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Many existing accessibility studies ignore human mobility due to the lack of large-scale human mobility data. This
study investigates the impacts of human mobility on accessibility using massive mobile phone tracking data collected
in Shenzhen, China. In this study, human mobility information is extracted from mobile phone tracking data using a
time-geographic approach. The accessibility of each phone user is evaluated using fine spatial resolution across the
entire city. The impacts of humanmobility on accessibility are quantified by using relative accessibility ratios between
phone users and a virtual stationary user in the same residential location. Results of this study enrich understandings of
how land use influences relationships between humanmobility and accessibility. For resource-poor regions with sparse
service facilities, human mobility can greatly enhance individual accessibility. In contrast, for resource-rich regions
with dense service facilities, human mobility can even reduce individual accessibility. Overall, human mobility can
reduce spatial inequity of accessibility for people living in different regions of the city. The results of this study also
have several important methodological implications for including human mobility and time dimension in accessibil-
ity evaluations.Key Words: accessibility, activity spaces, human mobility, spatiotemporal big data, time geography.

诸多既有的可及性研究, 因为缺乏大尺度的人类移动数据而忽略了人类移动。本研究运用在中国深圳所搜

集的大规模手机追踪数据, 探讨人类移动对于可及性的影响。在本研究中, 运用时间地理学取径, 从手机

追踪数据取得人类移动信息。每位手机使用者的可及性, 通过整座城市的细微空间解析度进行评估。人类

移动对于可及性的影响, 运用同一住宅区位中的手机使用者和虚拟的静止使用者之间的相对可及性比率进

行量化。此一研究成果, 丰富了我们对于土地使用如何影响人类移动和可及性之间的关系之理解。在资源

贫嵴且服务设施缺乏的区域, 人类移动能够大幅增进个人的可及性。反之, 在资源丰沛且服务设施密集的

区域, 人类移动甚至会降低个人的可及性。总体而言, 人类移动能够减少生活在城市不同区域中的人们的

可及性之空间不均。本研究之成果, 对于包括可及性评估中的人类移动和时间面向, 同时具有若干重要的

方法论意涵。 关键词：可及性,活动空间,人类移动,时空大数据,时间地理学。

Gran parte de los estudios existentes sobre accesibilidad ignoran la movilidad humana debido a la falta de datos sobre
este fen�omeno a gran escala. Este estudio investiga los impactos de la movilidad humana sobre la accesibilidad con el
uso de gran un volumen de datos de rastreo de tel�efonos m�oviles, recogidos en Shenzhen, China. En este estudio, la
informaci�on sobre la movilidad humana es extra�ıda de datos del rastreo de tel�efonos m�oviles, a trav�es del uso de un
enfoque geogr�afico del tiempo. La accesibilidad de cada usuario de tel�efono es evaluada con resoluci�on espacial fina
aplicada a toda la ciudad. Los impactos de la movilidad humana sobre la accesibilidad son cuantificados a partir de
ratios de accesibilidad relativa entre los usuarios del tel�efono y un usuario virtual estacionario en lamisma localizaci�on
residencial. Los resultados de este estudio enriquecen el entendimiento de c�omo influye el uso del suelo las relaciones
entre movilidad humana y accesibilidad. Para las regiones pobres en recursos con facilidades de servicios de baja densi-
dad, la movilidad humana puede fortalecer fuertemente la accesibilidad individual. Por contraste, para las regiones
ricas en recursos con facilidades de servicios muy densas, la movilidad humana puede incluso reducir la accesibilidad
individual. En general, la movilidad humana puede reducir la injusticia espacial de accesibilidad para gente que reside
en diferentes regiones de la ciudad. Los resultados de este estudio tienen tambi�en varias implicaciones metodol�ogicas
importantes para incluir la movilidad humana y la dimensi�on tiempo en las evaluaciones de accesibilidad. Palabras
clave: accesibilidad, espacios de actividad, movilidad humana, big data espacio-temporales, geograf�ıa del tiempo.
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T
he paramount goal of urban planning is to pro-
vide sufficient opportunities for citizens to
access urban services, such as jobs, food, shop-

ping, and recreational services. High-level accessibility
to urban services is crucial for urban life viability.
Equitable access to urban services is also strongly
related to social exclusion issues, with the aim to avoid
barriers to participating in normal activities (Stanley
et al. 2011; van Wee and Geurs 2011). Evaluating
accessibility of urban services over different regions
and social groups has been a major issue in the geogra-
phy and urban planning literature (Kwan and Weber
2003; Geurs and van Wee 2004; Langford and Higgs
2010; P�aez et al. 2010; B. Y. Chen et al. 2013; Farber
et al. 2013; Horner and Wood 2014; Niedzielski and
Boschmann 2014).

Accessibility of urban services depends on three
components: urban service spatial distribution (i.e.,
land use), transportation network efficiency, and indi-
vidual socioeconomic characteristics (Kwan 1998;
Geurs and van Wee 2004; Niedzielski and Boschmann
2014). Traditionally, accessibility has been evaluated
by place-based accessibility measures, which are con-
ceptualized mainly in terms of locational proximity to
individuals’ residential areas. Place-based accessibility
measures, such as cumulative opportunity and gravity-
based measures, are valuable and require only a few
aggregated data (Geurs and van Wee 2004; B. Y. Chen,
Yuan, et al. 2017; Yang et al. 2017). These place-based
measures, however, consider only land use and transpor-
tation components and have been criticized for ignoring
distinct individual human mobility patterns of different
socioeconomic groups. Obviously, people move around
a range of places in the course of their daily lives, and
residential areas might not adequately represent a real
individual’s activity spaces (Kwan 2012; Jones and Peb-
ley 2014). Thus, ignoring human mobility might obfus-
cate what people actually experience in their everyday
lives and might introduce significant bias to accessibility
studies (Kwan 2012, 2013).

With the availability of activity diary data since the
1990s, considerable research efforts have been made to
develop individual-based (or space–time) accessibility
measures by explicitly considering individual mobility
of different socioeconomic groups (Kwan 1999; Miller
1999; Kim and Kwan 2003; Kwan and Weber 2003;
Neutens, Schwanen, and Witlox 2011). An activity
diary data set records detailed information of every
activity conducted by sample individuals within a par-
ticular time period, such as activity location, type,
beginning and ending times, and so on (J. Chen et al.

2011). With this activity diary data set, human mobil-
ity of sample individuals can be well quantified by
using time-geographic approaches (H€agerstrand
1970), in terms of daily potential path area (DPPA) or
daily space–time prism (DSTP). The DPPA represents
the individual’s potential activity space in two-dimen-
sional (2D) geographical space, whereas the DSTP
extends this by capturing the individual’s time avail-
able for activity participation. The number of opportu-
nities within the DPPA (called CUM measure) and
the cumulative activity durations at opportunities
with the DSTP (called DUR measure) are two com-
monly used individual-based measures. These individ-
ual-based measures have been widely recognized as
powerful indicators to evaluate accessibility of individ-
uals in different socioeconomic groups and geographi-
cal regions (Kwan and Weber 2003; Miller 2007).
Only a few studies, however, have compared results
obtained from DUR and CUM measures to evaluate
the impacts of including the time dimension in acces-
sibility studies (Neutens et al. 2010; Kwan 2013).

Due to the key role of human mobility in accessibil-
ity evaluation, much attention in the literature has
been given to evaluating human mobility impacts on
accessibility. Many transport-related social exclusion
studies have evaluated accessibility for disadvantaged
people living in resource-poor regions with sparse
service facilities, such as female (McCray and Brais
2007), disabled (Casas 2007), and low-income individ-
uals (Rogalsky 2010; Stanley et al. 2011; Kamruzzaman
and Hine 2012). Poor mobility, in terms of small
DPPA, has been identified as a key factor making it
difficult or impossible for disadvantaged people to
access certain urban services outside their activity
spaces. These transport-related social exclusion studies
have provided significant evidence to support that pro-
vision of adequate mobility to disadvantaged people
can significantly enlarge their DPPA and thereby
improve their accessibility in terms of the CUM mea-
sure. Few studies, however, have investigated impacts
of human mobility on accessibility in terms of the
DUR measure by explicitly considering individual
time available for activity participation. Most previous
studies were restricted to a relatively small geographi-
cal area with few samples, due to the difficulty of
collecting large-scale human mobility data through tra-
ditional activity diary surveys. Therefore, it remains
unclear how human mobility affects accessibility for
people living in different areas with distinct land use
characteristics, including resource-poor and resource-
rich regions.

1116 Chen et al.



Recent advances in information and communica-
tion technologies offer new sources of spatiotemporal
big data for collecting human mobility information,
such as social media data, taxi trajectories, smart card
data, and so on (Miller 2005b; Li et al. 2013; Miller
and Goodchild 2015; B. Y. Chen et al. 2016; Kwan
2016). Among various technologies, mobile phone
tracking is a promising technique to collect human
mobility information for large numbers of individuals
over the entire region. The mobile phone tracking
data sets are generated by the business operations of
mobile telecommunication networks. The locations of
phones in terms of connected cellular towers are auto-
matically recorded without contacting the users being
tracked. These data sets are a by-product generated for
network management purposes and theoretically avail-
able at no cost for data analyses. In recent years,
mobile phone tracking data have been widely used for
human mobility studies (Gonzalez, Hidalgo, and
Barabasi 2008; Ahas, Aasa, et al. 2010; Song et al.
2010; Ahas et al. 2015; Xu et al. 2015; Xu et al. 2016)
and transportation applications (Caceres et al. 2012;
Iqbal et al. 2014; Pei et al. 2014). Nevertheless, there
has been little attention in the literature on using
mobile phone tracking data for accessibility studies.

This study seeks to fill two gaps in human mobility
and accessibility studies. It extends previous studies by
investigating human mobility impacts on accessibility
for the entire region of a megacity with diverse
land use characteristics, providing new insights on
how land use influences relationships between
human mobility and accessibility. It also examines
human mobility impacts on accessibility in terms of
the DUR measure, to explicitly consider the critical
time dimension with respect to individual time avail-
able for activity participation. To fulfill these research
objectives, a large-scale mobile phone tracking data
set is collected, including twenty-four-hour trajectories
of more than 6 million phone users, across the entire
region of Shenzhen, China. This collected data set
offers an effective means to extract human mobility
information, in terms of DPPA and DSTP, for a mas-
sive number of individuals across the whole study
region. Individual accessibility to typical urban serv-
ices for all collected phone users is evaluated using
CUM and DUR measures at a fine resolution of cellu-
lar tower. To quantify human mobility impacts on
accessibility, virtual users stationary within their resi-
dential area are constructed for each cellular tower as
the reference user group. Relative accessibility ratios
between actual and stationary virtual users at the same

cellular tower are derived to derive human mobility
impacts on accessibility in terms of both CUM and
DUR measures. Results of this study will enrich our
understanding of how land use influences relationships
between human mobility and accessibility and also
provide methodological implications for incorporating
human mobility and time dimension into accessibility
evaluations.

Traditional Place-Based Accessibility
Measures

This section briefly introduces traditional place-based
accessibility measures to provide necessary background.
Accessibility has traditionally been evaluated by place-
based accessibility measures, which ignore human
mobility and only consider an individual’s residential
area as the relevant geographic context. For instance,
the widely used cumulative opportunity measure (Bre-
heny 1978; denoted byCUM) can be expressed as

CUMD
X
f

Rf (1)

Rf D
1; txf � g

0; otherwise;

�
(2)

where txf is the travel time between residential location
x and facility f and g is a fixed cutoff distance parameter
representing an individual’s capability (or willingness)
to travel for activity participations. An underlying
assumption in this accessibility measure is that

Figure 1. Standard travel time polygon concept.
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potential activity spaces of all people living in location
x is the standard travel time polygon centered at their
residential location (Sherman et al. 2005; see Figure 1).
The accessibility of people living at location x is evalu-
ated by the cumulative number of facilities within the
potential activity space. Rf D 1 indicates that facility f
is within the potential activity space. This cumulative
opportunity measure is valuable and easily interpretable
but often criticized for ignoring human mobility, hence
oversimplifying individuals’ potential activity spaces.

As an extension, Delafontaine, Neutens, and
Weghe (2012) proposed a set of place-based space–
time accessibility measures incorporating the time
dimension from individual-based perspectives. In the
proposed measures, a round trip from residential loca-
tion x to facility f was considered to construct the
space–time service area centered at the facility. The
accessibility of people at location x was evaluated by
the number of reachable facilities whose service area
covers the location x. This formulation was equivalent
to the assumption that all potential activity spaces of
people living at location x were the space–time prism
(denoted by STP) with both origin and destination
located at x. The space–time prism concept (Miller
2005a) is illustrated in Figure 2 in three-dimensional
(3D) space and can be expressed as

STP.r; s; tr; ts; cmin/D .trf � t¡ tr/^ .tfs� ts¡ t/^�
.trf C tfs�ts¡ tr¡ cmin/^ .tr� t < ts/g; (3)

where r and s are origin and destination, respectively;
tr and ts are departure time and preferred arrival time,
respectively; trf and tfs are travel time from origin r to

facility f and travel time from facility f to destination
s, respectively; and cmin is the minimum activity time
required for activity participation. The height of the
space–time prism at f represents the maximum activity
duration, cf . The effect of facility opening hours can
also be represented by intersecting the activity dura-
tion with facility opening, tp, and closing, tq, times:

cf Dmin.t¡f ; tq/¡max.tCf ; tp/; (4)

where t¡f D trC trf and tCf D ts¡ tfs are the earliest
arrival and latest departure times, respectively, at facil-
ity f. Accessible facilities, 8f 2 STP, can be deter-
mined according to constraint cf�cmin.

The projection of the space–time prism onto 2D
geographical space is the potential path area (denoted
by PPA). If the travel time budget bD ts¡ tr ¡ cmin is
set as 2g, then the potential path area is equivalent to
the standard travel time polygon defined in Figure 1.
Using potential path area as an individual’s potential
activity space, the cumulative opportunity measure
can be expressed as

CUMSTPD
X
f

RPPA
f (5)

RPPA
f D 1; f 2 PPA

0; otherwise;

�
(6)

where RPPA
f is a binary variable indicating whether

facility f is within the potential activity space. Incor-
porating activity durations at accessible facilities,
Delafontaine, Neutens, and Weghe (2012) proposed
an activity duration weighted accessibility measure,
DURSTP:

DURPPAD
X
f

cfR
PPA
f : (7)

These place-based space–time accessibility meas-
ures have made substantial improvements to the con-
ventional cumulative opportunity measure by
incorporating the time dimension. They consider resi-
dential location as a single reference location, how-
ever, and ignore other key places, such as workplaces
and recreational locations. Furthermore, they do not
allow for interpersonal heterogeneity in human mobil-
ity, assuming the same level of accessibility for all peo-
ple at a residential location. In this study, we extend
these place-based space–time accessibility measures to
incorporate human mobility information derived from
mobile phone tracking data.

Figure 2. Space–time prism concept.
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Study Area and Data Collection

Shenzhen is a major economic center in south
China. It is located within the Pearl River Delta, bor-
dering Hong Kong to the south. During the past thirty
years, Shenzhen has been considered one of the fastest
growing cities in the world in terms of population
growth and economic development. The city covers
an area of approximately 1,996 km2 and had a total
population of approximately 10.54 million in 2012,
with a density of over 5,282 inhabitants/km2. Immi-
grant population accounts for more than 70 percent
of the total city population. Figure 3 shows that
Shenzhen city consists of ten administrative districts.
Luohu, Futian, and Nanshan districts are core urban
areas with highly developed economies, dense popula-
tion, and service facilities. Bao’an, Longhua, Longgan,
and Yantian districts are suburban areas, including
some new towns and a concentration of electronics
factories. The remaining districts (Guangming, Ping-
shan, and Dapeng) are rural areas with large hilly and
agriculture lands and a few industrial parks. The
unique socioeconomic and demographic status of
Shenzhen makes it an interesting area for accessibility
studies (Xu et al. 2015).

Three data sets were collected in the city of
Shenzhen, including mobile phone tracking data,
road network data, and facility data of urban serv-
ices. The mobile phone tracking data set was col-
lected on 23 March 2012 (Friday), consisting of
174.6 million positioning records of 6.21 million
users (approximately 58.92 percent of the total

population). In this data set, the location of a
phone user m, in terms of connected cellular tower,
was tracked at the time instance when a call was
placed or received or a short message was sent or
received. If the users were not on a call, their loca-
tions were also tracked at regular or irregular time
intervals for network operating purposes. The average
sampling frequency of users’ trajectories was one hour
and users with missing data (i.e., fewer than twenty-
four position records) were excluded in the data anal-
ysis. To protect user privacy, the data set had been
anonymized by the mobile phone carrier before it was
made available for this study. Actual phone numbers
and other personal information were not included in
the tracking data set.

This mobile phone tracking data set consists of
5,930 cellular towers in Shenzhen. Any mobile
phone located inside the Thiessen polygon is clos-
est to the corresponding cellular tower. Because the
phone location was set as its connected cellular
tower, polygon size has a significant impact on posi-
tioning accuracy of mobile phone locations. In this
data set, Thiessen polygons varied from 0.001 km2

to 14.5 km2 and were smaller in core urban areas
than rural areas. The average size of the Thiessen
polygons was 0.33 km2, and over 93.74 percent of
Thiessen polygons are less than 1 km2. The average
positioning error of this mobile positioning was
approximately 300 m in core urban areas and subur-
ban areas and approximately 2 km in rural areas,
which seems reasonable given the large study area
of this case study.

Figure 3. Administrative districts of Shenzhen city. (Color figure available online.)
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The Shenzhen road network data set included the
major roads in the city and consisted of 14,414 nodes
and 16,723 links. The traffic conditions of the road net-
work were estimated by a real-world floating car data
set for the same day as the mobile phone tracking data
set. The floating car data set included trajectories of
17,406 taxis in Shenzhen city. The Global Positioning
System (GPS) sampling interval for each taxi is about
thirty seconds. All taxi trajectories were matched onto
the road network using the multicriteria dynamic pro-
gramming map-matching algorithm proposed by B. Y.
Chen et al. (2014) and then separated into link seg-
ments to estimate the hourly travel times for all net-
work links. These estimations of hourly traffic
conditions were explicitly used for analyzing human
mobility and individual accessibility.

The facility data set consisted of three types of
facilities in Shenzhen, including 6,899 foodservice
facilities (mainly restaurants), 8,807 recreational facil-
ities (including cinemas, bars, gymnasiums, cybercafes,
etc.), and 3,705 shopping facilities (including shop-
ping malls and grocery stores). Figure 4 shows that
these facilities are not evenly distributed but rather are
clustered in the three core urban areas, particularly in
Luohu and Futian districts.

Method

In this study, four steps are designed to investigate
human mobility impacts on accessibility using mobile
phone tracking data. The first step is to estimate resi-
dential location of each phone user. Because residen-
tial locations of phone users are not explicitly

provided in the mobile phone tracking data sets, they
are estimated based on user trajectories. For each
phone user, cellular towers between 22:00 and 06:00
are considered their candidate residential locations,
based on the reasonable assumption that most people
would stay at their home through overnight. Then,
the user’s residential location is determined if five
hourly records (of eight possible) are at the same cellu-
lar tower over the eight-hour period. Because the loca-
tion records of a phone user could jump among several
adjacent cellular towers even though the user is sta-
tionary, a spatial tolerance can be adopted (i.e., 500 m
used in this study). Previous studies (Ahas, Silm, et al.
2010; Xu et al. 2015) have shown that this method
can identify residential locations for most phone users
(i.e., over 99 percent of all users). In addition, no resi-
dential location might be identified in cellular towers
in remote rural areas or in urban areas with very small
sizes. To address this issue, cellular towers without
data are merged with the nearest cellular tower that
had valid data. Accordingly, the merged cellular tow-
ers are used as the basic analysis units, and further
analyses are restricted to phone users with identified
residential locations.

The second step is to estimate potential activity
spaces of each phone user. In this study, the potential
activity spaces of user m are estimated using a time-
geographic approach to construct a chain of space–
time prisms along the user trajectory during time peri-
ods of interest, as STPm1 ,. . ., STP

m
i ,. . ., STP

m
n¡ 1. The

time budget for each space–time prism is the time
duration between two corresponding sample points
(i.e., one hour in this study). The parameter cmin�0
can be used in the space–time prism construction to

Figure 4. The spatial distributions of facilities: (A) foodservice facilities; (B) recreational facilities; (C) shopping facilities. (Color figure
available online.)
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consider the minimum activity duration constraint.
Figure 5A illustrates this concept using a typical user
trajectory during three time periods (i.e., 07:00–09:00,
12:00–14:00, and 17:00–21:00) for a weekday. The
users’ working hours (i.e., 09:00–12:00 and 14:00–
17:00) and sleeping hours (i.e., 21:00–07:00) for con-
ducting nondiscretionary activities (i.e., working,
sleeping, and in-home activities) are excluded in the
analysis. During time periods of interest, each space–
time prism delimits all possible unobserved space–time
locations between two adjacent samples. The con-
structed space–time prisms can be superimposed to
create a daily space–time prism (denoted by DSTPm).
This DSTPm delimits all possible unobserved space–
time locations for the user’s movements or activity
participations, constrained by the tracked locations
along the user trajectory. Projection of such space–
time prisms onto 2D geographical space forms a series
of potential path areas, PPA1, PPA2,. . ., PPAn¡ 1,
which can be aggregated to create a daily potential
path area (denoted by DPPAm). These DPPAm and
DSTPm can be regarded as 2D and 3D approaches for

representing the phone user’s mobility, respectively
(Patterson and Farber 2015).

It should be noted that these DSTPm and DPPAm

concepts, to some extent, are different from the classi-
cal concepts based on activity diary data (Kwan 1998).
As shown in Figure 5B, however, the constructed
DSTPm can be regarded as a generalization of previous
potential activity space concept shown in Figure 2,
which is the DSTP of a stationary user. Compared
with the previous concept (see Figure 5B), the con-
structed DSTLm and DPPAm (see Figure 5A) can fully
capture mobility of the phone user from multiple refer-
ence points in the course of their daily life, rather than
a single residential location. In addition, the con-
structed DSTPm and DPPAm can capture different
mobility patterns of people living within the same resi-
dential locations. Further, empirical studies have
shown that the phone user’s potential activity space
can be well represented by standard travel time
polygons centered at multiple reference points (i.e.,
top N locations, such as home, workplaces, schools,
etc.; Zang and Bolot 2011; B. Y. Chen, Wang, et al.

Figure 5. Potential activity spaces derived from mobile phone tracking data: (A) typical sampled user; (B) reference stationary user. (Color
figure available online.)
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2017). Typically, these top N locations could be
recorded by sample points of user trajectories during
three periods of interest (i.e., 07:00–09:00, 12:00–
14:00, and 17:00–21:00). Therefore, we believe that D
STPm and DPPAm can be valuable proxies for phone
users’ potential activity spaces. Based on results of
empirical studies (Zang and Bolot 2011; B. Y. Chen,
Wang, et al. 2017), cminD 20 minutes is set (i.e., to
construct standard travel time polygons of twenty
minutes around the top N locations).

Consequently, the mobility pattern for any user, m,
can be measured using the sizes of extracted 2D and
3D potential activity spaces; that is, DPPA size and
DSTP volume. They are expressed, respectively, as
cumulative lengths of accessible links (Kwan 1998)
and cumulative activity durations on all accessible
links (Neutens et al. 2008; H.-P. Chen et al. 2016). In
addition to these 2D and 3D indicators, traveled dis-
tance along the user’s trajectory during three time
periods of interest is also calculated, as it is a com-
monly used one-dimensional (1D) indicator in the
literature.

Following Kwan (1998), different human mobility
patterns of phone users using 1D, 2D, and 3D indica-
tors are quantified using Spearman’s rank correlation
coefficients (Spearman 1904; B. Y. Chen et al. 2012).
This correlation coefficient (denoted by p) quantifies
the statistical dependence between rankings of two
indicators. For example, the correlation coefficient
between DPPA sizes and DSTP volumes can be
expressed as

PD 1¡
6
Xm

mD 1
rankmDPPA¡ rankmDSTP
� �2
m.m2¡ 1/

; (8)

where rankmDSTP and rankmDPPA, respectively, are the
rankings of DSTP volume and DPPA size for user m
among all phone users, and m is the total number of
phone users in the data set. Because only the rankings
are used, this correlation coefficient can assess rela-
tionships between measures with different dimensions.
The value of p is between –1 and 1, where pD ¡ 1
indicates a perfect negative correlation and pD 1 indi-
cates a perfect positive correlation.

The third step is to evaluate accessibility for each
phone user by using the user’s estimated 2D and 3D
potential activity spaces. In this study, two accessibil-
ity measures are proposed to evaluate the user’s acces-
sibility to urban services. The first proposed measure,
denoted by CUMm, is the cumulative number of acces-

sible facilities within the user’s 2D potential activity
space in terms of DPPAm,

CUMmD
X
f

RDPPA
f (9)

RDPPA
f D 1; f 2 DPPAm

0; otherwise;

�
(10)

where RDPPA
f D 1 indicates that facility f is within the

user’s potential activity space DPPAm; RDPPA
f D 0 oth-

erwise. The second measure, denoted by DURm, is the
cumulative activity durations at facilities within the
user’s 3D potential activity space in terms of DSTPm,

DURmD
X
f

X
STPi

cfR
DPPA
f ; (11)

where cf is the cumulative activity durations at f
derived from all STPi of DSTP

m. This DURm measure
extends the CUMm measure by incorporating time
dimension (in terms of time available for activity par-
ticipation) in the accessibility evaluation.

Following Neutens et al. (2010), the Gini coeffi-
cient is adopted to evaluate spatial inequity of accessi-
bility. The Gini coefficient, denoted by GC, can
evaluate the inequality among accessibility values for
different cellular towers. The Gini coefficient is
expressed as the average absolute difference of all pairs
of accessibility values divided by the average value:

GCD
Xn
iD 1

Xn
jD 1

j xi ¡ xj j
 !

= 2n
Xn
iD 1

xi

 !
; (12)

where xi is the accessibility value (e.g., mean DURm

value) at cellular tower i and n is the total number of
cellular towers in the study area. The GC value ranges
from 0 (i.e., complete equality) to 1 (i.e., complete
inequality). A larger GC value implies more unequal
spatially distributed accessibility.

The final step is to investigate mobility impacts on
accessibility of each phone user using the relative
accessibility concept. In this study, a virtual user h
who is stationary at home for the whole day is con-
structed for each residential location (i.e., cellular
tower) as a reference user (see Figure 5B). Note that
the variation of space–time prism sizes in Figure 5B is
due to the variation of traffic conditions in different
times of the day. The two proposed accessibility meas-
ures are calculated for the reference stationary user h,
denoted by CUMh and DURh, respectively. These
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CUMh and DURh measures can be regarded as the
previous place-based space–time accessibility measures
defined in Equations 5 through 7, which ignore human
mobility.

A comparison of CUM accessibility measures
between phone user m and reference stationary user h
provides the relative CUM accessibility measure:

Rm
CUM DCUMm=CUMh: (13)

This relative accessibility measure is interpreted as a
proportion, the number of facilities available to user
m, with respect to the number of facilities available to
reference user h at the same resident location. Simi-
larly, a comparison of DUR accessibility measures
between m and h provides the relative DUR accessibil-
ity measure

Rm
DUR DDURm=DURh: (14)

These Rm
CUM and Rm

DUR indicators reflect the impacts of
human mobility on the phone user’s accessibility.
Rm
DUR > 1 indicates that mobility enhances accessibil-

ity of user m, whereas Rm
DUR < 1 indicates that mobility

reduces the user’s accessibility. Human mobility
impacts on accessibility spatial inequity, in terms of C
UMm or DURm, can be quantified through the differ-
ences of corresponding Gini coefficients between
phone and reference stationary users.

Results

Human Mobility Patterns

Reported first are the results of residential location
estimation for all collected phone users. Residential
locations of 6.16 million users (approximately 99.2
percent) were identified based on phone user trajecto-
ries. The identified residential locations were distrib-
uted over 5,858 cellular towers; the other seventy-two
cellular towers without data were merged to their near-
est cellular tower. Figure 6 shows the density of mobile
phone users in terms of their identified residential
locations. Phone users were concentrated in the three
core urban areas, particularly the Luohu and Futian
districts. Two suburban areas, Bao’an and Longhua,
close to the core urban areas also showed relatively
dense concentrations of phone users.

Human mobility patterns of all phone users were
then investigated using 1D, 2D, and 3D indicators
(i.e., traveled distance, DPPA size, and DSTP vol-
ume). Figures 7A and 7B show extracted traveled dis-
tances for all phone users across the study area.
Human movements in Shenzhen city were dominated
by short distance travel, with average travel distance
approximately 8.79 km. The coefficient of variation
(CV; ratio of standard deviation to mean) showed sig-
nificant interpersonal variation of user traveled distan-
ces. Larger CV implies larger interpersonal variation
among phone users. People in suburban and rural areas
tend to have higher inhomogeneity (i.e., larger CV).

Spearman’s rank correlation coefficients for the 1D,
2D, and 3D indicators are quantified and summarized
in Table 1. A very weak positive correlation

Figure 6. Spatial distribution of mobile phone users. (Color figure available online.)
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(rD 0:06) was observed between traveled distance and
DPPA size. This result was confirmed by their distinct
mobility patterns (see Figures 7A and 7C). People in
core urban areas with dense road networks have large
mean DPPA sizes, whereas those in rural areas, despite
long traveled distances, tend to have relatively small
mean DPPA sizes. Such distinct patterns arise because

individual DPPA depends not only on individual trav-
eled distance but also on the area’s built-up density
(measured by road network density). This is consistent
with previous studies that have shown that traveled
distance is incapable of representing complete human
mobility patterns and is not relevant to individual geo-
graphic context (Sherman et al. 2005; Kamruzzaman
and Hine 2012; Patterson and Farber 2015). Such a
result was also supported by the weak negative correla-
tion (rD ¡ 0:2) between traveled distance and DSTP
volume indicators.

A modest positive correlation (rD 0:75) was found
between DSTP volume and DPPA size indicators.
This positive correlation was consistent with the simi-
lar spatial patterns shown in Figures 7C and 7E. A dis-
tinctive spatial disparity of DSTP volumes was
observed, however, between people from different
regions. As summarized in Table 1, the CV of DSTP
volumes for all phone users was 0.64, approximately
30 percent larger than that of DPPA sizes (0.49). From
this perspective, it might suggest that DSTPm, which
considers individual time available for activity partici-

Table 1. Correlation coefficients and coefficient of varia-
tion for mobility indicators and accessibility measures

Spearman’s rank correlation coefficient

Traveled
distance DPPAm DSTPm CUMm DURm CV

Traveled
distance

1 0.06 –0.20 0.06 –0.06 1.35

DPPAm 1 0.75 0.88 0.72 0.49
DSTPm 1 0.68 0.83 0.64
CUMm 1 0.90 0.88
DURm 1 1.16

Note. CV D coefficient of variation.

Figure 7. Extracted human mobility patterns using 1D, 2D, and 3D indicators: (A) and (B) traveled distance; (C) and (D) daily potential
path area; and (E) and (F) daily space–time prism. DPPA D daily potential path area; DSTP D daily space–time prism. (Color figure avail-
able online.)
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pation, can better articulate heterogeneity of human
mobility across individuals than DPPAm.

Individual Accessibility Patterns

Individual accessibility (CUMm and DURm) meas-
ures were calculated for all phone users across the
whole study area using the extracted potential activity
spaces (DPPAm and DSTPm).

Figures 8A and 8B show accessibility to foodservice
facilities based on the CUMm measure (i.e., cumula-
tive number of foodservice facilities within the user’s

DPPAm). As illustrated in Figure 8A, mobile phone
tracking data allow accessibility of a massive number
of phone users to be generated at fine resolution across
a large study area. People in various regions of the city
have significantly different patterns of accessibility, in
terms of the number of foodservice facilities available.
People in resource-rich regions with dense service
facilities (mainly in the core urban areas) tend to have
a higher level of accessibility than those in the
resource-poor regions with sparse service facilities
(mainly in suburban and rural areas). It was found in
Figure 8B that the CUMm measure can well capture
the interpersonal variation for phone users living in

Figure 8. Accessibility to food services based on CUMm and DURm measures. (Color figure available online.)

Figure 9. CUMm and DURm rankings for the largest 1,000 daily potential path area phone users. DPPA D daily potential path area. (Color
figure available online.)
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the same residential area. A significantly larger inter-
personal variation of accessibility was found for phone
users in suburban and rural areas than core urban areas.

Figures 8C and 8D illustrate the calculated individ-
ual accessibility to food service facilities using the
DURm measure. As illustrated, a similar spatial pattern
of accessibility can clearly be observed between DURm

and CUMm measures. Compared to CUMm defined in
2D activity space, DURm evaluates accessibility in
terms of the cumulative activity durations at all acces-
sible facilities within the user’s 3D activity space (i.e.,
DSTPm). A strong positive correlation (rD 0:90) was
found between DURm and CUMm (see Table 1). It
also can be observed from the figures that the DURm

measure produced more differentiated spatial patterns
of accessibility than the CUMm measure. The CV of
DURm was 1.16, approximately 31.8 percent larger
than that of the CUMm measure (0.88). This result
could suggest that inclusion of time available for activ-
ity participation is more suitable to capture individual
accessibility spatial patterns across various regions.

The importance of incorporating time available for
activity participation in the accessibility valuation was
further investigated. Figure 9 shows the CUMm (yel-
low) and DURm (green) rankings for the largest 1,000
DPPA phone users. Both rankings of CUMm

and DURm are shown in Figure 9 using a logarithm
scale. Among these phone users, 331, 666, and 3 of
them were living in urban, suburban, and rural areas,
respectively. As shown, users with large DPPA sizes
tend to also have large CUMm values. More than half

(56.8 percent), including 92.7 percent of users in core
urban areas, were ranked within the top 1,000 and
almost all (95.9 percent) within the top 105 CUMm

values. This suggests that large DPPA size implies high
accessibility with respect to the CUMm measure. This
observation was supported by the strong positive corre-
lation (rD 0:88) between CUMm and DPPA (see
Table 1) and is consistent with Kwan (1998).

However, the situation is somewhat different for the
DURm measure, with only a modest correlation
(rD 0:72) between DURm and DPPA (see Table 1).
As shown in Figure 9, very few phone users with large
DPPA size (1.4 percent) were ranked within the top
1,000 DURm values. The majority of users (87.6 per-
cent), including 98.5 percent of users in suburban and
rural areas, were ranked outside the top 105 DURm val-
ues. Thus, it reveals that large DPPA size does not imply
high accessibility with respect to the DURm measure. In
fact, large DPPA size can also indicate significant time

Figure 10. Human mobility impacts on accessibility in terms of CUMm measure. DPPA D daily potential path area. (Color figure available
online.)

Table 2. Average relative accessibility ratios for different
city regions and service types

Region service type
Core urban

areas
Suburban
areas

Rural
areas

Foodservice Rm
CUM 1.05 1.36 1.53

Rm
DUR 0.82 1.04 1.17

Recreational service Rm
CUM 1.05 1.29 1.49

Rm
DUR 0.81 1.01 1.16

Shopping service Rm
CUM 1.03 1.16 1.55

Rm
DUR 0.78 0.89 1.15
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resource allocation for traveling, reducing the time
resource for activity participation and hence reducing D
URm accessibility. This suggests that time available for
activity participation is a critical factor for accessibility
evaluation, and ignoring this factor could lead to biased
individual accessibility patterns.

Human Mobility Impacts on Accessibility

Human mobility affects accessibility with respect to
both CUMm and DURm measures that were quantified
using the relative accessibility measures; that is, the
ratio of actual users against the stationary user in the
same cellular tower, Rm

CUM and Rm
DUR, respectively.

The DPPA and DSTP ratios are similarly defined.
Figures 10A and 10C show the calculated DPPA

sizes and CUMh values for stationary users in all cellular
towers, respectively. Figures 10B and 10D show the
DPPA ratios and Rm

CUM values, respectively. It can be
observed from Figure 10D that human mobility signifi-
cantly enhances accessibility in terms of CUMm mea-
sure for all phone users across the entire city, but the
impacts are highly spatially uneven. As summarized in
Table 2, human mobility has more positive impacts on
people in rural areas (average Rm

CUM D 1:53) and subur-
ban areas (average Rm

CUMD 1:36) than in core urban
(average Rm

CUM D 1:05) areas. This result is expected.
As shown in Figure 10B, human mobility can signifi-
cantly enlarge individuals’ DPPA sizes, especially for
people in those resource-poor regions. Such a result,

that human mobility can significantly enhance CUMm

accessibility for disadvantaged individuals in resource-
poor regions, is consistent with previous transport-
related social exclusion studies (Casas 2007; Preston
and Raj�e 2007; Stanley et al. 2011; Kamruzzaman and
Hine 2012).

Figures 11A and 11C show the calculated DSTP
volumes and DURh values for stationary users in all
cellular towers, respectively. Figures 11B and 11D
show the DSTP ratios and Rm

DUR values, respectively.
It can be seen from Figure 11D that human mobility
impacts on DURm accessibility are spatially uneven
and largely influenced by the richness of service facili-
ties. For resource-rich regions with dense service facili-
ties (including most core urban areas), mean Rm

DUR
values were less than 0.8, suggesting that human
mobility can significantly reduce DURm accessibility
for people living in resource-rich regions. This seems
reasonable and is confirmed by Figure 11B, which
shows that human mobility reduced DSTP volumes for
people living in resource-rich regions. The situation is
significantly different, however, for people living in
resource-poor regions with sparse facilities, largely sub-
urban and rural areas. Figure 11D shows that average
Rm
DUR ratios were larger than 1.2 for many cellular tow-

ers in rural areas and larger than 3.0 for several remote
rural areas. It reveals that human mobility can greatly
enhance DURm accessibility for people living in
resource-poor regions. In contrast to resource-rich
regions, although human mobility might also reduce
individual DSTP volumes (Figure 11B), trips by

Figure 11. Human mobility impacts on accessibility in terms of DURm measure. DSTP D daily space–time prism. (Color figure available
online.)
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people from resource-poor regions enable them to
enjoy urban services provided by other regions of the
city. Therefore, human mobility impacts on accessibil-
ity in terms of the DURm measure are spatially uneven.
Human mobility can significantly enhance accessibil-
ity for people living in resource-poor regions, while
reducing accessibility for people living in resource-rich
regions.

Interestingly, this result that human mobility
impacts on accessibility are either positive or negative
contradicts the earlier outcome using the CUMm mea-
sure that human mobility impacts are positive for all
regions. Although people living in resource-poor
regions showed a significant positive impact of human
mobility for both DURm and CUMm measures, as
shown in Table 2, the CUMm measure tends to overes-
timate 30.8 percent (i.e., 1.53/1.17 – 1) of human
mobility impact on accessibility. This contradiction
shows that ignoring time available for activity dura-
tions could lead to bias or even erroneous conclusions
of human mobility impacts on accessibility and
also suggests that time available for activity durations
should be explicitly incorporated in accessibility
studies.

The Gini coefficient concept was also employed to
quantify human mobility impacts on the spatial pat-
tern of DURm accessibility. Table 3 shows the Gini
coefficient of DURh measure to be 0.52, indicating
high accessibility spatial inequality among reference
stationary users living in different regions of the city.
This significant spatial inequity of accessibility is due
to the uneven distribution of urban services in
Shenzhen city. Incorporating human mobility, the
Gini coefficient of DURm measure was reduced by 3.4
percent to 0.50. This outcome is reasonable, because
human mobility impacts are negative for people in
resource-rich regions with a higher level of accessibil-
ity but positive for people in resource-poor regions
with a lower level of accessibility. This result suggests
that human mobility could help mitigate spatial ineq-
uity of accessibility to urban services for people living
in different regions of the city.

In addition to foodservices, the impacts of human
mobility on accessibility were generalized to recrea-
tional and shopping services. Table 2 shows that
human mobility has very similar impacts on DURm for
these three urban services in Shenzhen city. Similar to
the foodservice case, human mobility impacts on
accessibility to recreational and shopping services are
also spatially uneven. For people living in urban areas,
human mobility can reduce accessibility to both recre-
ational and shopping services by approximately 20 per-
cent (Rm

DUR D 0:81 and Rm
DURD 0:78, respectively).

For people living in rural areas, human mobility
can enhance accessibility to both recreational and
shopping services by approximately 15 percent
(Rm

DUR D 1:16 and Rm
DUR D 1:15, respectively). For peo-

ple living in suburban areas, human mobility impacts
can be either slightly positive (Rm

DUR D 1:01 for recrea-
tional services) or slightly negative (Rm

DUR D 0:89 for
shopping services). As summarized in Table 3, human
mobility can also reduce the Gini coefficients of acces-
sibility, in terms of DURm measure, to recreational
and shopping services by 4.2 percent and 4.8 percent,
respectively. These consistent results for the different
urban services, to some extent, confirmed the observed
human mobility impacts on accessibility to urban
services.

Discussion and Conclusions

This study investigated the impacts of human
mobility on accessibility using a massive mobile phone
tracking data set including more than 6 million users
collected in Shenzhen, China. Phone users’ mobility
data were extracted using 2D and 3D potential activity
spaces (i.e., DPPAm and DSTPm), and phone users’
accessibility to urban services was evaluated using CU
Mm and DURm measures. It was shown that the mobile
phone tracking data allowed individual accessibility to
be evaluated for all phone users across the whole study
area at fine resolution (cellular tower), and interper-
sonal accessibility variation could be identified for
phone users within the same residential locations.
This result illustrated that massive mobile phone
tracking data could be a very useful data source for
large-scale, individual-based accessibility studies
(Kwan and Weber 2003; Miller 2007).

Mobility impacts on accessibility for people living
in various regions were quantified using relative acces-
sibility ratios between actual and virtual stationary
phone users in the same residential location. Results of

Table 3. Gini coefficients for different accessibility meas-
ures and service types

Measure service type CUMm CUMh DURm DURh

Foodservice 0.43 0.47 0.50 0.52
Recreational service 0.40 0.43 0.46 0.48
Shopping service 0.34 0.36 0.40 0.42
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this study provided several new insights on relation-
ships between human mobility and accessibility.

First, this study extended previous human mobility
studies (Sch€onfelder and Axhausen 2003; Casas 2007;
Stanley et al. 2011; Kamruzzaman and Hine 2012;
Patterson and Farber 2015) by investigating human
mobility impacts on accessibility for the entire region
of a megacity with diverse land use characteristics
(i.e., spatial distribution of service facilities). This
study found that human mobility impacts on accessi-
bility, in terms of the DURm measure, can be positive
or negative, depending on land use characteristics. For
resource-rich regions with dense service facilities (i.e.,
most core urban areas in this case study), human
mobility can significantly reduce individual accessibil-
ity. In these regions, long individual traveled distance
indicates allocation of significant time resources for
traveling, which reduces individual time available to
participate in activities, leading to reduced accessibil-
ity. For resource-poor regions with sparse service facili-
ties (i.e., most suburban and urban areas in this case
study), human mobility can greatly enhance individual
accessibility. Although long traveled distance also
reduces individual time available to participate in
activities, longer trips enable people in these resource-
poor regions to enjoy urban services provided by other
regions and hence enhances their accessibility. There-
fore, these findings enrich our understanding of how
land use influences the relationships between human
mobility and accessibility.

Second, this study extended previous spatial equity
studies (Omer 2006; Delbosc and Currie 2011; van
Wee and Geurs 2011) by showing that human mobil-
ity can mitigate spatial inequity of accessibility for
people living in various regions of the city. This result
is pertinent to the statement of space–time conver-
gence, which describes the dramatic impact of space-
adjusting technologies on the organization of human
activities in geographic space (Janelle 1969; Miller
2007). Mobility provided by transportation technolo-
gies has reduced the friction of distance for people to
access urban services at other places from their resi-
dential locations. Human mobility thus contributes to
the reduction of spatial inequality of accessibility to
urban services among people living in different regions
of the city. Therefore, this finding deepens our under-
standing of the influence of human mobility on spatial
equity of accessibility.

Based on these findings of human mobility impacts
on the accessibility, several policy implications can be
made regarding improving accessibility for people

living in different city regions. For resource-rich
regions, it would be beneficial to provide a balanced
mix of living, service, and working opportunities
within individuals’ neighborhoods, reducing their
mobility in terms of traveled distance and DPPA size,
for conducting mandatory out-of-home activities. This
would increase individual time available for participat-
ing in discretionary activities at surrounding service
facilities, enhancing their accessibility. This could also
contribute to reduced travel demands in core urban
areas (Timmermans, Arentze, and Joh 2002), as well
as sustainable and compact development of the city
(Levine and Frank 2007; van Wee and Handy 2016;
Stevens 2017). For resource-poor regions, however,
provision of adequate mobility would be an effective
means to improve accessibility of disadvantage people.
Sufficient mobility (i.e., large DPPA size) via private
and public transportation can enable disadvantaged
people to access basic service facilities located in other
city regions, helping reduce their risk of transport-
related social exclusion (McCray and Brais 2007;
Stanley et al. 2011; van Wee and Geurs 2011).

Results of this study also have several important
methodological implications in the accessibility evalu-
ation. The DURh measure of the reference stationary
group can be regarded as a place-based accessibility
measure ignoring human mobility. Comparing DURm

and DURh accessibility suggests that place-based
accessibility measures ignoring human mobility can
introduce significant bias on spatial distribution of
accessibility and overestimate spatial inequity of acces-
sibility by overestimating accessibility for people living
in resource-rich regions while underestimating accessi-
bility for those living in resource-poor regions. In addi-
tion, comparing DURm and CUMm results shows that
the DURm measure, incorporating time available for
activity participation, is more suitable to capture spa-
tial inequity of individual accessibility across various
regions, consistent with the findings from previous
studies (Kwan 1998; Neutens et al. 2010; Ren, Tong,
and Kwan 2014). More important, comparing DURm

and CUMm rankings (see Figure 9) clearly shows that
ignoring time available for activity participation can
lead to biased accessibility results, particularly for indi-
viduals with large DPPA sizes. This study clearly
reveals that ignoring time available for activity dura-
tion could lead to erroneous conclusions of human
mobility impacts on accessibility (i.e., that human
mobility impacts are positive for all city regions).
Therefore, these methodological implications provide
strong evidence supporting the assertion (Kwan 2013)
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that human mobility and time dimension (in terms of
time available for activity participation) are critical
factors that should be explicitly considered in accessi-
bility studies. Such methodological implications also
underscore the significant influence of algorithms
(e.g., accessibility measures in this study) on geo-
graphic research in the era of big data, termed algo-
rithmic geographies by Kwan (2016).

There are several fruitful directions for future
research. First, this study estimated the potential activ-
ity spaces of massive numbers of mobile phone users by
constructing space–time prisms along sample points of
user trajectories. This activity space estimation
method, however, differs to some extent from the clas-
sical approach of constructing space–time prisms along
anchor points collected by activity diary surveys
(Kwan 1998). Further studies are required to investi-
gate the effective methods for estimating individuals’
activity spaces through mobile phone tracking data
(B. Y. Chen, Wang, et al. 2017). Second, this study
only considered a single flexible activity in the accessi-
bility evaluation and ignored the individual’s trip-
chain behavior (i.e., multiple flexible activities; Fang
et al. 2011; X. Chen and Kwan 2012). The incorpo-
ration of trip-chain behavior in accessibility research
is a topic for further study. Third, to protect user pri-
vacy, this study collected only the trajectories of
mobile phone users, omitting any personal informa-
tion, such as gender, age, occupation, income, car
ownership, mode choice, trip purpose, and so on. How
these personal attributes might affect the relationships
between human mobility and individuals’ accessibility
requires further investigation. How to impute personal
attributes from user trajectories and context informa-
tion by using spatiotemporal data mining techniques is
another interesting direction for further study (Bohte
and Maat 2009; Biljecki, Ledoux, and van Oosterom
2013; Feng and Timmermans 2013; Shen and Stopher
2013). Finally, this study included only mobile phone
tracking data from the Shenzhen city region. It would
be helpful to use similar data sets collected in other
cities to verify the identified relationships between
human mobility and accessibility.
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