment; polynomial time algorithm; integral formulation

∗Corresponding author

1

This is an Accepted Manuscript of an article published by Taylor & Francis in IISE Transactions on 26 Jan 2018 (Published online), available online:
http://www.tandfonline.com/10.1080/24725854.2017.1397303.

This is the Pre-Published Version.

1 Introduction

Unit commitment (UC) is fundamental in power system operations. It decides the unit commitment

status (online/offline) and power generation amount at each time period for each unit over a finite

discrete time horizon, with the objective of minimizing the total cost while satisfying the load

(energy demand). Each unit should satisfy associated physical restrictions, such as generation

upper/lower limits, ramp-rate limits, and minimum-up/-down time limits.

Due to its significant importance in power system operations, UC has brought broad attention

in academic and industry. In early 1960s, a dynamic programming algorithm was developed in [18]

to formulate and solve the UC problem with single time period, in which the generation amount

is discretized and the algorithm itself is not polynomial. Later on, in [32], a more general dynamic

programming approximation algorithm (also by discretizing the generation amount) was developed

to solve the problem with multiple time periods. Since these algorithms do not run in polynomial

time, they are almost intractable. To target large-size problems, other solution approaches such

as Lagrangian relaxation (see, e.g., [37, 6]), genetic algorithms (see, e.g., [15, 33]), and simulated

annealing (see, e.g., [38, 19]), have been developed to solve the problem. Detailed reviews of these

approaches to solve the UC problem can be found in [22] and [30]. Among these approaches,

the Lagrangian relaxation approach was broadly adopted in industry, due to its advantages of

decomposing the network constrained UC problem with multiple generators into a master problem

and a group of subproblems where each subproblem solves an individual UC problem with a single

generator.

However, the Lagrangian relaxation approach does have limitations. For instance, it cannot

guarantee to provide an optimal or even a feasible solution at the termination, in particular, when

there are transmission network constraints currently faced by most wholesale markets, operated by

Independent System Operators (ISOs), in US. On the other hand, advanced mixed-integer-linear

programming (MILP) techniques have been improved significantly during the past decades, and

meanwhile MILP in general has advantages in terms of ease of development and maintenance, ability

to specify accurate solutions, and exact modeling of complex functionality [20]. Thus, recently, the

Lagrangian relaxation has been replaced with MILP approaches for power system operations. For

instance, MILP approaches have been adopted by all ISOs in US (see, e.g., [13, 4]) and create

more than $500 million annual savings [20]. Among different aspects MILP can contribute to the

power system operations, one particularly important one is to formulate and solve the transmission

network-constrained UC problem [3].

1

The earliest MILP UC formulation was proposed in the 1960s as described in [12], and further

improvements have been developed recently. For instance, in [8], an exact and computationally

efficient MILP formulation is provided to address the single-generator UC problem in order to

maximize the total profit. Following that, tighter approximated MILP formulations are provided

in [5, 10, 35, 34] by approximating the general convex cost function. In [11], security-constrained

UC problems are modeled and solved through the MILP approach for large-scale power systems

with multiple generators, which are further solved in extensive studies by using heuristic (including

metaheuristic and local search) approaches [29, 34, 26, 28], among others. Furthermore, there

has been research progress on developing strong formulations for the UC problem by exploring

its special structure so as to speed up the algorithm to solve the problem. For instance, in [17],

alternating up/down inequalities are proposed to strengthen the minimum-up/-down time polytope

of the UC problem. In [27], the convex hull of the minimum-up/-down time polytope considering

start-up costs is provided, in which additional start-up and shut-down variables are introduced to

provide the integral formulation. In [25], a further polyhedral study is provided to consider the

bounded up/down times and interval-dependent start-ups. Recently, new families of strong valid

inequalities are proposed in [21], [7], and [23] to tighten the ramping polytope of the UC problem.

Besides this, considering the intermittent nature of increasing penetration of renewable gen-

eration and generation amount dependency among time periods, recently, a multistage stochastic

version of the deterministic UC was proposed in [14]. In this approach, the extension of the deter-

ministic UC was studied in which a stochastic programming approach (see, e.g., [31]) is adopted to

address uncertain problem parameters. We refer to the resulting model as the stochastic UC prob-

lem, which can help make decisions adaptively accommodating uncertainties. Significant studies

have been conducted to solve the stochastic UC problems efficiently, such as advanced decomposi-

tion and Lagrangian relaxation techniques [36, 24], among others. For notation clarification, in the

remaining part of this paper, we denote the single-generator unit commitment problem as single-UC

and the multiple-generator unit commitment problem as multi-UC.

In general, both the deterministic and stochastic UC problems can be eventually formulated as

MIPs, with general convex (typically quadratic) cost function (leading to MIQPs) or with piecewise

linear cost function approximations (leading to MILPs). The perfect cases for solving MILPs

are to (1) derive polynomial time algorithms to solve the problems and (2) discover extended

formulations in the form of linear programs that can provide integral solutions. For the polynomial

time algorithms, an efficient algorithm for the deterministic single-UC with general convex cost

2

function was studied in [9] in which anO(T 3) time algorithm, where T represents the number of time

periods, is developed. In this paper, we first refine this algorithm by reducing the computational

time to solve the master single-UC problem from O(T 3) time in [9] to O(T 2) time, when the

economic dispatch problem has been presolved. Meanwhile, based on our developed O(T 3) time

algorithm, we derive an extended formulation in a higher dimensional space. Then, we study the

single-UC problems with piecewise linear cost functions, which are common in practice. For these

cases, we discover the optimality conditions for the generation amounts in optimal solutions at each

time period for both the deterministic and stochastic single-UC problems. This key observation

helps reduce the search space significantly and thus leads to efficient polynomial time algorithms.

Accordingly, we develop much faster dynamic programming algorithms that run in O(T) time

to solve the deterministic single-UC problem and O(N) time to solve the stochastic one, where

N represents the number of nodes in the scenario tree. Towards the extended formulation of

UC, a recent study for the deterministic single-UC problem was provided in [16], in which an

integral polytope for the single-UC problem is provided by using the theorem described in [1,

2]. However, it is not stated if this formulation could provide an integral optimal solution for

the general convex cost function case. In this paper, we provide extended formulations that can

provide integral optimal solutions based on the innovative dynamic programming algorithms we

developed. Furthermore, physical meanings of the decision variables in the extended formulations

are elaborated. To summarize, the main studies of this paper can be described as follows:

(1) In Section 2, we refine an O(T 3) time algorithm for the deterministic single-UC problem with

general convex cost function, which solves the problem in O(T 2) time when the economic

dispatch problem has been presolved. We further derive an extended formulation that can

provide an integral optimal solution (which indicates that the original problem can be solved

as a convex program instead of a mixed-integer convex program).

(2) In Section 3, the general convex cost function is approximated by a piecewise linear function.

By exploring the optimality conditions for the deterministic single-UC problem, we derive

a more efficient algorithm that runs in O(T) time and develop the corresponding extended

formulation (which solves the original mixed-integer linear program as a linear program).

(3) In Section 4, we further consider the uncertainty and formulate the stochastic single-UC

problem. By exploring the optimality conditions for the corresponding derived multistage

stochastic single-UC problem with piecewise linear cost function, we derive an efficient algo-

3

rithm that runs in O(N) time and explore the corresponding extended formulation.

To the best of our knowledge, in this paper, (1) we provide the most efficient polynomial time

algorithms to solve the deterministic single-UC problems with both general convex and piecewise

linear cost functions; (2) we provide one of the first extended formulations (with rigorous proofs)

that can provide optimal integral solutions for the deterministic single-UC problems with both

general convex and piecewise linear cost functions; (3) we provide the first studies on the polynomial

time algorithm development and extended formulations for the stochastic single-UC problems.

2 Deterministic Single-UC with General Convex Cost Function

We first introduce the notation and describe the deterministic single-UC problem. We let T be

the number of time periods for the whole operational horizon, L (`) be the minimum-up (-down)

time limit, C (C) be the generation upper (lower) bound when the generator is online, V be the

start-up/shut-down ramp rate (which is usually between C and C, i.e., C ≤ V ≤ C), and V be the

ramp-up/-down rate in the stable generation region. In addition, we let binary decision variable yt

represent the generator’s online (i.e., yt = 1) or offline (i.e., yt = 0) status, binary decision variable

ut represent whether the generator starts up (i.e., ut = 1) or not (i.e., ut = 0), and continuous

decision variable xt represent the generation amount at time t. Moreover, we define continuous

variable SUt to represent the start-up cost at time t (i.e., the generator starts up at time t with

yt−1 = 0 and yt = 1) following the start-up profile and continuous variable SDt to represent the

shut-down cost at time t (i.e., the generator shuts down at time t + 1 with yt = 1 and yt+1 = 0).

In addition, we let a general convex cost function f(·) denote the fuel cost minus the revenue as a

function of its electricity generation amount, online/offline statuses, and electricity price. Without

loss of generality, we (1) assume that the cost function f(·) is strictly convex with respect to the

generation amount x; (2) assume that the generator has been offline for s0 time periods (s0 ≥ `)

before time 1. The corresponding deterministic single-UC problem can be described as follows:

min
T∑
t=1

(
SUt + ft(xt, yt)

)
+

T−1∑
t=L

SDt (1a)

s.t.
t∑

i=t−L+1

ui ≤ yt, ∀t ∈ [L, T]Z, (1b)

t∑
i=t−`+1

ui ≤ 1− yt−`, ∀t ∈ [`, T]Z, (1c)

yt − yt−1 − ut ≤ 0, ∀t ∈ [1, T]Z, (1d)

4

−xt + Cyt ≤ 0, ∀t ∈ [1, T]Z, (1e)

xt − Cyt ≤ 0, ∀t ∈ [1, T]Z, (1f)

xt − xt−1 ≤ V yt−1 + V (1− yt−1), ∀t ∈ [1, T]Z, (1g)

xt−1 − xt ≤ V yt + V (1− yt), ∀t ∈ [1, T]Z, (1h)

SUt ≥ SU(t+ s0 − 1)

(
ut −

k−1∑
s=1

ys

)
, ∀t ∈ [1, T]Z, (1i)

SUt ≥ SU(t− k − 1)

(
ut −

t−1∑
s=k+1

ys

)
, ∀t ∈ [L+ `+ 1, T]Z, k ∈ [L, t− `− 1]Z, (1j)

SDt ≥ SD(t− k + 1)

(
uk −

t∑
s=k

(1− ys)
)
, ∀t ∈ [L, T − 1]Z, k ∈ [1, t− L+ 1]Z, (1k)

yt, ut ∈ {0, 1}, SUt, SDt ≥ 0, x0 = y0 = 0, (1l)

where constraints (1b) and (1c) describe the minimum-up and minimum-down time limits, respec-

tively (if the generator starts up at time t−L+1, it should stay online in the following L consecutive

time periods until time t; if the generator shuts down at time t− `+ 1, it should stay offline in the

following ` consecutive time periods until time t), constraints (1d) describe the logical relationship

between y and u, constraints (1e) and (1f) describe the generation lower and upper bounds, and

constraints (1g) and (1h) describe the generation ramp-up and ramp-down rate limits. Constraints

(1i) describe the start-up cost if the generator starts up for the first time, where SU(·) is a start-up

cost function whose variable is the offline time length before starting up. Constraints (1j) describe

the start-up cost when the generator starts up some time later after a shut-down. Constraints (1k)

describe the shut-down cost, where SD(·) is a shut-down cost function whose variable is the online

time length before shutting down. Typically SD(·) is a constant number. In the above formulation,

the objective is to minimize the total cost minus the revenue. For notation convenience, we define

[a, b]Z with a < b as the set of integer numbers between integers a and b, i.e., {a, a+ 1, · · · , b}.

2.1 A Refined O(T 3) Time Dynamic Programming Algorithm

The polynomial time algorithm for the deterministic single-UC problem with general convex cost

function was first developed in [9], where an O(T 3) time dynamic programming algorithm is pro-

posed. This algorithm keeps tracking the “on” periods for the generator and use a backward

dynamic programming algorithm to solve the problem. In this algorithm, each element in the state

space, i.e., a time-index pair (h, k) with k ≥ h + L − 1, represents the generator is on during the

time period [h, k]Z, i.e., the generator is turned on at time h and turned off at time k + 1. Then

5

the Bellman equation can be written as follows:

V0(h, k) = C(h, k) + min
r≥k+`+1

{
SU(r − k − 1) + V0(r, q), 0

}
,

for all possible pairs (h, k), (r, q) in the state space. In this equation, C(t, k) represents the optimal

generation cost (i.e., the objective value of the economic dispatch problem) if the generator starts

up at time t and shuts down at time k + 1 (online at k). We call this dynamic programming

algorithm as “part II” of the algorithm (solving the problem by assuming C(h, k) for all possible

pairs (h, k) are given). An efficient shortest path algorithm was developed in [9] to solve this “part

II” in O(T 3) time. To speed up the whole algorithm, the economic dispatch problem to calculate

C(h, k) for all possible pairs (h, k), i.e., for all possible “on” intervals, can be precalculated. We

call this precalculation of the economic dispatch problem as “part I” of this algorithm. In [9], an

intelligent algorithm was developed to solve the “part I” problem in O(T 3) time as well.

As compared to [9], we propose a more efficient polynomial-time dynamic programming al-

gorithm for “part II”. We first define the optimal value function and then develop the Bellman

equations accordingly. The key difference as compared to [9] is that we use different state spaces

and double value functions corresponding to each time period t. For instance, we let V↑(t) represent

the cost from time t to the end when the generator starts up at time t, as shown in Figure 1, and

V↓(t) represent the cost from time t to the end when the generator shuts down at time t+ 1 (i.e.,

t is the last “on” period for the current “on” interval), as shown in Figure 2. Thus, we have the

following dynamic programming equations:

V↑(t) = min
k∈[min{t+L−1,
T−1},T−1]Z

{
SD(k − t+ 1) + C(t, k) + V↓(k), C(t, T) + V↓(T)

}
, ∀t ∈ [1, T]Z,(2a)

V↓(t) = min
k∈[t+`+1,T]Z

{
SU(k − t− 1) + V↑(k), 0

}
, ∀t ∈ [L, T − `− 1]Z, (2b)

V↓(t) = 0, ∀t ∈ [T − `, T]Z. (2c)

Equations (2a) indicate that when the generator starts up at time t, it can either keep online until

time k with k− t+ 1 ≥ L and k ≤ T − 1 or keep online throughout all the remaining time periods.

Equations (2b) indicate that when the generator shuts down at time t+ 1, it can either keep offline

to the end or starts up again at time k with t + ` + 1 ≤ k ≤ T . Following the start-up (resp.

shut-down) profile, our start-up (resp. shut-down) function can capture the length of offline (resp.

online) time before starting up (resp. shutting down). Equations (2c) describe that the generator

cannot start up again after it shuts down at t + 1 with T − ` ≤ t ≤ T due to the minimum-down

time limit.

6

T

y

1

0
t

ut = yt = 1
k

yk = 1

k ≥ t+ L− 1

V↑(t)

Figure 1: Optimal value function V↑(t)

T

y

1

0
t

yt = 1
yt+1 = 0

k
yk = 1
yk−1 = 0

k ≥ t+ `+ 1

V↓(t)

Figure 2: Optimal value function V↓(t)

As we consider the deterministic single-UC problem from times 1 to T and assume the generator

has been offline for s0 time periods, our goal is to find out the value of the following function:

z = V↓(−s0) := min
t∈[1,T]Z

{
SU(s0 + t− 1) + V↑(t), 0

}
. (3)

In order to obtain the optimal objective value and corresponding optimal solution, we calculate

V↑(t) and V↓(t) for all t and record the optimal candidates for them. To calculate the value of each

optimal value function in Bellman equations (2a) – (2c) corresponding to each t ≤ T , we search

among the candidate solutions for each possible k ≤ T , which takes O(T) time. Thus, the total

time to calculate V↓(−s0) is O(T 2) for the aforementioned “part II”. The corresponding optimal

solution can be obtained by tracing the optimal candidates for each optimal value function starting

from V↓(−s0), and this takes O(T) time in total. In summary, our backward induction dynamic

programming algorithm for the deterministic single-UC problem takes O(T 2) time for “part II”

(i.e., if all C(t, k) are presolved), meaning that our algorithm refines the algorithm in [9]. More

importantly, our algorithm is beneficial to derive a better reformulation in the following section.

2.2 An Extended Formulation for Deterministic Single-UC with General Con-
vex Cost Function

In this section, we reformulate the dynamic program in Section 2.1 into a linear program whose dual

formulation eventually provides an extended formulation for the deterministic single-UC problem.

7

By incorporating the dynamic programming equations (i.e., (2a) - (2c) and (3)) as constraints, we

obtain the following equivalent linear program:

max z (4a)

(αt) s.t. z ≤ SU(s0 + t− 1) + V↑(t), ∀t ∈ [1, T]Z, (4b)

(βtk) V↑(t) ≤ SD(k − t+ 1) + C(t, k) + V↓(k),

∀k ∈ [min{t+ L− 1, T − 1}, T − 1]Z, ∀t ∈ [1, T]Z, (4c)

(βtk) V↑(t) ≤ C(t, T) + V↓(T), ∀t ∈ [1, T]Z, (4d)

(γkt) V↓(t) ≤ SU(k − t− 1) + V↑(k), ∀k ∈ [t+ `+ 1, T]Z, ∀t ∈ [L, T − `− 1]Z, (4e)

(θt) V↓(t) = 0, ∀t ∈ [T − `, T]Z, (4f)

z ≤ 0, V↓(t) ≤ 0, ∀t ∈ [L, T − `− 1]Z. (4g)

Note here that the optimal value functions in the dynamic program become decision variables in

the above formulation. To obtain the value V↓(−s0) under the dynamic programming framework

it is equivalent to maximize variable z in the linear program above.

Since the above linear program cannot be solved directly as C(t, k) (the objective value of the

economic dispatch problem) are unknown, we first show how to obtain the value of C(t, k) by

discussing two cases, i.e., the cases k ≤ T − 1 and k = T , respectively.

When k ≤ T − 1, we have the following formulation to calculate C(t, k) with (t, k) given:

C(t, k) = min
k∑
s=t

φs (5a)

(λ−s) s.t. −xs ≤ −C, ∀s ∈ [t, k]Z, (5b)

(λ+
s) xs ≤ C, ∀s ∈ [t, k]Z, (5c)

(µt) xt ≤ V , (5d)

(µk) xk ≤ V , (5e)

(σ+
s) xs − xs−1 ≤ V, ∀s ∈ [t+ 1, k]Z, (5f)

(σ−s) xs−1 − xs ≤ V, ∀s ∈ [t+ 1, k]Z, (5g)

(δsj) φs ≥ asjxs + bj , ∀s ∈ [t, k]Z, j ∈ [1, N]Z. (5h)

When k = T , we have the corresponding formulation by removing constraint (5e) as the generator

is not required to shut down at time T + 1 if it stays online until time T . Note here that we

assume the generation cost function to be piecewise linear (as indicated by constraints (5h) with

8

N pieces) at this moment in order to reformulate model (4). We will return back to the general

convex function case in the final reformulation. More specifically, here we use continuous variable

φs to represent the generation cost at time s, while asj and bj are the slope and intercept of the jth

piece of the generation cost function at time s, respectively.

Next, to incorporate the economic dispatch constraints (e.g., (5b) - (5h)) into our proposed linear

program (4), we take the dual of the economic dispatch model and embed its dual formulation into

model (4). For instance, for k ≤ T − 1, we have the dual formulation as follows.

C(t, k) = max
k∑
s=t

(
λ+
s C − λ−s C

)
+ V (µt + µk) +

k∑
s=t+1

V

(
σ+
s + σ−s

)
+

k∑
s=t

N∑
j=1

bjδsj (6a)

(qttk) s.t. λ+
t − λ

−
t + µt − σ−t+1 + σ+

t+1 −
N∑
j=1

atjδtj = 0, (6b)

(qktk) λ+
k − λ

−
k + µk + σ−k − σ

+
k −

N∑
j=1

akj δkj = 0, (6c)

(qstk) λ+
s − λ−s + σ−s − σ−s+1 − σ

+
s + σ+

s+1 −
N∑
j=1

asjδsj = 0, ∀s ∈ [t+ 1, k − 1]Z, (6d)

(wstk)

N∑
j=1

δsj = 1, ∀s ∈ [t, k]Z, (6e)

λ±s ≤ 0, ∀s ∈ [t, k]Z, µt ≤ 0, µk ≤ 0, σ±s ≤ 0, ∀s ∈ [t+ 1, k]Z,

δsj ≥ 0, ∀j ∈ [1, N]Z, s ∈ [t, k]Z, (6f)

where λ−s and λ+
s are dual variables corresponding to constraints (5b) and (5c), respectively, µt and

µk are the dual variables corresponding to constraint (5d) and (5e), respectively, σ+
s and σ−s are

dual variables corresponding to constraints (5f) and (5g), respectively, and δsj are dual variables

corresponding to constraints (5h). Note that all of these dual variables are correspondingly labeled

in the brackets to the left-hand side of (5) for an easy reference. For k = T , we obtain the

corresponding dual formulation by removing the dual variable µk from model (6). Thus, in the

following part of this section, we refer to (6) as the dual formulation for all possible k, where µk

will be removed from (6) when k = T . Now we obtain an integrated linear program, as shown in

the following, by plugging the dual formulation of the economic dispatch problem and redefining

C(t, k) to be a decision variable in the following model.

max z (7a)

s.t. (4b)− (4g), (7b)

9

(ptk) C(t, k) ≤
k∑
s=t

(
λ+
s C − λ−s C

)
+ V (µt + µk) +

k∑
s=t+1

V

(
σ+
s + σ−s

)
+

k∑
s=t

N∑
j=1

bjδsj ,

∀k ∈ [min{t+ L− 1, T − 1}, T − 1]Z,∀t ∈ [1, T]Z, (7c)

(ptk) C(t, T) ≤
T∑
s=t

(
λ+
s C − λ−s C

)
+ V µt +

T∑
s=t+1

V

(
σ+
s + σ−s

)
+

T∑
s=t

N∑
j=1

bjδsj ,

∀t ∈ [1, T]Z, (7d)

(6b)− (6f), ∀t ∈ [1, T]Z, ∀k ∈ [min{t+ L− 1, T}, T]Z. (7e)

Note here that the right-hand sides of constraints (7c) and (7d) correspond to the objective function

(6a) under the case in which k ≤ T − 1 and the case in which k = T , respectively.

In the following, we obtain an integral polytope for the original deterministic single-UC model

(1). Before that, we take the dual of the above linear program (7) and obtain the following dual

linear program:

min
T∑
t=1

SU(s0 + t− 1)αt +
T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)βtk +

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γtk +
∑
tk∈T K

k∑
s=t

wstk (8a)

s.t.
T∑
t=1

αt ≤ 1, (8b)

−αt +
T∑

k=t+L−1

βtk = 0, ∀t ∈ [1, L+ `]Z, (8c)

−αt +

T∑
k=t+L−1

βtk −
t−`−1∑
k=L

γkt = 0, ∀t ∈ [L+ `+ 1, T]Z, (8d)

−
t−L+1∑
k=1

βkt +

T∑
k=t+`+1

γtk ≤ 0, ∀t ∈ [L, T − `− 1]Z, (8e)

θt −
t−L+1∑
k=1

βkt = 0, ∀t ∈ [T − `, T]Z, (8f)

ptk − βtk = 0, ∀tk ∈ T K, (8g)

qstk ≤ Cptk, ∀s ∈ [t, k]Z,∀tk ∈ T K, (8h)

−qstk ≤ −Cptk, ∀s ∈ [t, k]Z, ∀tk ∈ T K, (8i)

qttk ≤ V ptk, ∀tk ∈ T K, (8j)

qktk ≤ V ptk, ∀tk ∈ T K, k ≤ T − 1 (8k)

qs−1
tk − q

s
tk ≤ V ptk, ∀s ∈ [t+ 1, k]Z, ∀tk ∈ T K, (8l)

10

qstk − qs−1
tk ≤ V ptk, ∀s ∈ [t+ 1, k]Z,∀tk ∈ T K, (8m)

wstk − asjqstk ≥ bjptk, ∀s ∈ [t, k]Z, j ∈ [1, N]Z, ∀tk ∈ T K, (8n)

α, β, γ, p ≥ 0, (8o)

where T K represents the set of all possible combinations of each t ∈ [1, T]Z and each k ∈ [min{t+

L − 1, T}, T]Z to construct a time interval [t, k]Z. In the above dual formulation, dual variables

α, β, γ, and θ (labeled in the brackets to the left-hand side of (4)) correspond to constraints (4b)

– (4f), respectively, and dual variables p, q, and w (labeled in the brackets to the left-hand sides of

(6) and (7)) correspond to constraints (7c) – (7e) for each tk ∈ T K, respectively.

Note here that we can remove constraints (8n) and instead, recover wstk back to wstk(q
s
tk, βtk) as

a general convex cost function of qstk and βtk by letting the number of segments N for piecewise

linear approximation go to infinity. More specifically, for the general convex cost case, the problem

considered in (5) can still be formulated as a convex program and thus strong duality holds. In

the following, for modeling simplicity, we remove constraints (8n) and consider wstk to be a general

convex cost function as wstk(q
s
tk, βtk).

After replacing p with β (due to (8g)) and combining (8c) and (8d) in the dual formulation (8),

we obtain the following cleaner model:

min

T∑
t=1

SU(s0 + t− 1)αt +

T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)βtk +

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γtk +
∑
tk∈T K

k∑
s=t

wstk(q
s
tk, βtk) (9a)

s.t.
T∑
t=1

αt ≤ 1, (9b)

−αt +

T∑
k=t+L−1

βtk −
t−`−1∑
k=L

γkt = 0, ∀t ∈ [1, T]Z, (9c)

−
t−L+1∑
k=1

βkt +

T∑
k=t+`+1

γtk ≤ 0, ∀t ∈ [L, T − `− 1]Z, (9d)

θt −
t−L+1∑
k=1

βkt = 0, ∀t ∈ [T − `, T]Z, (9e)

Cβtk ≤ qstk ≤ Cβtk, ∀s ∈ [t, k]Z, ∀tk ∈ T K, (9f)

qttk ≤ V βtk, ∀tk ∈ T K, (9g)

qktk ≤ V βtk, ∀tk ∈ T K, k ≤ T − 1 (9h)

qs−1
tk − q

s
tk ≤ V βtk, ∀s ∈ [t+ 1, k]Z, ∀tk ∈ T K, (9i)

11

qstk − qs−1
tk ≤ V βtk, ∀s ∈ [t+ 1, k]Z, ∀tk ∈ T K, (9j)

α, β, γ ≥ 0. (9k)

Now, we show that the polytope (9b) – (9k) is an integral polytope in the following theorem,

which indicates that the extreme points of the polytope are integral.

Theorem 1 The extreme points of the polytope (9b) – (9k) are binary with respect to decision

variables α, β, γ and θ.

Proof: To prove Theorem 1, we assume that model (9) has a linear objective function so that

the optimal solution lies in the extreme point set and we only need to show that for any arbitrary

linear objective function, the optimal solutions of model (9) are binary with respect to α, β, γ, and

θ. To that end, without loss of generality, we make the following assumption without modifying

the polytope (9b) – (9k).

• wstk(qstk, βtk) = astkq
s
tk + bstkβtk, where astk and bstk are parameters;

• V↓(t) = Et, ∀t ∈ [T − `, T]Z, where Et is a parameter.

Based on the above assumptions, we can obtain model (9) with the same set of constraints (9b) –

(9k) but with the following objective function:

min

T∑
t=1

SU(s0 + t− 1)αt +

T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)βtk +

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γtk

+
T∑

t=T−`
Etθt +

∑
tk∈T K

k∑
s=t

(
astkq

s
tk + bstkβtk

)
, (10)

where the coefficient of each variable can be an arbitrary number.

For notation brevity, we denote (10) as min c>(α, β, γ, θ, q) where c is the column vector in-

cluding all coefficients in (10). Now we prove that for any value of c, we can provide an optimal

solution that is integral with respect to α, β, γ, θ to the linear program with (10) as the objective

function and (9b) – (9k) as constraints, which means that Theorem 1 holds.

Considering the assumptions we make, we can obtain an optimal solution with the dynamic

programming algorithm (2) – (3) for any given c. Based on this optimal solution, which indicates

the online/offline status and generation amount of the generator at each time period, we construct

a solution (α∗, β∗, γ∗, θ∗, q∗) as follows:

1) α∗t = 1 if the generator starts up for the first time at time t and α∗t = 0 otherwise.

2) β∗tk = 1 if the generator starts up at time t and shuts down at time k+1 and β∗tk = 0 otherwise.

12

3) γ∗tk = 1 if the generator shuts down at time t+1 and starts up at time k and γ∗tk = 0 otherwise.

4) θ∗t = 1 if the generator shuts down at time t + 1 and stays offline to the end and θ∗t = 0

otherwise.

5) qs∗tk takes the value of optimal generation output for each s ∈ [t, k]Z if the generator starts up

at time t and shuts down at time k + 1 and qs∗tk = 0 otherwise.

In the following, we show (α∗, β∗, γ∗, θ∗, q∗) is an optimal solution of model (9) with objective

function (10) and constraints (9b) – (9k).

We first verify the feasibility. Since α∗t = 1 for at most one period t ∈ [1, T]Z, constraint (9b) is

satisfied. For each t ∈ [1, T]Z in constraints (9c), we consider the following two possible cases:

1) if β∗tk = 0 for all k ∈ [t+L−1, T]Z, by definition, α∗t = 0 and γ∗kt = 0 for all possible k ∈ [L, t−`−1]Z

if t ≥ L+ `+ 1.

2) otherwise β∗tk = 1 for some k ∈ [t + L − 1, T]Z, then if the generator starts up at time t for the

first time, we have α∗t = 1 and γ∗kt = 0 for all possible k ∈ [L, t − ` − 1]Z if t ≥ L + ` + 1; else

α∗t = 0 and there exists exactly one k ∈ [L, t− `− 1]Z such that γ∗kt = 1.

For both cases, constraints (9c) are satisfied. For each t ∈ [L, T − ` − 1]Z in constraints (9d), we

consider the following two possible cases:

1) if β∗kt = 0 for all k ∈ [1, t− L+ 1]Z, then γ∗tk = 0 for all k ∈ [t+ `+ 1, T]Z.

2) otherwise β∗kt = 1 for some k ∈ [1, t− L + 1]Z, meaning that the generator shuts down at t + 1,

then it either start up again after satisfying the minimum-down time limit, which indicates that∑T
k=t+`+1 γ

∗
tk = 1, or stay offline to the end, which indicates

∑T
k=t+`+1 γ

∗
tk = 0.

For both cases, constraints (9d) are satisfied. For each t ∈ [T − `, T]Z in constraints (9e), we

consider the following two possible cases:

1) if β∗kt = 1 for some k ∈ [1, t − L + 1]Z, then the generator cannot start up again after shutting

down at t+ 1 due to the minimum-down time limit, it follows that θ∗t = 1.

2) otherwise β∗kt = 0 for all k ∈ [1, t− L+ 1]Z, then θ∗t = 0.

For both cases, constraints (9e) are satisfied. For constraints (9f) – (9j), they are immediately

satisfied by the construction of our solution and the definition of the economic dispatch problem.

Also, (9k) is satisfied obviously.

We then verify the optimality. We claim that the objective function (10) under the constructed

solution equals to the objective value of the dynamic programming algorithm (2) – (3) as follows.

T∑
t=1

SU(s0 + t− 1)α∗t +
T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)β∗tk +
T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γ∗tk

13

+
T∑

t=T−`
Etθ

∗
t +

∑
tk∈T K

k∑
s=t

(
astkq

s∗
tk + bstkβ

∗
tk

)
= SU(s0 + t1 − 1) +

∑
tk:β∗

tk=1,k≤T−1

SD(k − t+ 1) +
∑

tk:γ∗tk=1

SU(k − t− 1) + Et2

+
∑

tk:β∗
tk=1

k∑
s=t

(
astkq

s∗
tk + bstk

)
(11a)

= SU(s0 + t1 − 1) +
∑

tk:β∗
tk=1,k≤T−1

SD(k − t+ 1) +
∑

tk:γ∗tk=1

SU(k − t− 1) + Et2

+
∑

tk:β∗
tk=1

C(t, k) (11b)

= V↓(−s0), (11c)

where t1 and t2 in (11a) represent α∗t1 = 1 and θ∗t2 = 1, respectively, (11a) and (11b) hold due to our

assumption at the beginning of the proof, and (11c) holds because (α∗, β∗, γ∗, θ∗, q∗) is constructed

based on the optimal solution of the dynamic programming algorithm (2) – (3) and is actually

the expansion of the objective function in (3). By the Strong Duality Theorem, the constructed

solution (α∗, β∗, γ∗, θ∗, q∗) is an optimal solution for model (9).

From the above analysis, we notice that (α∗, β∗, γ∗, θ∗, q∗) is binary with respect to α, β, γ and

θ and optimal for the dual program for all possible cost coefficient c. Thus, we have proved our

claim.

Proposition 1 The optimal solution to the dual formulation (9) are binary with respect to decision

variables α, β, γ and θ.

Proof: With a general convex cost function in model (9), the optimal solution may not lie in the

set of extreme points of the feasible region. But from the proof of Theorem 1, since the assumption

of a linear cost function is not used for feasibility and optimality, we can verify that the constructed

solution (α∗, β∗, γ∗, θ∗, q∗), which is based on the optimal solution to the dynamic programming

algorithm (2) – (3) for a general convex cost function setting, still satisfies feasibility and achieves

optimality. Thus we conclude that the optimal solution of model (9) are binary with respect to

decision variables α, β, γ and θ.

From Theorem 1, we can further observe that this formulation itself has specific physical meanings.

In particular, we notice that the optimal solution α∗t in the dual program represents whether at

time t the generator starts up for the first time or not. If yes, then α∗t = 1; otherwise, α∗t = 0.

14

Similarly, if the generator starts up from time t and shuts down at time k + 1, β∗tk = 1; otherwise,

β∗tk = 0. If the generator shuts down at time t+1 and starts up again at time k, γ∗tk = 1; otherwise,

γ∗tk = 0. If the generator shuts down at time t + 1 and stays offline to the end, θ∗t = 1; otherwise,

θ∗t = 0. That is, this theorem not only provides an integral polytope for the deterministic single-UC

problem but also provides an insight to formulate the problem in a different way by linking the

original space of the deterministic single-UC problem with the derived reformulation (9). It follows

that we have the following proposition.

Proposition 2 If (α∗, β∗, γ∗, θ∗, q∗) is an optimal solution to the dual program (9), then

x∗s =
∑

tk∈T K,t≤s≤k
qs∗tk , y

∗
s =

∑
tk∈T K,t≤s≤k

β∗tk, u
∗
s = α∗s +

∑
tk∈T K,k=s

γ∗tk, ∀s ∈ [1, T]Z (12)

is an optimal solution to the deterministic single-UC problem (1).

Proof: From Proposition 1 and constraints (9f) – (9j), we can easily conclude that both y∗ and

u∗ are binary and (x∗, y∗, u∗) satisfies constraints (1b) – (1h). That is, (x∗, y∗, u∗) is feasible to

the deterministic single-UC problem. Meanwhile, through plugging (x∗, y∗, u∗) into (1a), we can

observe that

T∑
t=1

(
SUt + ft(x

∗
t , y
∗
t)

)
+
T−1∑
t=L

SDt

=
T∑
t=1

SU(s0 + t− 1)α∗t +
∑

tk:β∗
tk=1,k≤T−1

SD(k − t+ 1)

+

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γ∗tk +
∑
tk∈T K

k∑
s=t

ws∗tk (qs∗tk , β
∗
tk)

Thus, (x∗, y∗, u∗) is optimal to the deterministic single-UC problem.

Now, based on Proposition 1 and Proposition 2, we can construct the extended formulation of

the deterministic single-UC problem with a general convex cost function. We replace constraints

(1b) – (1l) with constraints (9b) – (9k) and add equations (12) to represent the relationship between

the original decisions and dual decision variables.

Theorem 2 The extended formulation of the deterministic single-UC problem with a general con-

vex cost function can be written as follows:

min

T∑
t=1

(
SUt + ft(xt, yt)

)
+

T−1∑
t=L

SDt

15

s.t. xs =
∑

tk∈T K,t≤s≤k
qstk, ys =

∑
tk∈T K,t≤s≤k

βtk, us = αs +
∑

tk∈T K,k=s

γtk, ∀s ∈ [1, T]Z,

(1i)− (1k), (9b)− (9k),

and if (x∗, y∗, u∗, α∗, β∗, γ∗, θ∗, q∗) is an optimal solution to the extended formulation, then (x∗, y∗, u∗)

is an optimal solution to the deterministic single-UC problem (1).

Proof: The conclusion holds immediately by replacing (x, y, u) in the objective function and con-

straints (1i) - (1k) with (α, β, γ, q) as described in the expression (12). Then the above formulation

converts to the model (9). Thus, the conclusion holds following the proof described in Proposition

2 and the conclusion described in Proposition 1.

Remark 1 From the reformulation described above, we can observe that our extended formulation

not only describes an integral polytope with respect to variables (y, u, α, β, γ, θ) due to Theorem 1,

but also provides integral optimal solution to the deterministic single-UC problem (1) when f(·) is

a general convex function due to Theorem 2.

3 Deterministic Single-UC with Piecewise Linear Cost Function

In practice, the general convex cost function is usually approximated by a piecewise linear function.

In this section, we propose a more efficient dynamic programming algorithm for this type of problem.

To explore the property more conveniently, we consider simplified start-up/shut-down cost first.

That is, we consider the objective function in the following way:

min
∑T

t=1

(
Uut + U(yt−1 − yt + ut) + ft(xt, yt)

)
, (14)

where U and U represents the time-invariant start-up and shut-down costs, respectively. Thus,

here we have constraints (1b) - (1h) plus (1l) and decision variables x, y, u. We first explore the

optimality condition of this problem and develop a new dynamic programming algorithm to solve

the deterministic single-UC problem. In addition, an extended formulation in a higher dimensional

space is derived from our proposed algorithm.

3.1 An Optimality Condition

We first derive a property for the extreme points of conv(D), where D = {(x, y, u) ∈ RT × B2T :

(1b)−(1h)} and conv(D) represents the convex hull description of D, before exploring the optimality

condition. We let α1 = max{n ∈ [1, T]Z : C +nV ≤ C}, α2 = max{n ∈ [1, T]Z : V +nV ≤ C}, and

Q = {0, (C + nV)α1
n=0, (V + nV)α2

n=0, (C − nV)α1
n=0}. (15)

16

Note here that α2 ≤ α1 ≤ T because V ≥ C.

Proposition 3 For any extreme point (x̄, ȳ, ū) of conv(D), x̄t ∈ Q for all t ∈ [1, T]Z.

Proof: We prove this claim by a contradiction method. Suppose that there exists some t ∈ [1, T]Z

such that x̄t /∈ Q for an extreme point (x̄, ȳ, ū) of conv(D), i.e., x̄t ∈ (C,C) \ Q. In the following

we construct two feasible points of conv(D) to show that (x̄, ȳ, ū) is a convex combination of these

two points, leading to the contradiction. If t ≥ 2 and |x̄t − x̄t−1| = V , we let s1 ≤ t − 1 be the

smallest index such that |x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V ; otherwise, we

let s1 = t. If t ≤ T − 1 and |x̄t+1 − x̄t| = V , we let s2 ≥ t + 1 be the largest index such that

|x̄t+1 − x̄t| = |x̄t+2 − x̄t+1| = · · · = |x̄s2 − x̄s2−1| = V ; otherwise, we let s2 = t. We construct two

points (x̄1, ȳ, ū) and (x̄2, ȳ, ū) such that x̄1
r = x̄r + ε for r ∈ [s1, s2]Z, x̄2

r = x̄r − ε for r ∈ [s1, s2]Z,

and x̄1
r = x̄2

r = x̄r for r /∈ [s1, s2]Z, where ε is an arbitrarily small positive number.

Now we show these two points constructed are feasible for conv(D) by considering the following

three possible cases.

(1) If x̄s1−1 = 0, then we have C < x̄s1 < V . Otherwise, we have the following two possible cases.

(a) If x̄s1 = C, it follows that x̄t = C + kV for some k ∈ [0, t − s1]Z due to |x̄s1+1 −

x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V . Since x̄t /∈ Q, it further follows that

k ≥ α1 + 1 = min{T, b(C − C)/V c} + 1, which contradicts to the fact that k ≤ T and

x̄t < C.

(b) If x̄s1 = V , it follows that x̄t = V + kV for some k ∈ [0, t − s1]Z due to |x̄s1+1 −

x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V . Since x̄t /∈ Q, it further follows that

k ≥ α2 + 1 = min{T, b(C − V)/V c} + 1, which contradicts to the fact that k ≤ T and

x̄t < C.

Similarly, if x̄s2+1 = 0, then we have C < x̄s2 < V . Therefore, in either case, it is feasible to

increase or decrease x̄s1 and x̄s2 by ε.

(2) If x̄s1−1 > 0, then we have C < x̄s1 < C. Otherwise, we have the following two possible cases.

(a) If x̄s1 = C, we can similarly show the contradiction as above.

(b) If x̄s1 = C, it follows that x̄t = C − kV for some k ∈ [0, t − s1]Z due to |x̄s1+1 −

x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V . Since x̄t /∈ Q, it further follows that

k ≥ α1 + 1 = min{T, b(C − C)/V c} + 1, which contradicts to the fact that k ≤ T and

x̄t > C.

17

Similarly, if x̄s2+1 > 0, then we have C < x̄s2 < C. Therefore, in either case, it is feasible

to increase or decrease x̄s1 and x̄s2 by ε since |x̄s1 − x̄s1−1| < V and |x̄s2+1 − x̄s2 | < V by

definition.

(3) If s1 − 1, s2 + 1 /∈ [1, T]Z, i.e., s1 = 1 or s2 = T , then similarly we can follow the arguments

above to show that C < x̄s1 < C and C < x̄s2 < C. It follows that it is feasible to increase

or decrease x̄s1 and x̄s2 by ε.

In summary, we show that in all cases it is feasible to increase or decrease x̄s1 and x̄s2 by ε and

thus feasible to increase or decrease x̄r by ε for all r ∈ [s1, s2]Z. It follows that both (x̄1, ȳ, ū) and

(x̄2, ȳ, ū) are feasible points of conv(D), and (x̄, ȳ, ū) = 1
2(x̄1, ȳ, ū) + 1

2(x̄2, ȳ, ū). Therefore, (x̄, ȳ, ū)

is not an extreme point of conv(D), which is a contradiction.

Now, we begin to characterize the optimality condition for the deterministic single-UC (14).

Generally ft(xt, yt) = ax2
t + bxt + cyt − qtxt, where (a, b, c) is determined by the generator’s

physical characteristics, and it is often approximated by a K−piece piecewise linear function

ϕt = ft(xt, yt) ≥ µtkxt + νkyt,∀1 ≤ k ≤ K so that the single-UC problem can be formulated as an

MILP model, where µtk = 2aẍk + b− qt and νk = c− aẍ2
k with ẍk being the x−value corresponding

to the kth supporting node on the curve of ft(xt, yt) at each time period t and ẍ1 = C, ẍK = C.

Therefore, Model (14) can be reformulated as

min
T∑
t=1

(
Uut + U(yt−1 − yt + ut) + ϕt

)
s.t. (x, y, u) ∈ D,

ϕt ≥ µtkxt + νkyt, ∀k ∈ [1,K]Z, ∀t ∈ [1, T]Z. (16)

Note here that the cost function ϕt is a linear function if there is only one piece, i.e., K = 1. It

is easy to observe that any two adjacent pieces at each time period t, e.g., ϕt ≥ µtkxt + νkyt and

ϕt ≥ µtk+1xt + νk+1yt, intersect at Ak = (ẍk + ẍk+1)/2. Therefore, we can obtain K − 1 turning

points with x−value Ak, for all k ∈ [1,K − 1]Z on the K−piece piecewise linear function for each

time period. We denote Λk = {n ∈ [1, T]Z : C ≤ Ak + nV ≤ C} and

Qd = Q∪ {(Ak + nV)n∈Λk
, ∀k ∈ [1,K − 1]Z}. (17)

Proposition 4 Problem (14) has at least one optimal solution (x̄, ȳ, ū) with x̄t ∈ Qd for all t ∈

[1, T]Z.

18

Proof: We prove this claim by a contradiction method. Suppose that there exists some t ∈ [1, T]Z

such that x̄t /∈ Qd for the optimal solution (x̄, ȳ, ū) of Problem (14), i.e., x̄t ∈ (C,C) \Qd, with the

optimal value z̄ =
∑T

t=1

(
Uūt + U(ȳt−1 − ȳt + ūt) + ϕ̄t

)
. In the following we construct a feasible

solution to obtain a better objective value. If t ≥ 2 and |x̄t − x̄t−1| = V , we let s1 ≤ t − 1 be

the smallest index such that |x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V ; otherwise,

we let s1 = t. If t ≤ T − 1 and |x̄t+1 − x̄t| = V , we let s2 ≥ t + 1 be the largest index such that

|x̄t+1 − x̄t| = |x̄t+2 − x̄t+1| = · · · = |x̄s2 − x̄s2−1| = V ; otherwise, we let s2 = t. Following the proof

in Proposition 3, we can always construct two feasible points of D, (x̄1, ȳ, ū) and (x̄2, ȳ, ū), such

that x̄1
r = x̄r + ε for r ∈ [s1, s2]Z, x̄2

r = x̄r − ε for r ∈ [s1, s2]Z, and x̄1
r = x̄2

r = x̄r for r /∈ [s1, s2]Z,

where ε is an arbitrarily small positive number.

Now we show one of (x̄1, ȳ, ū) and (x̄2, ȳ, ū) produces a better objective value and is also feasible

for constraints (16). It is easy to observe that for each time period s, if x̄s > 0, then at most two

adjacent pieces of linear functions of constraints (16) are tight; otherwise, it leads to x̄s = 0. Since

x̄t /∈ Qd, there is at most one piece of linear function of constraints (16), e.g., piece kr, is tight

for each time period r ∈ [s1, s2]Z, as two adjacent pieces (e.g., pieces k and k + 1) intersect at

Ak, which belongs to Qd. Note that if there exist two adjacent pieces (e.g., pieces k and k + 1)

intersecting at Ak for some time period r ∈ [s1, s2]Z, then x̄r = Ak and it follows that x̄t = Ak+sV

for some s ∈ [−|t − r|, |t − r|]Z by definition, which contradicts the fact that x̄t /∈ Qd and s ≤ T .

Therefore, we can increase or decrease x̄r by ε for r ∈ [s1, s2]Z to decrease the optimal value by

at least |
∑s2

r=s1
µrkr |ε and the resulting solution, (x̄1, ȳ, ū) or (x̄2, ȳ, ū), is feasible for both D and

constraints (16), which is a contradiction.

In other words, in order to find an optimal solution to the deterministic single-UC problem (1)

with piecewise linear objective function (i.e., (14)), we only need to consider the feasible solutions

(x, y, u) where xt ∈ Qd for all t ∈ [1, T]Z.

3.2 An O(T) Time Dynamic Programming Algorithm

As Qd is a finite set and the cardinality of Qd, in the order of O((K+ 2)d(C−C)/V e) and denoted

as |Qd|, does not depend on the total time period T , we can explore a backward induction dynamic

programming framework by defining the corresponding states and decisions for each time period

t. We first define the state space for the dynamic programming algorithm and then derive the

corresponding Bellman equations based on the described state space.

19

The State Space

The state space in general can be described as (x, y, u, d) with (x, y, u) as defined in Section 2

and d representing the duration of the generator at the current status (online or offline). For

the convenience of later on analysis of extended formulations, we denote the state space as S =

S∗ ∪ S0 ∪ S1 with details provided as follows.

• The set S∗, which is a singleton, includes a dummy source state as the initial status of the

generator before time period 1.

• The set S0 includes all the states when the generator is offline, i.e., S0 = {(x, y, u, d) ∈ Qd×B×

B× [1, `]Z : x = 0, y = 0, u = 0}. Note here that we use ` as the upper bound for d because the

decision making remains the same whenever the duration d ≥ `.

• The set S1 includes all the states when the generator is online, i.e., S1 = {(x, y, u, d) ∈ Qd×B×

B × [1, L]Z : y = 1, u = 1 when d = 1; y = 1, u = 0 when d > 1}. Note here that we let d = 1

if the generator just starts up, i.e., y = 1 and u = 1. It is obvious that y = 1 and u = 0 when

d > 1. Similarly, it is sufficient to have d ≤ L.

Based on the above construction, we can observe that S is a finite set and the cardinality of S, i.e.,

|S|, in the order of O(`+ L(K + 2)d(C − C)/V e), does not depend on the total time period T .

The State Transition Graph

Now, we construct a directed graph, as shown in the following Figure 3, to show all possible state

transitions before deriving the Bellman equations. Essentially each state transition in the graph

represents a decision from one state to another (i.e., correspondingly from time t to time t + 1).

In particular, based on the state space S, we add directed arcs as follows to link different states,

representing all possible state transitions.

• First, we add directed arcs from the source state in S∗ to state (0, 0, 0, `) from S0 and each state

(x, 1, 0, L) ∈ S1 with x ∈ Qd. Note here that these to-go states of the source state form the set

of decision candidates at time 1.

• Second, we add possible directed arcs between any two states in S0 ∪ S1 as long as the state

transition satisfies the minimum-up/-down time, ramp rate, and capacity restrictions. In par-

ticular, based on the states indicating the generator is offline, we add arcs from (0, 0, 0, s) to

(0, 0, 0, s + 1) for all s ∈ [1, ` − 1]Z, from (0, 0, 0, `) to both itself and each state (x, 1, 1, 1) ∈ S1

with x ∈ Qd∩[0, V]. Note here that self-loop arc is allowed since it is enough to take d as ` if

the offline status d lasts longer than the minimum-down time limit `. In addition, for the state

20

indicating the generator is online, we have the following two possible cases.

– For each state (x, y, u, d) ∈ S1 with d < L, we add an arc from it to each state (x̄, y, ū, d+1) ∈

S1 such that |x− x̄| ≤ V .

– For each state (x, y, u, L) ∈ S1, we add an arc from it to each state (x̄, y, u, L) ∈ S1 such

that |x− x̄| ≤ V . Self-loop arc is also allowed here.

– For each state (x, y, u, L) ∈ S1 with x ≤ V , i.e., the shut-down ramp constraint is satisfied,

we add an arc from it to (0, 0, 0, 1).

Furthermore, we label all the states in S with positive integers starting from the source state with

index 0. Meanwhile, we denote all the immediate successors of state i as S(i) and all the immediate

predecessors of state i as P (i). Also, we denote the values of (x, y, u) corresponding to state i as

(x(i), y(i), u(i)).

(x, 1, 1, 1) (x, y, u, L) (x̄, y, u, L) (x, 1, 0, L)

(x, 1, 1, 1) (x, y, u, d)
(x̄, y, ū, d+

1)
(x, 1, 0, L)

(0, 0, 0, 1)(0, 0, 0, s)
(0, 0, 0, s+

1)
(0, 0, 0, `)

0

Source state

· · ·· · ·

x ∈ Qd ∩ [0, V]

|x− x̄| ≤ V

· · · · · ·

|x− x̄| ≤ V

· · · · · ·

x ≤ V

· · · · · · · · · · · ·· · · · · ·

Figure 3: The State Transition Graph

The Bellman Equations

Now we are ready to establish the dynamic programming framework. We let Ft(i) represent the

optimal value function for time period t considering that state i happens at time t − 1. Based on

Proposition 4, an optimal decision for current time period lies in S(i). Accordingly, the Bellman

21

equations can be formulated as follows:

Ft(i) = min
j∈S(i)

{
Uu(j) + U(y(i)− y(j) + u(j)) + ft(x(j), y(j)) + Ft+1(j)

}
,

∀i ∈ S,∀t ∈ [1, T − 1]Z,(18a)

FT (i) = min
j∈S(i)

{
Uu(j) + U(y(i)− y(j) + u(j)) + fT (x(j), y(j))

}
, ∀i ∈ S, (18b)

where ft(x(j), y(j)) describes the generation cost minus the revenue, Uu(j) represents the start-

up cost, and U(y(i) − y(j) + u(j)) represents the shut-down cost. For notation brevity, we let

Etij = Uu(j) + U(y(i) − y(j) + u(j)) + ft(x(j), y(j)) for t ∈ [1, T]Z. Accordingly, the objective of

our backward induction dynamic programming is to find out the value of F1(0).

Proposition 5 The deterministic single-UC problem (14) can be solved in O(T) time, or more

specifically, in O(|Qd|(|Qd|L+ `)T) time.

Proof: In order to obtain the optimal objective value and optimal solution, we need to calculate

Ft(i) for all possible t and i and record the optimal candidates for them. To calculate the value of

each optimal value function in Bellman equations (18), we search among the candidate solutions

j ∈ S(i) for each i and this step takes O(|Qd|) time. Since there are in total |Qd|L + ` number

of states in the state graph, the computational time at each time period is O(|Qd|(|Qd|L + `)).

Thus, the total time to calculate the value of objective F1(0) is O(|Qd|(|Qd|L+ `)T). The optimal

solution for the problem can be obtained accordingly.

Note here that from Proposition 5, we can observe that for a given T , when a generator has

a very small ramping rate but a large generation capacity difference between the lower and upper

bounds (e.g., V << C − C and thus large |Qd|), the corresponding single-UC problem will be

relatively more difficult to solve.

When start-up profile is considered, we have the following observations.

Remark 2 If the start-up profile (i.e., time-dependent start-up cost) is taken into account in the

deterministic single-UC model (14), then we need to extend the upper bound of the offline duration

variable d from ` to the cold-start point of the generator, which as a result keeps the computational

complexity as O(T) in general.

22

3.3 An Extended Formulation for Deterministic Single-UC with Piecewise Lin-
ear Cost Function

Based on Bellman equations (18) derived for the deterministic single-UC model, we reformulate

the problem as a linear program extended formulation. The incentive for the reformulation is to

develop a linear program that can provide integral solutions to the deterministic single-UC problem

in a higher dimensional space. The primal form of our linear program can be formulated as follows:

max F1(0) (19a)

s.t. Ft(i) ≤ Etij + Ft+1(j), ∀i ∈ S, j ∈ S(i),∀t ∈ [1, T − 1]Z, (19b)

FT (i) ≤ ET ij , ∀i ∈ S, j ∈ S(i), (19c)

where the parameters Etij = Uu(j) + U(y(i) − y(j) + u(j)) + ft(x(j), y(j)) for all possible (t, i, j)

are defined under equations (18).

The formulation (19) cannot provide an optimal solution to the deterministic single-UC problem

directly. Although we can solve formulation (19) and search for tight constraints to find solutions,

this takes us back to the dynamic programming framework. Thus, we resort to its dual formulation

and then provide an extended linear formulation of the original problem, which we show can provide

an optimal solution to the deterministic single-UC problem directly. The dual formulation for (19)

can be described as follows:

min
∑

t∈[1,T]Z,i∈S,j∈S(i)

Etijwtij (20a)

s.t.
∑
j∈S(1)

w11j = 1, (20b)

∑
j∈S(i)

w1ij = 0, ∀i ∈ S \ S∗, (20c)

∑
j∈S(i)

wtij −
∑
k∈P (i)

wt−1,ki = 0, ∀i ∈ S, ∀t ∈ [2, T]Z, (20d)

wtij ≥ 0, ∀i ∈ S, j ∈ S(i),∀t ∈ [1, T]Z, (20e)

where wtij for each possible (t, i, j) is the dual variable corresponding to each constraint in (19).

In the following lemma, we demonstrate that the above dual program (20) can automatically

generate integral solutions with respect to w. Furthermore, we explore physical meanings of these

dual variables.

Lemma 1 The extreme points of the polytope (20b) – (20e) are binary.

23

Proof: To prove the lemma, it is equivalent to prove that ∀ Etij ∈ R, there exists at least one

optimal solution to the dual program (20) that is binary.

First of all, by solving the deterministic single-UC problem with dynamic program approach

with respect to a given E, we can obtain an optimal decision of the online/offline status and

generation amount of the generator at each time period, i.e., (x̄t, ȳt, ūt) for all t ∈ [1, T]Z. We then

construct ŵ, which is binary, to represent this optimal decision. Based on this optimal decision

(x̄, ȳ, ū) ∈ QTd × B2T , we can accordingly draw a directed path in our constructed state transition

graph in Subsection 3.2 starting from state 1 and covering T time periods. If in step t (i.e., at

time period t) of the path the state of the generator goes from state i to state j, we let ŵtij = 1.

Otherwise, ŵtij = 0. In the following, we prove that this constructed solution ŵ is an optimal

solution to the dual program (20), which is sufficient to prove our claim.

To verify the feasibility, we plug ŵ into constraints (20b) – (20e) to show that each constraint

holds. For constraint (20b), since at time period 1 the state of the generator goes from state 1 to

only one of the states in set S(1), we have ŵ11ĵ = 1 for some ĵ ∈ S(1) and ŵ11j = 0 for all j ∈ S(1)

such that j 6= ĵ. Constraint (20c) is satisfied since at time period 1 the generator has to start from

dummy state 1 ∈ S∗ and change its state to some other one in S \S∗, i.e., ŵ1ij = 0, ∀i ∈ S \S∗. For

each time t ∈ [2, T]Z and state i ∈ S in constraints (20d), if the state of the generators changes from

state i to some state j ∈ S(i), i.e.,
∑

j∈S(i)wtij = 1, then we have the state of the generator must

change from some state k ∈ P (i) to state i at time t−1, i.e.,
∑

k∈P (i)wt−1,ki = 1; otherwise, we have∑
j∈S(i)wtij =

∑
k∈P (i)wt−1,ki = 0. For both cases, we have constraints (20d) hold. Constraint

(20e) is satisfied due to the construction of ŵ. Thus, ŵ is feasible for the dual program.

To verify the optimality, we denote the optimal objective value obtained by dynamic program

as F ∗ and the objective value of dual program (20) with respect to ŵ as H(ŵ). We need to show

that H(ŵ) = F ∗. Recalling the definition of ŵ, we use a path, denoted as (i0, i1, i2, . . . , iT), to

determine ŵ. Thus, we have

H(ŵ) =
∑

t∈[1,T]Z,i∈S,j∈S(i)

Etijŵtij =
T∑
t=1

Etit−1itŵtit−1it =
T∑
t=1

Etit−1it , and

F ∗ = F1(1) = min
j∈S(1)

{
E11j + F2(j)

}
= E1i0i1 + F2(i1)

= E1i0i1 + min
j∈S(i1)

{
E2i1j + F3(j)

}
= E1i0i1 + E2i1i2 + F3(i2)

= · · · =
T∑
t=1

Etit−1it = H(ŵ).

24

Therefore, we claim that ŵ is the optimal solution to the dual program.

From the above analysis, we notice that ŵ is binary and optimal for the dual program for any

possible cost coefficient E. Thus, we have proved our claim.

From Lemma 1, we can further observe that this formulation itself has specific physical mean-

ings. In particular, we notice that the optimal solution w∗tij in the dual program represents whether

at time period t the optimal decision corresponds to a state change from state i (at time period

t − 1) to state j (at time period t) or not. If yes, then w∗tij = 1; otherwise, w∗tij = 0. That is, the

lemma provides an insight to formulate the deterministic single-UC problem in a different way by

linking the decision variables in the original space and the decision variables in the dual formulation

(20). In the following, we present the detailed extended formulation for the deterministic single-UC

problem and justify its correctness.

Proposition 6 If w∗ is an optimal solution to the dual program (20), then

x∗t =
∑

i∈S,j∈S(i)

x(j)w∗tij , y
∗
t =

∑
i∈S,j∈S(i)

y(j)w∗tij , u
∗
t =

∑
i∈S,j∈S(i)

u(j)w∗tij , ∀t ∈ [1, T]Z, (23)

is an optimal solution to the deterministic single-UC problem (14).

Proof: From the proof of Lemma 1, we can observe that for a given t, w∗tij = 1 for exactly one

possible pair (i, j) with i, j ∈ S and w∗tij = 0 for all other possible pairs. All the pairs i, j ∈ S

such that w∗tij = 1 for all t ∈ [1, T]Z construct an optimal path with T steps originating from state

1. Meanwhile, this path indicates the optimal online/offline status and generation amount of the

generator at each time period t, i.e., (x∗t , y
∗
t , u
∗
t). If we denote the entire path as (i0, i1, i2, . . . , iT),

then we have that x∗t = x(it), y
∗
t = y(it), and u∗t = u(it) for each t ∈ [1, T]Z. Recalling the definition

of the state transition graph we can conclude that any “T-step” path (i.e., a path covering the whole

time horizon) starting from state 1 results in a feasible solution to the deterministic single-UC

problem. Thus, the solution (x∗, y∗, u∗) in (23) is feasible.

If we replace (x∗, y∗, u∗) with w∗tij as described in the expression (23) into the objective function

of the deterministic single-UC problem (14), we have

T∑
t=1

(
Uu∗t + U(y∗t−1 − y∗t + u∗t) + f(x∗t , y

∗
t)

)
=

∑
t∈[1,T]Z,i∈S,j∈S(i)

Etijw
∗
tij .

Hence, (x∗, y∗, u∗) is the optimal solution to the deterministic single-UC problem.

25

Now we are ready to present the extended formulation for the deterministic single-UC problem

with piecewise linear cost function. We replace constraints (1b) - (1h) plus (1l) with constraints

(20b) – (20e) and add equations (23) to represent the relation between original decisions and the

dual decision variables.

Theorem 3 The extended formulation of the deterministic single-UC problem (14) can be written

as follows:

min

T∑
t=1

(
Uut + U(yt−1 − yt + ut) + ft(xt, yt)

)
s.t. xt =

∑
i∈S,j∈S(i)

x(j)wtij , yt =
∑

i∈S,j∈S(i)

y(j)wtij , ut =
∑

i∈S,j∈S(i)

u(j)wtij , ∀t ∈ [1, T]Z,

(20b)− (20e),

and if (x∗, y∗, u∗, w∗) is an optimal solution to the extended formulation, then (x∗, y∗, u∗) is an

optimal solution to the deterministic single-UC problem.

Proof: The conclusion holds immediately by replacing (x, y, u) in the objective function with wtij

as described in the expression (23). Then the above formulation converts to model (20). Thus

the conclusion holds following the proof described in Proposition 6 and the conclusion described in

Lemma 1.

4 Stochastic Single-UC with Piecewise Linear Cost Function

In this section, we extend our study to the multistage stochastic single-UC setting to incorporate

uncertainty. Similar to Section 3, we will explore the optimality condition of this problem, develop

an efficient dynamic programming algorithm to solve the problem, and derive an extended formu-

lation in a higher dimensional space that provides the integral solutions. To that end, we first

provide the mathematical formulation of this problem as follows.

With the consideration of renewable energy generation and/or price uncertainties, as well as

dependency among different time periods, the scenario-tree based stochastic single-UC is introduced

in [14]. Under this setting, the uncertain problem parameters are assumed to follow a discrete-time

stochastic process with finite probability space and a scenario tree T = (V, E) is utilized to describe

the resulting information structure, as shown in Figure 4. Each node m ∈ V at time t of the tree

provides the state of the system that can be distinguished by information available up to time t

(corresponding to a scenario realization from times 1 to t). Accordingly, corresponding to each

26

node m ∈ V, we let t(m) be its time period, P(m) be the set of nodes along the path from the

root node (denoted as node 1) to node m, and pm be the probability associated with the state

represented by node m. We also denote V∗ as the set of root node, i.e., V∗ = {1}. In addition, each

node m in the scenario tree has a unique parent m− and could have multiple children, denoted as

set C∗(m). Meanwhile, we define C(m) = C∗(m) ∪ {m}. Moreover, we let m−0 = m, m−1 = m−, and

m−k be the unique parent node of m−k−1, for k ≥ 2. We let V(m) represent the set of all descendants

of node m, including itself. Finally, we let Hr(m) = {k ∈ V(m) : 0 ≤ t(k) − t(m) ≤ r − 1} be the

set of nodes used to describe minimum-up and minimum-down time constraints (e.g., in Figure 4,

r = t(j) − t(m)). The decisions corresponding to each node m are assumed to be made after

observing the realizations of the problem parameters along the path from the root node to this

node m, but are nonanticipative with respect to future realizations.

1 m

j

k V(k)

C(j)

Hr(m)

Time t(m) Time t(j)Time 1 Time T

Figure 4: Multistage stochastic scenario tree

For the multistage stochastic single-UC problem, following the notation described above, besides

U , U , and f(·) defined as the deterministic case, for each node m ∈ V, we let (xm, ym, um) denote

the generation amount, online/offline status, and start-up decision of the generator. Here we

assume the generator has been offline for s0 time periods (s0 ≥ `) before node 1. Accordingly, the

formulation for this problem can be described as follows:

min
∑
m∈V

pm

(
Uum + U(ym− − ym + um) + fm(xm, ym)

)
(25a)

s.t. ym − ym− ≤ yk, ∀m ∈ V, ∀k ∈ HL(m), (25b)

27

ym− − ym ≤ 1− yk, ∀m ∈ V, ∀k ∈ H`(m), (25c)

ym − ym− ≤ um, ∀m ∈ V, (25d)

um ≤ min{ym, 1− ym−}, ∀m ∈ V, (25e)

Cym ≤ xm ≤ Cym, ∀m ∈ V, (25f)

xm − xm− ≤ V ym− + V (1− ym−), ∀m ∈ V, (25g)

xm− − xm ≤ V ym + V (1− ym), ∀m ∈ V, (25h)

ym, um ∈ {0, 1}, ∀m ∈ V, x1− = y1− = 0. (25i)

In the above formulation, the objective is to minimize the expected total cost, which is equal

to the total generation cost (i.e., start-up, shut-down, and fuel costs) minus the revenue, where

f(·) is quadratic as the deterministic single-UC case and can be approximated by a piecewise linear

function. Constraints (25b) represent the minimum-up time limits for the generator. That is, if

the generator starts up at node i, then it should stay online for all the nodes in HL(m). Similarly,

constraints (25c) represent the minimum-down time limits. If the generator shuts down at node m,

then it should be kept offline for all the nodes in H`(m). Constraints (25d) and (25e) describe the

relationship between u and y. Constraints (25f) describe the upper and lower bounds of electricity

generation amount if the generator is online at node m. Constraints (25g) and (25h) describe the

ramp-up rate and ramp-down rate limits, respectively.

4.1 An Optimality Condition

We first derive a property for the extreme points of conv(W), where W = {(x, y, u) ∈ R|V|×B2|V| :

(25b)− (25h)}, before exploring the optimality condition.

Proposition 7 For any extreme point (x̄, ȳ, ū) of conv(W), x̄m ∈ Q for all m ∈ V.

Proof: We prove this claim by a contradiction method. Suppose that there exists some m ∈ V

such that x̄m /∈ Q for an extreme point (x̄, ȳ, ū) of conv(W), i.e., x̄m ∈ (C,C) \Q. In the following

we construct two feasible points of conv(W) to represent (x̄, ȳ, ū) in a convex combination of these

two points, leading to the contradiction. Before that, we first construct a subtree of V. If one or

both of the following conditions hold,

• t(m) ≥ 2 and |xm − xm− | = V ,

• t(m) ≤ T − 1 and |xm − xj | = V for some j such that m = j−,

then we construct a subtree of V that consists of nodes around node m (e.g., the subtree that

consists of blue nodes in Figure 5), denoted as K(m), such that for ∀n1, n2 ∈ K(m) with n−1 = n2

28

or n2 = n−1 , |xn1 − xn2 | = V , and for some node n ∈ K(m) (denoted as boundary node of K(m)),

t(n) ∈ {1, T} or ∃b ∈ V \ K(m) with n = b− or b = n− such that |xb − xn| 6= V . Otherwise, we

let K(m) = {m}. It is easy to observe that for any node s ∈ K(m) with s 6= m, there exists a

unique shortest path to connect nodes s and m, and we define the distance between nodes s and m,

denoted as dist(s,m), as the number of edges on this unique path, i.e., the number of nodes on this

unique path minus one. For example, in Figure 5, dist(s,m) = 4. We consider two points (x̄1, ȳ, ū)

and (x̄2, ȳ, ū) such that x̄1
r = x̄r + ε for r ∈ K(m), x̄2

r = x̄r − ε for r ∈ K(m), and x̄1
r = x̄2

r = x̄r for

r /∈ K(m), where ε is an arbitrarily small positive number.

1

m

s

Figure 5: Subtree representation

Now we show these two points constructed are feasible for conv(W) by considering the following

three possible cases.

(1) If there exists some boundary node n of K(m) such that x̄b = 0 with b = n− or n = b−,

then we have C < x̄n < V . Otherwise, 1) If x̄n = C, it follows that x̄m = C + kV for

some k ∈ [0, dist(n,m)]Z by definition. Since x̄m /∈ Q, it further follows that k ≥ α1 + 1 =

min{T, b(C−C)/V c}+1, which contradicts to the fact that k ≤ T and x̄t < C. 2) If x̄n = V ,

it follows that x̄m = V + kV for some k ∈ [0, dist(n,m)]Z by definition. Since x̄m /∈ Q, it

further follows that k ≥ α2 + 1 = min{T, b(C − V)/V c} + 1, which contradicts to the fact

that k ≤ T and x̄m < C. Therefore, it is feasible to increase or decrease x̄n by ε.

(2) If there exists some boundary node n of K(m) such that x̄b > 0 with b = n− or n = b−, then

we have C < x̄n < C. Otherwise, 1) If x̄n = C, we can similarly show the contradiction as

above. 2) If x̄n = C, it follows that x̄m = C − kV for some k ∈ [0, dist(n,m)]Z by definition.

29

Since x̄m /∈ Q, it further follows that k ≥ α1+1 = min{T, b(C−C)/V c}+1, which contradicts

to the fact that k ≤ T and x̄t > C. Therefore, it is feasible to increase or decrease x̄n by ε

since |x̄n − x̄b| < V by definition.

(3) If there does not exist node b ∈ V with b = n− or n = b− for some boundary node n of

K(m), i.e., t(n) ∈ {1, T}, then similarly we can follow the arguments above to show that

C < x̄n < C. It follows that it is feasible to increase or decrease x̄n by ε.

In summary, we show that in all cases it is feasible to increase or decrease x̄n by ε for each

boundary node n of K(m) and thus feasible to increase or decrease x̄r by ε for all r ∈ K(m). It

follows that both (x̄1, ȳ, ū) and (x̄2, ȳ, ū) are feasible points of conv(W), and (x̄, ȳ, ū) = 1
2(x̄1, ȳ, ū)+

1
2(x̄2, ȳ, ū). Therefore, (x̄, ȳ, ū) is not an extreme point of conv(W), which is a contradiction.

Now, we begin to characterize the optimality condition for the stochastic single-UC problem

(25). Similar to the deterministic single-UC problem, f(·) is approximated by a K−piece piecewise

linear function. Accordingly, formulation (25) can be reformulated as

min
∑
m∈V

pm

(
Uum + U(ym− − ym + um) + ϕm

)
s.t. (x, y, u) ∈ W,

ϕm ≥ µmk xm + νkym, ∀k ∈ [1,K]Z,∀m ∈ V. (26)

Proposition 8 Problem (25) has at least one optimal solution (x̄, ȳ, ū) with x̄m ∈ Qd for all m ∈ V.

Proof: We prove this claim by a contradiction method. Suppose that there exists some m ∈ V

such that x̄m /∈ Qd for the optimal solution (x̄, ȳ, ū) of Problem (25), i.e., x̄m ∈ (C,C) \ Qd, with

the optimal value z̄ =
∑

m∈V
(
Uūm + U(ȳm− − ȳm + ūm) + ϕ̄m

)
. In the following we construct

a feasible solution to obtain a better objective value. Following the proof in Proposition 7, we

construct a subtree K(m) as shown in Figure 5 and we can always construct two feasible points of

W, (x̄1, ȳ, ū) and (x̄2, ȳ, ū), such that x̄1
r = x̄r + ε for r ∈ K(m), x̄2

r = x̄r − ε for r ∈ K(m), and

x̄1
r = x̄2

r = x̄r for r /∈ K(m), where ε is an arbitrarily small positive number. Similar to the proof

in Proposition 4, we can increase or decrease x̄r by ε for r ∈ K(m) to decrease the optimal value

by at least |
∑

r∈K(m) µ
r
kr
|ε and the resulting solution, (x̄1, ȳ, ū) or (x̄2, ȳ, ū), is feasible for both W

and constraints (26), where there is at most one piece of linear function of constraints (26), e.g.,

piece kr, is tight for each node r ∈ K(m). Therefore we obtain the contradiction.

30

In other words, in order to find an optimal solution to the multistage stochastic single-UC

problem, we only need to consider the feasible solutions (x, y, u) where xm ∈ Qd for all m ∈ V.

4.2 An O(N) Time Dynamic Programming Algorithm

We can explore the backward induction dynamic programming framework by reusing the state

space and the state transition graph we defined in Section 3.2. Let Fm(i) represent the optimal

value function for node m ∈ V in the scenario tree in which the generator state of node m− is state

i. Based on Proposition 8, an optimal decision for the current state lies in set S(i). Accordingly,

the Bellman equations can be formulated as follows:

Fm(i) = min
j∈S(i)

{
Emij +

∑
n∈C∗(m)

Fn(j)

}
, ∀i ∈ S, ∀m ∈ V, (27)

where node m, replacing time t in (19), represents a scenario tree node, and Emij = pm
(
Uu(j) +

U(y(i) − y(j) + u(j)) + fm(x(j), y(j))
)

to describe the total generation cost minus the revenue at

node m ∈ V. Note here that when m is a leaf node, C∗(m) = ∅ and accordingly
∑

n∈C∗(m) Fn(j) = 0.

The objective is to find out the value of F1(0) where the label “1” in the subscript represents the

root node in the scenario tree while the label “0” in the bracket represents the source state in the

state space.

Proposition 9 The stochastic single-UC problem (25) can be solved in O(N) time, or more specif-

ically, in O(|Qd|(|Qd|L+ `)N) time.

Proof: In order to obtain the optimal objective value and optimal solution for the scenario-tree

based multistage stochastic single-UC problem, we need to calculate Fm(i) for all possible m and i

and record the optimal candidates for them. To calculate the value of each optimal value function

Fm(i) in the Bellman equations (27), we search among the candidate solution j ∈ S(i) and this

step takes O(|Qd||C∗(m)|) time. Since there are in total |Qd|L + ` number of nodes in the state

graph, the computational time at each node m is O(|Qd|(|Qd|L+ `)|C∗(m)|). Thus, the total time

to calculate F1(0) is O(|Qd|(|Qd|L + `)N), where N represents the total number of nodes in the

scenario tree.

Similar to Remark 2, when start-up profile is considered, the conclusion in Proposition 9 still

holds.

31

4.3 An Extended Formulation for Stochastic Single-UC with Piecewise Linear
Cost Function

Following the same approach as that in Section 3.3, we develop an extended formulation in linear

program form for multistage stochastic single-UC problem, which is proved to provide integral

solutions. By incorporating the Bellman equations (27) as constraints, we can derive the following

primal linear program similarly:

max F1(0) (28a)

s.t. Fm(i) ≤ Emij +
∑

n∈C∗(m)

Fn(j), ∀i ∈ S, j ∈ S(i), ∀m ∈ V, (28b)

where Emij are parameters defined under equations (27) and Fm(i) are decision variables.

Similar to formulation (19), here we also resort to the dual formulation and then provide an

extended linear program, which we show can provide solution to the stochastic single-UC problem

directly. The dual formulation can be derived accordingly as follows:

min
∑

m∈V,i∈S,j∈S(i)

Emijwmij (29a)

s.t.
∑
j∈S(1)

w11j = 1, (29b)

∑
j∈S(i)

w1ij = 0, ∀i ∈ S \ S∗, (29c)

∑
j∈S(i)

wmij −
∑
k∈P (i)

wm−,ki = 0, ∀i ∈ S,∀m ∈ V \ V∗, (29d)

wmij ≥ 0, ∀i ∈ S, j ∈ S(i), ∀m ∈ V, (29e)

where wmij are dual variables corresponding to each constraint in the primal linear program (28).

In the following, we first prove in a similar way to show that the polytope (29b) – (29e) is an

integral polytope.

Lemma 2 The extreme points of the polytope (29b) – (29e) are binary.

Proof: The proof is similar to that in Lemma 1. ∀ Emij ∈ R , we prove there exists at least one

optimal solution to the dual program (29) that is binary. By solving the dynamic program for the

stochastic single-UC model, we can obtain an optimal decision of (x, y, u). We then construct ŵ,

which is binary, to represent the optimal solution. We let ŵmij = 1 if on the scenario tree node m

the optimal dynamic programming solution shows the decision from state i to state j in the state

space. Otherwise, we let ŵmij = 0.

32

Similarly we can easily show that the constructed ŵ is feasible to the dual program by verifying

that it satisfies constraints (29b) – (29e). Also, the optimality can be proved following the same

approach in Lemma 1. As ŵ is binary and optimal to the dual program for any possible cost

coefficient E, we have proved our claim.

Next, we show that an optimal solution to the stochastic single-UC problem (25) can be obtained

in terms of the dual variables.

Proposition 10 If w∗ is an optimal solution to the dual program (29), then

x∗m =
∑

i∈S,j∈S(i)

x(j)w∗mij , y
∗
m =

∑
i∈S,j∈S(i)

y(j)w∗mij , u
∗
m =

∑
i∈S,j∈S(i)

u(j)w∗mij , m ∈ V, (30)

is an optimal solution to the stochastic single-UC problem (25).

Proof: The proof is similar to that in Proposition 6. The feasibility is satisfied because, from the

proof of Proposition 6, for each scenario we can consider the multistage decision as a path in the

directed graph and thus it satisfies all the physical and logical constraints. The optimality can be

proved by replacing the decision (x∗, y∗, u∗) with the corresponding expressions in equations (30)

in the objective function and verify that∑
m∈V

pm

(
Uu∗m + U(y∗m− − y∗m + u∗m) + fm(x∗m, y

∗
m)

)
=

∑
m∈V,i∈S,j∈S(i)

Emijw
∗
mij .

Hence, (x∗, y∗, u∗) is the optimal solution to the stochastic single-UC problem.

Now we are ready to establish the extended formulations for the stochastic single-UC problem.

We replace constraints (25b) – (25i) with constraints (29b) – (29e) and add equations (30) to

represent the relationship between original decisions and the dual decision variables.

Theorem 4 The extended formulation of the stochastic single-UC problem (25) can be written as

follows:

max
∑
m∈V

pm

(
Uum + U(ym− − ym + um) + fm(xm, ym)

)
s.t. xm =

∑
i∈S,j∈S(i)

x(j)wmij , ym =
∑

i∈S,j∈S(i)

y(j)wmij ,

um =
∑

i∈S,j∈S(i)

u(j)wmij , ∀m ∈ V, (29b)− (29e),

and if (x∗, y∗, u∗, w∗) is an optimal solution to the extended formulation, then (x∗, y∗, u∗) is an

optimal solution to the stochastic single-UC problem.

33

Proof: The proof is similar to that in Theorem 3. The details are omitted here.

5 Conclusion

In this paper, efficient dynamic programming algorithms and linear program reformulations were

proposed to solve the deterministic and stochastic single-UC problems. We started with deriving a

more efficient dynamic programming algorithm to solve the deterministic single-UC problem with

a general convex cost function. Our proposed algorithm refines a previous work by enhancing

the computational time solving single-UC from O(T 3) time to O(T 2) time when the economic

dispatch problems are solved in advance. Motivated by this, we obtained an integral polytope

to describe the integer feasible region of the deterministic single-UC problem. Meanwhile, we

derive an efficient extended reformulation in a higher dimensional space that can provide integral

solutions for the deterministic single-UC problem. In addition, for the most common piecewise

linear cost objective function case, by exploiting the optimality condition for the deterministic

single-UC problem, we proposed a more efficient dynamic programming algorithm that runs in

O(T) time and furthermore, our study was extended to solve the stochastic single-UC problem in

O(N) time by also deriving the corresponding optimality condition. Extended formulations were

further derived for both deterministic and stochastic single-UC problems and integral solutions for

both of them were provided.

Our studies provide efficient polynomial time algorithms for a class of single-UC problems,

especially linear time for certain cases. Furthermore, we provide one of the first studies on deriving

extended formulations for various single-UC problems based on efficient dynamic programming

algorithms. Besides solving single-generator self-scheduling/bidding problems, our polynomial time

algorithms and/or extended formulations could potentially help speed up the MILP and Lagrangian

Relaxation approaches to solve the multi-UC problems efficiently.

Acknowledgments

The authors thank the editor and the anonymous referees for their sincere suggestions on improving

the quality of this paper. The work of K. Pan was partially supported by Hong Kong Polytechnic

University under grants 1-ZE73 and G-UABE.

References

[1] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51, 1979.

34

[2] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete
Applied Mathematics, 89(1):3–44, 1998.

[3] R. E. Bixby. Mixed-integer programming: It works better than you may think. In FERC
Conference, 2010.

[4] B. Carlson, Y. Chen, M. Hong, R. Jones, K. Larson, X. Ma, P. Nieuwesteeg, H. Song, K. Sperry,
M. Tackett, et al. MISO unlocks billions in savings through the application of operations
research for energy and ancillary services markets. Interfaces, 42(1):58–73, 2012.

[5] M. Carrión and J. M. Arroyo. A computationally efficient mixed-integer linear formulation for
the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3):1371–
1378, 2006.

[6] C. P. Cheng, C. W. Liu, and C. C. Liu. Unit commitment by Lagrangian relaxation and
genetic algorithms. IEEE Transactions on Power Systems, 15(2):707–714, 2000.

[7] P. Damcı-Kurt, S. Küçükyavuz, D. Rajan, and A. Atamtürk. A polyhedral study of production
ramping. Mathematical Programming, 158(1-2):175–205, 2016.

[8] S. de la Torre, J. M. Arroyo, A. J. Conejo, and J. Contreras. Price maker self-scheduling in
a pool-based electricity market: a mixed-integer LP approach. IEEE Transactions on Power
Systems, 17(4):1037–1042, 2002.

[9] A. Frangioni and C. Gentile. Solving nonlinear single-unit commitment problems with ramping
constraints. Operations Research, 54(4):767–775, 2006.

[10] A. Frangioni, C. Gentile, and F. Lacalandra. Tighter approximated MILP formulations for
unit commitment problems. IEEE Transactions on Power Systems, 24(1):105–113, 2009.

[11] Y. Fu and M. Shahidehpour. Fast SCUC for large-scale power systems. IEEE Transactions
on Power Systems, 22(4):2144–2151, 2007.

[12] L. L. Garver. Power generation scheduling by integer programming-development of theory.
IEEE Transactions on Power Apparatus and Systems, 81(3):730–734, 1962.

[13] R. A. Jabr. Tight polyhedral approximation for mixed-integer linear programming unit com-
mitment formulations. IET Generation, Transmission & Distribution, 6(11):1104–1111, 2012.

[14] R. Jiang, Y. Guan, and J.-P. Watson. Cutting planes for the multistage stochastic unit
commitment problem. Mathematical Programming, 157(1):121–151, 2016.

[15] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis. A genetic algorithm solution to the unit
commitment problem. IEEE Transactions on Power Systems, 11(1):83–92, 1996.

[16] B. Knueven, J. Ostrowski, and J. Wang. Generating cuts from the ramping polytope for the
unit commitment problem. Technical Report, University of Tennessee, [Online] http://www.
optimization-online.org/DB_HTML/2015/09/5099.html, 2016.

[17] J. Lee, J. Leung, and F. Margot. Min-up/min-down polytopes. Discrete Optimization, 1(1):77–
85, 2004.

[18] P. G. Lowery. Generating unit commitment by dynamic programming. IEEE Transactions on
Power Apparatus and Systems, (5):422–426, 1966.

[19] A. H. Mantawy, Y. L. Abdel-Magid, and S. Z. Selim. A simulated annealing algorithm for unit
commitment. IEEE Transactions on Power Systems, 13(1):197–204, 1998.

[20] G. L. Nemhauser. Integer Programming: Global Impact. https://smartech.gatech.edu/
bitstream/handle/1853/49829/presentation.pdf?sequence=1, 2013.

35

http://www.optimization-online.org/DB_HTML/2015/09/5099.html
http://www.optimization-online.org/DB_HTML/2015/09/5099.html
https://smartech.gatech.edu/bitstream/handle/1853/49829/presentation.pdf?sequence=1
https://smartech.gatech.edu/bitstream/handle/1853/49829/presentation.pdf?sequence=1

[21] J. Ostrowski, M. F. Anjos, and A. Vannelli. Tight mixed integer linear programming formula-
tions for the unit commitment problem. IEEE Transactions on Power Systems, 27(1):39–46,
2012.

[22] N. P. Padhy. Unit commitment-a bibliographical survey. IEEE Transactions on Power Systems,
19(2):1196–1205, 2004.

[23] K. Pan and Y. Guan. A polyhedral study of the integrated minimum-up/-down time and
ramping polytope. Technical Report, University of Florida, [Online] http://arxiv.org/abs/
1604.02184, 2015.

[24] A. Papavasiliou and S. S. Oren. Multiarea stochastic unit commitment for high wind penetra-
tion in a transmission constrained network. Operations Research, 61(3):578–592, 2013.

[25] M. Queyranne and L. A. Wolsey. Tight MIP formulations for bounded up/down times and
interval-dependent start-ups. Mathematical Programming, 164(1-2):129–155, 2017.

[26] D. F. Rahman, A. Viana, and J. P. Pedroso. Metaheuristic search based methods for unit
commitment. International Journal of Electrical Power & Energy Systems, 59:14–22, 2014.

[27] D. Rajan and S. Takriti. Minimum up/down polytopes of the unit commitment problem with
start-up costs. IBM, Research Report RC23628, 2005.

[28] L. A. C. Roque, D. B. M. M. Fontes, and F. A. C. C. Fontes. A hybrid biased random
key genetic algorithm approach for the unit commitment problem. Journal of Combinatorial
Optimization, 28(1):140–166, 2014.

[29] P. K. Roy. Solution of unit commitment problem using gravitational search algorithm. Inter-
national Journal of Electrical Power & Energy Systems, 53:85–94, 2013.

[30] B. Saravanan, S. Das, S. Sikri, and D. P. Kothari. A solution to the unit commitment problem-a
review. Frontiers in Energy, 7(2):223–236, 2013.

[31] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling
and Theory. MPS-SIAM series on optimization. Society for Industrial and Applied Mathemat-
ics, 2009.

[32] W. L. Snyder, H. D. Powell, and J. C. Rayburn. Dynamic programming approach to unit
commitment. IEEE Transactions on Power Systems, 2(2):339–348, 1987.

[33] K. S. Swarup and S. Yamashiro. Unit commitment solution methodology using genetic algo-
rithm. IEEE Transactions on Power Systems, 17(1):87–91, 2002.

[34] A. Viana and J. P. Pedroso. A new MILP-based approach for unit commitment in power
production planning. International Journal of Electrical Power & Energy Systems, 44(1):997–
1005, 2013.

[35] L. Wu. A tighter piecewise linear approximation of quadratic cost curves for unit commitment
problems. IEEE Transactions on Power Systems, 26(4):2581–2583, 2011.

[36] Q. P. Zheng, J. Wang, P. M. Pardalos, and Y. Guan. A decomposition approach to the two-
stage stochastic unit commitment problem. Annals of Operations Research, 210(1):387–410,
2013.

[37] F. Zhuang and F. D. Galiana. Towards a more rigorous and practical unit commitment by
Lagrangian relaxation. IEEE Transactions on Power Systems, 3(2):763–773, 1988.

[38] F. Zhuang and F. D. Galiana. Unit commitment by simulated annealing. IEEE Transactions
on Power Systems, 5(1):311–318, 1990.

36

http://arxiv.org/abs/1604.02184
http://arxiv.org/abs/1604.02184

	Introduction
	Deterministic Single-UC with General Convex Cost Function
	A Refined O(T3) Time Dynamic Programming Algorithm
	An Extended Formulation for Deterministic Single-UC with General Convex Cost Function

	Deterministic Single-UC with Piecewise Linear Cost Function
	An Optimality Condition
	An O(T) Time Dynamic Programming Algorithm
	An Extended Formulation for Deterministic Single-UC with Piecewise Linear Cost Function

	Stochastic Single-UC with Piecewise Linear Cost Function
	An Optimality Condition
	An O(N) Time Dynamic Programming Algorithm
	An Extended Formulation for Stochastic Single-UC with Piecewise Linear Cost Function

	Conclusion

