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Abstract

The production/ordering cost structure is fundamental to determining an optimal inventory
control policy. For example, it is well known that a base-stock policy is optimal for inventory
systems with linear production costs, whereas an (s, S) policy is optimal if both linear and
fixed costs exist. However, many of the cost structures that have arisen from the practice are
quite complex and make the optimal policies too complicated for managers to implement. In
this paper, we propose several easy-to-implement and efficient heuristic policies for inventory
systems with general production costs, which include multiple linear pieces and fixed costs,
suggesting a wide application to many practical problems that were previously difficult to solve.
We establish the worst-case performance bounds on the proposed heuristic policies by using the
concept of K-approximate convexity. Our extensive numerical studies, which are designed to
reflect practical inventory control applications, evaluate the performance of the heuristic policies
and show that the best heuristic policy we propose performs extremely well. We also try to
provide explanations for the performance of different heuristic policies.
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1 Introduction

1.1 Motivation

The fundamental objective of inventory management is to characterize an optimal policy or design

an efficient and easy-to-implement heuristic policy that reduces the mismatch between demand and

supply, such that the total expected cost is minimized. One of the important factors affecting an

optimal policy is the production cost structure. For example, it is well known that a base-stock

policy is optimal for inventory systems that have only linear variable cost, whereas an (s, S) policy

is optimal when considering both linear and fixed costs. However, in some real applications, firms

face the challenge of complex production costs. To demonstrate this, we provide the following two

examples.
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Motivation I. Labor cost is a key component of operation costs in the manufacturing industry,

which is readily validated by the efforts made to reduce the labor cost. Numerous engineering and

management innovations have attempted to enhance productivity and reduce the labor element

in production costs. The driving force behind increased offshoring is the desire to seize cheap

labor opportunities in developing countries. However, the labor cost is also a battlefield on which

workers’ rights are defended. The Fair Labor Standards Act (FLSA) of 1938 was a milestone in

the protection of workers’ benefits. The FLSA stipulates that “unless exempt, employees covered

by the Act must receive overtime pay for hours worked over 40 in a workweek at a rate not less

than one and a half their regular rates of pay.”1 Canada and South Korea have the same regulation

regarding overtime pay as the U.S. In most European countries, the overtime rate is at least 1.25

times to twice the regular pay. In India, if a worker works more than nine hours in a day or more

than forty-eight hours in a week, he or she receives overtime pay of at least twice the regular rate.

China has two overtime rates. The overtime pay for working more than eight hours in a week day

is at least 1.5 times the regular rate, and that for working during a weekend is at least double.

Similarly, in Australia, daily workers get 1.5 times the regular rate for the first two overtime hours

and twice the rate thereafter. Under all of these regulations, the labor cost is a piecewise linear

convex function of the production quantity. The production cost also includes the raw material,

energy, transportation, administrative costs, etc., which we refer to as the non-labor production

cost. It is sufficient to consider the non-labor production cost as a piecewise linear concave function

that reflects economies of scale. Integrating this non-labor production cost with a piecewise linear

convex labor cost usually results in a general piecewise linear production cost, which does not

necessarily follow any structure studied in the literature.

Motivation II. We consider a manufacturer who is equipped with two types of production

equipment or technology and can choose either or both of them to produce the product in each

period. Each unit of the product produced by either equipment type incurs both fixed and linear

costs. Suppose that neither production equipment type dominates in the fixed and linear costs.

Under such a cost structure, there is a threshold point such that if the production amount exceeds

this point, the manufacturer uses the equipment with a higher fixed cost and a lower linear cost;

otherwise, the other type of equipment is preferred. If one equipment type has a capacity, the cost

structure is a piecewise linear function with two jump points, which is neither convex nor concave,

and not even continuous. This structure can also be seen in inventory systems with multiple

suppliers. For example, if a retailer has multiple suppliers with different fixed and linear costs,

1c.f. http://www.dol.gov/whd/overtime pay.htm
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it may face a non-convex, non-concave ordering cost that contains multiple jumps if the suppliers

have the capacities. For any inventory model that considers a less-than-truckload shipping cost in

the ordering cost, the ordering cost can also be modeled as a non-convex, non-concave piecewise

linear function (c.f. Chan et al. 2002 and Li et al. 2004).

These practical applications have motivated us to study a classical periodic-review inventory

system with a general cost structure. In each period, the firm must determine the production

quantity to satisfy the stochastic demand. Any unsatisfied demand is fully backordered with a

backlog cost, while the excess inventory is carried to the next period with a holding cost. Unlike

the previous models in the literature, the production cost is a general piecewise linear function of

the production quantity, which may not be convex or concave or even continuous. The firm aims

to minimize the total expected cost over the entire planning horizon.

Convexity is a desirable property for establishing well-structured optimal policies for various

inventory control problems that can be formulated as dynamic programs. Assuming that the cost-

to-go functions are convex, the optimal policy can be fully characterized and easily implemented.

Unfortunately, under a general piecewise linear production cost, the objective functions may not

have this property, which makes the optimal policies too complicated to characterize. Even for cases

where the structure of the optimal policies is identifiable, the daunting complexity of the optimal

policies often limits their applicability in practice. To address this issue, we use a new tool named

the K-approximate convexity. A function is K-approximate convex if it can be approximated by

a convex function whose maximal distance to the original function is K. Applying this idea to

replace non-convex functions with convex functions, we develop well-structured heuristic policies

that can be implemented in practice. In particular, we propose three approximation approaches,

each of which has a well-structured optimal policy. As the main difficulty arises from the non-

convexity of the production cost, the first approach is to approximate the ordering cost function

with a convex cost function. The second approach is to approximate the cost-to-go function, while

the third is to approximate the sum of the expectation of the cost-to-go function and expected

inventory holding/backlogging cost function.

When designing the heuristic policy, two fundamental issues must be addressed, including the

computational complexity and policy effectiveness. For our proposed approximation approaches,

we need to identify the complexity of obtaining a convex function that minimizes the maximal

distance to the function that is approximated. We show this can be done by computing the

convex envelope of the function. For a piecewise linear function, we provide a very efficient way of

computing its convex envelope. For the effectiveness of heuristic policies, we establish their worst-
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case performance bounds, which are linear functions of K (the non-convexity level of the production

cost) and quadratic functions of the number of periods. These performance bounds indicate that a

slight non-convexity (a small K) of the production cost is acceptable because we can still get a well-

structured heuristic policy with good performance. Surprisingly, extensive numerical experiments

demonstrate that the second and third approaches perform extremely well and are close to optimal

under various production cost structures.

Our main contribution is our proposal of efficient and easy-to-implement heuristic policies for

inventory systems with a general production cost, which can be applied to many practical problems

that were previously very hard to solve. The concept of K-approximate convexity provides us with

a framework to construct these heuristic policies and establish their worst-case performance bounds.

The remainder of this paper is organized as follows. We review the related literature in the

rest of this section. Section 2 describes the model and presents some results on K-approximate

convexity. In Section 3, we first fully characterize the optimal policy for the single-period problem

and then propose heuristic policies using the concept of K-approximate convexity. We present our

numerical results in Section 4, and conclude the paper in Section 5.

1.2 Literature Review

The periodic-review, stochastic inventory control problem has been extensively studied since the

1950s. The classical model assumes that the variable production cost is a linear function of the

production quantity. The corresponding optimal policy is a base-stock policy, due to the convexity

of the objective function. It has long been recognized in the literature, e.g., Scarf (1963) and

Porteus (1971), that the variable production cost can take a non-linear form. Efforts to address

this issue have mainly focused on cases in which the production cost is either concave or convex.

For inventory models with concave production costs, Porteus (1971, 1972) was among the first

to prove the optimality of a generalized (s, S) policy under some conditions on the distribution

of demand. Motivated by an inventory system with two suppliers, Fox et al. (2006) studied an

inventory model in which the ordering cost was a piecewise linear concave function with two pieces.

Zhang et al. (2012) extended this model to include a capacity constraint on the supplier with the

lower unit ordering cost, which led to a non-convex, non-concave cost structure. As both Fox et

al. (2006) and Zhang et al. (2012) assumed that the supplier with the lower unit ordering cost

does not charge a fixed cost, the ordering cost was a continuous function of the order quantity.

In contrast, our model can handle an ordering cost structure with multiple jumps caused by fixed

costs and suppliers’ capacities. Karlin (1960) pioneered the stream of research on inventory models
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with convex production costs. Henig et al. (1997) studied an inventory model with a piecewise

linear convex ordering cost and used the corresponding total cost to derive the optimal volume in

a supply contract. Lu and Song (2014) studied the optimal policy of an inventory system with

a piecewise linear convex variable cost and a fixed cost K, which was a K
2 -approximate convex

function. Hence, the cost structure studied in this paper is more general than that of Lu and Song

(2014). The heuristic algorithm developed in Lu and Song (2014) used the special structure of

convex variable cost. However, the heuristic algorithm developed in this paper uses the idea of

K-approximate convexity that allows us to solve problems with a more general cost structure. In

some inventory models, although the variable replenishment cost is linear, fixed costs are incurred

once the replenishment quantity in a period exceeds a certain level. This type of model is often

referred to as an inventory model with quantity-dependent variable/fixed costs. Representative

works include but are not limited to Lippman (1969), Iwaniec (1979), Chao and Zipkin (2008), Li

et al. (2009), Huggins and Olsen (2010), and Caliskan-Demirag et al. (2012). Our model obviously

generalizes all of the aforementioned inventory models. A special case of our model is the inventory

control problem with a capacity constraint. Representative studies include Federgrun and Zipkin

(1986), Shaoxiang and Lambrecht (1996), Aviv and Federgrun (1997, 2001), Gallego and Scheller-

Wolf (2000), Özer and Wei (2004), Shaoxiang (2004), Huh et al. (2011), and Wang et al. (2012)

among others.

The concept of K-approximate convexity was first introduced by Lu et al. (2016). This paper

differs from Lu et al. (2016) in three major ways. First, it focuses on a different problem. Lu et al.

(2016) studied the joint pricing and inventory control problem with incomplete demand information.

In that problem, revenue function is not completely known and may be not concave, while the

ordering cost is a linear function of the ordering quantity. This paper studies the inventory control

problem where the production/ordering cost is a general piecewise linear function. Second, although

the concept of K-approximate convexity is applied to solve both problems, the approximation

approaches are quite different. In Lu et al. (2016), the heuristic policy was based on approximating

a one-period revenue function by a convex function. In this paper, in addition to testing the heuristic

policy of approximating a one-period cost function, which uses the same idea as that of Lu et al.

(2016), we develop two new heuristic policies. One approximates the cost-to-go function. The

other approximates the sum of the expectation of the cost-to-go function and expected inventory

holding/backlogging cost function. We find that these two new heuristic policies perform much

better than the heuristic policy of approximating a one-period cost function. Finally, the method

of computing a convex approximation of a piecewise linear function in Lu et al. (2016) applies only
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to a continuous function, while the method in this paper can handle a discontinuous case.

2 Model Description and Preliminaries

In this section, we first describe our model in detail and then provide some preliminary results on

K-approximate convexity that are used in our subsequent analysis.

2.1 Model Description

We consider a finite-horizon periodic-review stochastic inventory control problem with T periods.

Let Dt denote the demand in period t, which is a discrete random variable. At the beginning of

each period t, the firm must determine the production quantity to satisfy the stochastic demand.

The production cost c(z) in each period is a piecewise linear increasing function of the production

quantity z with c(0) = 0 and breakpoints 0 = q0 < q1 < q2 < · · · < qn−1 < qn = +∞, i.e., for

z ∈ (qi−1, qi],

c(z) = Ki + ciz, (1)

where ci ≥ 0, i = 1, ..., n.

We assume that c(z) increases in z, which is equivalent to K1 ≥ 0 and Ki+ ciqi ≤ Ki+1 + ci+1qi

for any i = 1, ..., n − 1. Note that we allow Ki + ciqi < Ki+1 + ci+1qi, which implies that fixed

costs may exist at those breakpoints. For the inventory applications considered in this paper, the

piecewise linear assumption is without loss of generality because in practice the inventory level

and demand take only integers, which automatically leads to a piecewise linear cost structure. For

other applications where the state can take continuous values, the cost function does not need to

be piecewise linear. However, there are many ways of approximating a nonlinear function by a

piecewise linear function (Lin et al. 2013).

At the end of each period, any unsatisfied demand is fully backlogged with a unit shortage cost

p ≥ 0, and the leftover inventory is carried to the next period with a unit holding cost h ≥ 0. Let

Ht(yt) denote the inventory holding and shortage costs in period t, which can then be expressed as

Ht(yt) = E[h(yt − Dt)
+ + p(yt − Dt)

−]. The firm’s objective is to determine a production policy

that minimizes the total expected cost over the whole planning horizon.

Given the initial inventory level xt in period t, let Vt(xt) denote the cost-to-go function at the

beginning of period t, which represents the minimal expected costs incurred from period t to the

end of the planning horizon if the firm acts optimally. Denote α ∈ [0, 1] as the discount factor for
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any period t. The Bellman equation states that the cost-to-go function Vt(xt) should satisfy

Vt(xt) = min
yt≥xt

{
c(yt − xt) +Ht(yt) + αE[Vt+1(yt −Dt)]

}
. (2)

For simplicity, we assume that VT+1(xT+1) = hT+1x
+
T+1 +pT+1x

−
T+1 and that −pT+1 ≤ hT+1 to

ensure the convexity of VT+1(xT+1). To avoid the trivial solution of producing an infinite amount

in any period t, we also assume that cn +
∑T−t

i=0 α
ih+ αT−t+1hT+1 ≥ 0.

For problem (2), it is well known that the base-stock policy is optimal when c(z) is a linear

function, whereas the (s, S) policy is optimal if c(z) = K1(z > 0) + cz, where 1(·) is an indicator

function. Unfortunately, the optimal policy can become very complicated when c(z) has multiple

pieces presented by (1). First, the production region can be disconnected in the sense that a

threshold below which it is optimal to produce and above which it is optimal not to produce may

not exist. Second, the optimal produce-up-to level does not have to be a specific level or x + qi.

These complications are illustrated by the following example.

Example 1. Consider a two-period problem, i.e., T = 2. The production cost has three linear

pieces with slopes c1 = 1.2489, c2 = 1.6021, and c3 = 1.5223. The breakpoints are q1 = 118

and q2 = 467. The demand distribution follows P (Dt = 0) = 0.3183, P (Dt = 1000) = 0.3062,

P (Dt = 2000) = 0.2053, and P (Dt = 3000) = 0.1703 for any t = 1, 2. In addition, Ht(yt) =

E[0.1567(yt −Dt)
+ + 0.2194(yt −Dt)

−] for t = 1, 2 and VT+1(xT+1) = −0.0385x+
T+1 + 1.9961x−T+1.

The optimal policy in the first period is characterized as follows. For any x1 < 764, the optimal

produce-up-to level is 882. For any x1 ∈ [882, 1000), it is optimal to produce up to 1000. We should

produce up to 1882 for x1 ∈ [1764, 1882). For any x1 in the intervals [764, 882) and [1417, 1764), it

is optimal to produce q1 = 118. It is optimal not to produce if x1 ∈ [1000, 1417) or x1 ≥ 1882.

It can be observed from this example that there is no threshold point below which we must

produce and above which we never produce, as it is optimal to produce in two disjointed intervals,

i.e., (−∞, 1000) and [1417, 1882). Even if the structure of the optimal policies is identifiable, the

daunting complexity often limits their applicability in practice. These observations motivate us to

focus on designing efficient and easy-to-implement heuristic policies.

2.2 K-Approximate Convexity

This subsection presents the definition and some properties of K-approximate convexity. We also

construct an algorithm to obtain a convex approximation of a piecewise linear function that may

not be continuous.
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Lu et al. (2016) presented the following definition of K-approximate convexity and showed that

it is a generalization of K-convexity.

Definition 2.1. A function f : S 7→ R, where S ⊆ R, is K-approximate convex (concave) if there

exists a convex (concave) function g : S 7→ R such that ‖f − g‖∞ ≡ supx∈S |f(x)− g(x)| ≤ K.

In other words, a function is K-approximate convex if its distance in `∞ norm to some convex

function is no greater than K. A natural question is how to obtain a convex approximation of a

K-approximate convex function, such that the distance between the two functions in `∞ norm is

bounded by K. Our main idea for obtaining such a convex approximation relies on the convex

envelope of the function, which is defined as follows.

Definition 2.2. For any function f : S 7→ R where S ⊆ R, the function f∗ : S 7→ R is the convex

envelope of f if

f∗ = sup{f : S 7→ R | f is convex and f ≤ f}.

For any K-approximate convex function f , the following proposition shows that the maximum

distance in `∞ norm between f and its convex envelope f∗ is at most 2K. As the convex envelope

f∗ is always below f , by shifting the convex envelope up by 1
2‖f − f

∗‖∞, we can obtain a convex

approximation of f whose distance from f is at most K.

Proposition 1. For any K-approximate convex function f : S 7→ R where S ⊆ R, ‖f−f∗‖∞ ≤ 2K

and ‖f − f̄‖∞ ≤ K, where f∗ is the convex envelope of f and f̄ : S 7→ R is the convex function

such that f̄(x) = f∗(x) + 1
2‖f − f

∗‖∞ for any x ∈ S.

Consider a piecewise linear function W (x) with m pieces, where m ≥ 2. Let −∞ = x0 <

x1 < x2 < · · · < xm−1 < xm = +∞ denote the breakpoints defining the m pieces. For any

j ∈ {0, 1, ...,m−1}, W (x) is a linear function with slope bj for all x ∈ (xj , xj+1). Thus, the interval

(xj , xj+1) corresponds to piece j of W (x) and bj is referred to as the slope of piece j.

Algorithm 1. Obtain a convex approximation W̄ (x) of a piecewise linear K-approximate convex

function W (x).

Step 1. For any j ∈ {1, ...,m− 1}, define yj = min{W (xj), limx↑xj W (x), limx↓xj W (x)}.

Step 2. Apply Andrew’s monotone chain convex hull algorithm (c.f. Andrew 1979) to obtain the

lower hull of the points in P =
{

(xj , yj) : j ∈ {1, ...,m − 1}
}

. The lower hull of P is

represented by the points in P on the lower hull in counter-clockwise order, i.e.,{
(x′1, y

′
1), (x′2, y

′
2), ..., (x′m′ , y

′
m′)
}
⊆ P,
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where m′ is the number of points in P falling on its lower hull, x1 = x′1 < x′2 < · · · < x′m′ =

xm−1, y1 = y′1, and ym−1 = y′m′.

Step 3. If m = 2, set l = u = 1. Otherwise, let b′j =
y′j+1−y′j
x′j+1−x′j

for any j ∈ {1, ...,m′ − 1},

l =

{
1, if b′1 ≥ b0,
max

{
j ∈ {2, ...,m′} : b′j−1 < b0

}
, if b′1 < b0,

u =

{
min

{
j ∈ {1, ...,m′ − 1} : b′j > bm−1

}
, if b′m′−1 > bm−1,

m′, if b′m′−1 ≤ bm−1.

Define

W ∗(x) =


y′l + b0(x− x′l), for any x ≤ x′l,
y′j + b′j(x− x′j), for any x ∈ (x′j , x

′
j+1], j ∈ {l, l + 1, ..., u− 1},

y′u + bm−1(x− x′u), for any x > x′u.

Step 4. Return

W̄ (x) = W ∗(x)+
1

2
max

{
max

{
W (xj), lim

x↑xj
W (x), lim

x↓xj
W (x)

}
−W ∗(xj) : j ∈ {1, ...,m− 1}

}
.

Algorithm 1 can be interpreted as follows. Step 1 deals with the discontinuity of W (x). Here,

yj represents the minimum of W (xj) and the values W (x) converges to as x approaches xj from

the left and right. Obviously, yj = W (xj) if W (x) is continuous at xj . Step 2 constructs the

convex envelope of W (x) for any x ∈ (x1, xm−1). For a finite set of points in a two-dimensional

space, the lower hull of this set is the part of its convex hull visible from below, which runs from

the leftmost point to the rightmost point in counter clockwise order. Note that the lower hull of

P can be obtained by any convex hull algorithm in a two-dimensional space. Here, we choose the

monotone chain algorithm (c.f. Andrew 1979) whose computational complexity is O(m logm) in

general. However, as the points in P are sorted according to xj , the monotone chain algorithm

returns the lower hull of P in O(m). Please note that by Algorithm 1, we can obtain the exact value

of K, i.e., K = max
{

max
{
W (xj), limx↑xj W (x), limx↓xj W (x)

}
−W ∗(xj) : j ∈ {1, ...,m− 1}

}
.

In Step 3, we extend the convex envelope of W (x) from the domain (x1, xm−1) to the domain

(−∞,+∞). To obtain a convex approximation of W (x), as shown in Proposition 1, we shift the

convex envelope W ∗(x) up by 1
2‖W −W

∗(x)‖∞, which corresponds to the function W̄ (x) in Step 4.

Proposition 2 formally proves the validity of Algorithm 1 and analyzes its computational complexity.

Proposition 2. Suppose that W (x) is K-approximate convex. Algorithm 1 returns W̄ (x) in O(m).

Moreover, W̄ (x) is a convex function of x and satisfies ‖W − W̄‖∞ ≤ K.
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Lu et al. (2016) proposed a linear programming formulation to obtain the convex approxima-

tion of a continuous piecewise linear function W (x). However, the cost function defined by (1) in

this paper may not be continuous, in which case it cannot be approximated by solving the linear

programming formulation but can be approximated by using Algorithm 1. The computational com-

plexity of Algorithm 1 is only O(m), which is much lower than that of solving a linear programming

problem with O(m) decision variables and O(m) constraints whose complexity is at least O(m
5
2 ).

The following proposition provides a preservation property of K-approximate convexity, which

will be useful for proving the performance bound of the heuristic policy proposed in Section 3.

Proposition 3. If c : R+ 7→ R is K-approximate convex and f : R 7→ R is convex, then g(x) =

miny≥x{c(y − x) + f(y)} is K-approximate convex.

3 Optimality Analysis and Heuristic Policies

In this section, we first characterize the optimal policy for the single-period problem. This serves two

purposes. First, the single-period model formulates the production control problem for a perishable

product whose inventory cannot be carried over periods. Second, inspired by the structure of the

single-period optimal policy, we then develop three practically implementable and efficient heuristic

policies for the multi-period problem using the concept of K-approximate convexity, and compare

their performance.

3.1 The Single-Period Model

Given any initial inventory level x, the single-period inventory problem can be formulated as

V (x) = min
z≥0
{c(z) +Ht(x+ z)} = min

y≥x
{c(y − x) +Ht(y)}. (3)

Define

z∗(x) = min

{
arg min

z≥0
{c(z) +Ht(x+ z)}

}
and y∗(x) = min

{
arg min

y≥x
{c(y − x) +Ht(y)}

}
,

i.e., for any given initial inventory level x, the optimal production quantity and optimal produce-up-

to level are z∗(x) and y∗(x), respectively. Obviously, y∗(x) = x+ z∗(x). The following proposition

shows that the optimal production quantity decreases with the initial inventory level.

Proposition 4. (Monotonicity of Optimal Order Quantity) The optimal order quantity

z∗(x) decreases with x.
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Proposition 4 can be applied to develop a polynomial-time algorithm that solves the single-

period problem.

Algorithm 2. Solve the single-period problem (3) for any initial inventory level x ∈ (−∞,+∞).

Step 1. Define

Si = inf

{
arg inf

y∈(−∞,+∞)
{ciy +Ht(y)}

}
and

f i(x) =


Ki + ciqi +Ht(x+ qi), if x < Si − qi,
Ki + ci(S

i − x) +Ht(S
i), if Si − qi ≤ x < Si − qi−1,

Ki + ciqi−1 +Ht(x+ qi−1), if x ≥ Si − qi−1,

for any i ∈ {1, ..., n}. Furthermore, set f0(x) = Ht(x) for any x.

Step 2. Let x̂n+1 = −∞ and x̂0 = ∞. For any i = n, ..., 1, define x̂i = min{x̄i,0, x̄i,1, ..., x̄i,i−1},

where x̄i,j = inf{x ≥ x̂i+1 : f j(x) ≤ f i(x)} for all j ∈ {0, 1, ..., i − 1}. Note that we set

x̄i,j =∞ if {x ≥ x̂i+1 : f j(x) ≤ f i(x)} is an empty set.

Step 3. Set z∗(x) = Sn − x for any x ∈ (−∞, x̂n),

z∗(x) =

{
qi, if x ∈ [x̂i+1,min{x̂i,max{x̂i+1, S

i − qi}}),
Si − x, if x ∈ [min{x̂i,max{x̂i+1, S

i − qi}}, x̂i),
for all i ∈ {1, ..., n− 1},

and z∗(x) = 0 for any x ∈ [x̂1,∞).

For any i ∈ {0, 1, ..., n}, set V (x) = f i(x) for any x ∈ [x̂i+1, x̂i).

The following proposition shows that Algorithm 2 solves the single-period problem.

Proposition 5. Algorithm 2 solves the single-period problem (3). If Ht(x) is a piecewise linear

function with m pieces, the computational complexity of Algorithm 2 is O(mn2).

Based on the values Si and x̂i returned by Algorithm 2, we can define

A =
{
x̂i : i ∈ {1, ..., n+ 1}

}
∪
{

min{x̂i,max{x̂i+1, S
i − qi}} : i ∈ {1, ..., n− 1}

}
.

Let l = |A| − 1 ≤ 2n− 1. For any j ∈ {0, 1, ..., l}, we denote aj to be the (j+ 1)th smallest element

in A, i.e., A = {a0, a1, ..., al} where a0 < a1 < · · · < al. Note that a0 = x̂n+1 = −∞ and al = x̂1.

Also let s = al. We obtain the following theorem that characterizes the optimal policy for the

single-period problem.

11



Theorem 1. It is optimal to produce when x < s and it is optimal not to produce when x ≥ s.

There are l ≤ 2n− 1 intervals [aj , aj+1), j ∈ {0, 1, ..., l}, with −∞ = a0 < a1 < a2 < · · · < al = s,

such that for all x ∈ [aj , aj+1), it is optimal to produce either exactly qi for some i ∈ {1, ..., n− 1}

or up to Si for some i ∈ {1, ..., n}. Furthermore, for any interval [aj , aj+1) where it is optimal to

produce up to Si for some i, the optimal production quantity z∗(x) = Si − x ∈ (qi−1, qi].

Figure 1: Optimal policy for the single-period problem (3)

Figure 1 illustrates the policy structure described in Theorem 1. The policy has a threshold s

to determine whether to produce. The set over which it is optimal to produce can be divided into

at most 2n − 1 intervals by the parameters aj . In each of these intervals, the optimal production

decision is to produce either up to some Si or exactly qi. Therefore, the optimal policy is a state-

independent policy in the sense that it can be determined by the parameters x̂i and Si− qi defined

in Algorithm 2. This nice structure only relies on the convexity of Ht(y).

An important observation here is that both Algorithm 2 and Theorem 1 are applicable to

capacitated inventory models. To see this, note that if cn is sufficiently large, as Ht(y) is a piecewise

linear convex function, cny + Ht(y) increases with y and hence Sn = −∞. For example, when

Ht(y) = E[h(y − Dt)
+ + p(y − Dt)

−], we have Sn = −∞ as long as cn ≥ p. As Sn = −∞,

the case of producing up to Sn can never exist, and hence Theorem 1 implies that for any initial

inventory level x, there exists some i ∈ {1, ..., n−1} such that we should either produce exactly qi or

produce up to Si with the corresponding production quantity in (qi−1, qi]. Therefore, the optimal

production quantity will never exceed the capacity qn−1. Consequently, such a policy is optimal

for the corresponding capacitated problem with a production capacity qn−1. In fact, Algorithm 2

returns the optimal policy for the counterpart with capacity qn−1 as long as we force x̂n = −∞ in

Step 2.

Proposition 4 implies that the optimal production quantity z∗(x) decreases in the initial inven-

12



tory. However, the optimal produce-up-to level y∗(x) may not have any monotonicity property.

The following proposition presents a monotonic property of y∗(x) under a certain production cost

structure.

Proposition 6. If there exists a constant q > 0 such that c(z) is concave for z ∈ [0, q] and c(z) is

convex for z ∈ [q,+∞), then there exists a point v ≤ s such that y∗(x) increases for any x ∈ (−∞, v)

and decreases for any x ∈ [v, s).

3.1.1 A Special Case: Two Pieces

In this subsection, we characterize the optimal policy when n = 2. This subsection serves two

purposes. First, many applications fall into the case with n = 2. Hence, a clear characterization

of the optimal policy for this special case can benefit those applications. Second, it can help us to

better understand the structure of the optimal policy based on Theorem 1.

Definition 3.1. Given K1, K2, c1 and c2, we define

s1 = min{x : c1x+Ht(x) ≤ K1 + c1S
1 +Ht(S

1)};

s2 = min{x : Ht(x)−Ht(x+ q1) ≤ K1 + c1q1};

s3 = min{x : c2x+Ht(x+ q1) ≤ K2 + c2S
2 − c1q1 −K1 +Ht(S

2)};

s4 = min{x : c2x+Ht(x) ≤ K2 + c2S
2 +Ht(S

2)};

s5 = min{x : (c2 − c1)x+Ht(S
1) ≤ K2 + c2S

2 −K1 − c1S
1 +Ht(S

2)}.

The following lemma partially identifies the relationships between these threshold points, which

are helpful for characterizing the optimal policy.

Lemma 1. (i) If S1 − q1 < s1, then s2 ≥ S1 − q1. (ii) s2 ≤ s1. (iii) s3 ≤ S2 − q1. (iv) If

S2 − q1 > s2, then s4 ≤ S2 − q1.

Theorem 2. Define s6 = min{S2−q1,max{s4, s1}}, s7 = min{max{s5, S1−q1}, S2−q1}, and s8 =

min{s1,max{s5, S1−q1}}. The optimal policy structure of the single-period problem is characterized

by Table 1.

Theorem 2 implies that there are only four possible strategies: order nothing, order up to S1,

order exactly q1, and order up to S2. Once Sj , j = 1, 2, and si, i = 1, ..., 5, are computed, the

optimal strategy is completely determined.

13



Table 1: Optimal Policy Structure
Order nothing Order up-to S1 Order exactly q1 Order up-to S2

S1 − q1 < s1 &

S2 ≤ S1
x ≥ s1 S1 − q1 ≤ x < s1 s3 ≤ x < S1 − q1 x < s3

S1 − q1 < s1 &

s1 + q1 ≥ S2 > S1
x ≥ s1 s7 ≤ x < s1 min{s3, S1 − q1} ≤ x < S1 − q1

S1 − q1 ≤ x < s7,

x < min{s3, S1 − q1}

S1 − q1 < s1 &

S2 > s1 + q1
x ≥ s6 s8 ≤ x < s1 min{s3, S1 − q1} ≤ x < S1 − q1

s1 ≤ x < s6,

S1 − q1 ≤ x < s8,

x < min{s3, S1 − q1}
S1 − q1 ≥ s1 &

S2 − q1 ≤ s2
x ≥ s2 empty s3 ≤ x < s2 x < s3

S1 − q1 ≥ s1 &

S2 − q1 > s2
x ≥ max{s4, s2} empty min{s3, s2} ≤ x < s2

s2 ≤ x < max{s4, s2},
x < min{s3, s2}

3.2 Heuristic Algorithms for the Multi-period Model

In this subsection, we propose three heuristic policies for the multi-period problem. The first, named

as the cost-to-go function approximation (CTGA for short), is mainly inspired by the fact that the

well-structured, single-period optimal policy only depends on the convexity of the inventory holding

and the shortage cost function Ht(y). By applying K-approximate convexity to approximate the

cost-to-go function, the heuristic policy is practically implementable because its structure is the

same as that of the single-period optimal policy illustrated in Figure 1. The second is named as the

cost-to-go function expectation approximation approach (CTGEA), which is inspired by the same

spirit of the CTGA approach. However, unlike the CTGA approach, which directly approximates

the cost-to-go function, the CTGEA approach approximates its expectation. The third, named

as the ordering-cost function approximation (OCA), is inspired by the fact that if the ordering

cost in every period is a convex function, then so is the cost-to-go function. Hence, by applying

K-approximate convexity to approximate the ordering cost function, we can have a well-structured

heuristic policy that shares the same structure as that of the optimal policy for inventory systems

with a piecewise linear convex ordering cost, as shown in Bensoussan et al. (1983). For all heuristic

policies, K-approximate convexity allows us to derive their worst-case performance bounds.

3.2.1 Cost-to-go Function Approximation Approach

Recall that the cost-to-go function Vt+1(xt+1) in (2) may not be convex, which complicates the

optimal policy for the multi-period problem. To restore the nice properties of the optimal policy

for the single-period problem, we use a convex function W̄t+1(xt+1) to approximate Vt+1(xt+1) and
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solve the following optimization problem:

Wt(xt) = min
yt≥xt

{
c(yt − xt) +Ht(yt) + αE[W̄t+1(yt −Dt)]

}
. (4)

For any period t, the structure of the optimal policy for (4) is the same as that of the single-period

optimal policy because Ht(y) +αE[W̄t+1(yt−Dt)] is a convex function. The key step in the CTGA

approach is to obtain a convex approximation W̄t(xt) of Wt(xt).

When t = T+1, we choose W̄T+1(xT+1) = VT+1(xT+1) because VT+1(xT+1) is a convex function.

As W̄t+1(xt+1) is convex, Proposition 3 ensures that if c(z) is K-approximate convex, then so is

Wt(xt). According to Proposition 2, a convex function W̄t(xt) such that ‖Wt − W̄t‖∞ ≤ K can be

obtained by Algorithm 1. For each period t, the CTGA approach consists of two steps, summarized

in Algorithm 3.

Algorithm 3. (CTGA Approach) Obtain a heuristic policy for the multi-period inventory control

model (2).

Step 0. Define W̄T+1(xT+1) = VT+1(xT+1) for any xT+1.

Step 1. For any t = T, ..., 1,

Step 1.1. solve model (4) by Algorithm 2 to get the heuristic policy and Wt(xt);

Step 1.2. apply Algorithm 1 to get the convex approximation W̄t(xt) of Wt(xt).

Remark 1. Comparing Algorithm 3 with the exact dynamic programming algorithm, we find that

the computational complexity to obtain W̄t(xt) by Algorithm 1 is linear in the number of pieces

of Wt(xt). Model (4) is much easier to solve than model (2) because W̄t+1(x) is convex, whereas

Vt+1(x) is an arbitrary piecewise linear function. Most importantly, we can create a well-structured

heuristic policy whose structure is the same as that shown in Figure 1, whereas the optimal policy

is not practically implementable due to its complexity.

Remark 2. This heuristic is optimal for the single-period problem, as W̄T+1(xT+1) = VT+1(xT+1).

If the production cost c(z) is convex, it is straightforward to show that Vt(xt) = Wt(xt) = W̄t(xt) for

any t because model (4) implies that Wt(xt) must be a convex function if Wt+1(xt+1) is a convex

function. Thus, the heuristic policy is also optimal for the multi-period problem with a convex

production cost.

Given any inventory level xt at the beginning of period t, let V̄t(xt) denote the total expected

cost from period t to T + 1 if the heuristic policy computed by Algorithm 3 is used. The following

theorem provides a worst-case bound on the performance of the CTGA approach.
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Theorem 3. If c(z) is K-approximate convex, V̄t(xt) ≤ Vt(xt) + 2K
∑T−t

i=1 iα
i for any xt ∈ R and

t ∈ {1, ..., T}.

Remark 3. This performance bound depends only on the number of periods T , the discount factor

α, and the parameter K measuring the non-convexity of c(z). It is independent of the inventory

holding and shortage costs. Hence, the heuristic policy is very close to optimal when the inventory

holding cost or shortage cost is large. This bound does not blow up when T goes to infinity. For

any α ∈ [0, 1),
∑T

i=1 iα
i = α−αT+1

(1−α)2
− TαT+1

1−α . Hence, limT→∞
∑T

i=1 iα
i = α

(1−α)2
, which implies that

2αK
(1−α)2

is the worst-case performance bound of the heuristic policy for the infinite horizon problem.

Theorem 3 provides a theoretical worst-case performance bound for the heuristic policy. Note

that the complexity of Algorithm 1, which constructs the K-approximate function of Wt(xt), heavily

depends on the number of pieces of Wt(xt). Suppose that the random demand is bounded by a

maximum demand D̄. The following proposition implies that the number of pieces linearly increases

in the period length.

Proposition 7. Recall that VT+1(xT+1) = hT+1x
+
T+1 + pT+1x

−
T+1. Let ht = h + αht+1 and pt =

min{cn, p+ αpt+1} for any t = 1, ..., T . For any t = 1, ..., T ,

Wt(xt) =

{
pt(−(T − t+ 1)B̄ − xt) +Wt(−(T − t+ 1)B̄) if xt ≤ −(T − t+ 1)B̄

ht(xt − (T − t+ 1)D̄) +Wt((T − t+ 1)D̄) if xt ≥ (T − t+ 1)D̄,

where B̄ is a finite positive number defined in the proof.

Proposition 7 shows that Wt(xt) is one linear piece when xt ≤ −(T−t+1)B̄ or xt ≥ (T−t+1)D̄.

The explanation behind this insight is as follows. First, when the inventory is high enough to satisfy

the maximum possible demands in the remaining periods., i.e., xt ≥ (T − t+ 1)D̄, it is optimal to

order nothing from period t onward, which leads to the linear form of Vt(xt). Second, when the

inventory is low enough, it is always optimal to order to satisfy the aggregated backlogged demand

by period t. Thus, adding one unit of inventory in this case saves a unit shortage cost. As the

convex hull approximation, Wt(xt) behaves consistently with Vt(xt) in both cases. In other words,

all but two linear pieces of Wt(xt) are contained in the interval [−(T − t + 1)B̄, (T − t + 1)D̄].

In practice, the domain of Wt(xt) only takes integers because the demand and inventory level are

integral values. Hence, Proposition 7 implies that the number of pieces of Wt(xt) is bounded by

(B̄ + D̄)(T − t+ 1), which is a linear function of T − t.
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3.2.2 Cost-to-go Function Expectation Approximation Approach

In this subsection, we introduce another heuristic policy: the cost-to-go function expectation ap-

proximation approach (CTGEA). Instead of approximating the cost-to-go function, the CTGEA

approach approximates the sum of the expectation of the cost-to-go function and expected inven-

tory holding/backlogging cost function. This is an improvement of the CTGA approach developed

in the previous section. The idea is motivated by the following example.

Example 2. Consider a two-period problem, i.e., T = 2. Referring to the cost structure in (1), we

set the production cost to have three linear pieces with slopes c1 = 1.2, c2 = 1.53, and c3 = 1.5.

The breakpoints are q1 = 30 and q2 = 50. The demand distribution follows a discrete normal

distribution whose cumulative distribution function is defined as Φ(·, µ, σ) with a mean of µ and a

standard deviation of σ. We set µ = 30 and σ2 = 10. The demand takes a value z from an integer

set of {0, 1, ..., 200} with the probability of Φ(z + 1, µ, σ)− Φ(z, µ, σ). In addition, we set α = 0.9,

Ht(yt) = E[0.2(yt −Dt)
+ + 0.9(yt −Dt)

−] for t = 1, 2, and VT+1(xT+1) = 1.5x−T+1.

In this example, the objective function V1(x1) is not convex. Actually, one can check that the

difference V1(x1 + 1) − V1(x1) is not always increasing in x1, for example, V1(−25) − V1(−26) =

−1.5 > V1(−24)−V1(−25) = −1.53. However, after taking the expectation, the function E[V1(y1−

D1)] is indeed convex.

In this example, V1(x1) is not convex. However, E[V1(y1 − D1)] is convex. This observation

confirms that the expectation under some demand distributions may smooth the objective function

in the sense that the gap with the convex approximation function becomes smaller. Proposition 1

in Lu et al.(2016) showed that if f(x) is K-approximate convex, then E[f(x−D)] is K-approximate

convex for any random variable D. Therefore, smoothing by expectation at least does not make

the function become non-convex if it does not make the function more convex.

Because Ht(yt) +αE[Vt+1(yt−Dt)] can be more convex than E[Vt+1(yt−Dt)], we use a convex

function R̂t+1(yt) to approximate Ht(yt) + αE[Vt+1(yt −Dt)], and solve the following optimization

problem:

Rt(xt) = min
yt≥xt

{
c(yt − xt) + R̂t+1(yt)

}
. (5)

The structure of the heuristic policy achieved by solving (5) is the same as that of the single-period

optimal policy illustrated by Figure 1 because R̂t+1(yt) is a convex function. This heuristic is

summarized in the following algorithm.

Algorithm 4. (CTGEA Approach) Obtain a heuristic policy for the multi-period inventory

control model (2).
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Step 0. Define R̂T+1(yT ) = HT (yT ) + αE[VT+1(yT −DT )] for any yT .

Step 1. For any t = T, ..., 1,

Step 1.1. solve model (5) by Algorithm 2 to get the heuristic policy and Rt(xt);

Step 1.2. apply Algorithm 1 to get the convex approximation R̂t(yt−1) of

Ht−1(yt−1) + αE[Rt(yt−1 −Dt−1)].

Remark 4. As K-approximation convexity can be preserved by expectation (Proposition 1 in Lu

et al. 2016), Theorem 3 also holds for the CTGEA approach.

3.2.3 Ordering Cost Approximation Approach

If c(z) is convex, then the cost-to-go function Vt+1(xt+1) in (2) is also convex, which can lead to

a well-structured optimal policy (see Bensoussan et al. 1983). This motivates us to use a convex

function c̄(z) to approximate c(z). This approach is named as the ordering cost approximation

approach (OCA). The optimization problem can be rewritten as

Ut(xt) = min
yt≥xt

{
c̄(yt − xt) +Ht(yt) + αE[Ut+1(yt −Dt)]

}
, (6)

with UT+1(xT+1) = VT+1(xT+1) for any xT+1.

We summarize this heuristic policy in Algorithm 5.

Algorithm 5. (OCA Approach) Obtain a heuristic policy for the multi-period inventory control

model (2).

Step 0. Apply Algorithm 1 to get the convex approximation c̄(z) of c(z).

Step 1. Define UT+1(xT+1) = VT+1(xT+1) for any xT+1.

Step 2. For any t = T, ..., 1, recursively solve model (6) by Algorithm 2 to get the heuristic policy

and Ut(xt).

Given any inventory level xt at the beginning of period t, let V̂t(xt) denote the total expected

cost from period t to T + 1 if the heuristic policy computed by Algorithm 5 is used. The following

theorem provides a worst-case bound on the performance of the OCA approach.

Theorem 4. If c(z) is K-approximate convex, V̂t(xt) ≤ Vt(xt) + 2K
∑T−t+1

i=1 iαi for any xt ∈ R

and t ∈ {1, ..., T}.
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Remark 5. The worst-case bound of the OCA approach is slightly worse than that of the CTGA and

CTGEA approaches presented by Theorem 3. In particular, the OCA approach incurs an additional

performance gap in the last period, i.e., period T . Under the CTGA and CTGEA approaches, the

function W̄T+1(xT+1) = VT+1(xT+1) is already convex and hence the two heuristics are optimal in

period T . However, under the OCA approach, replacing c(z) with c̄(z) results in a performance

gap.

4 Numerical Study

In this section, we present a set of numerical experiments to test the effectiveness of the three

proposed heuristic policies. The experiments are exercised in two practical settings. In the first

setting, the firm faces a non-convex and non-concave production cost. In the second setting, the

firm has two suppliers with different costs and capacities.

4.1 Non-convex and Non-concave Production Cost

We analyze the weekly labor cost as a function of the weekly production quantity. Suppose that the

workers get a weekly or monthly salary and receive overtime pay if they are asked to work overtime.

Let m denote the number of products a worker can produce in an hour, which can be calculated, for

instance, from the productivity of the machine and the number of machines a worker can operate

simultaneously. Using m and the number of workers a company employs, we can determine the

number of units that the company can produce in a week without overtime work, i.e., in 40 hours,

which is referred to as q1. Note that there is a maximum amount of time that a worker can work

in a day. Consequently, even with overtime work, there is a limit to the quantity that the company

can produce during the weekdays in a week, which is denoted as q2. Similarly, we can obtain a

weekly production capacity, q3, the maximum amount that can be produced in a week when the

workers work overtime on both the weekdays and weekends. Let l denote the labor cost per unit,

which can be calculated from the salary, the quantity m, and the working hours without overtime

work in a week. If the weekly production quantity is no greater than q1, the workers do not need

to work overtime and the company does not need to pay the workers any extra money besides

their regular salary. The marginal labor cost to produce one more unit is thus zero. We consider a

regulation under which a worker must get an overtime rate that is at least 1.5 times the regular pay

if he or she works more than 8 hours on a weekday, and at least 2 times the regular pay if he or she

works on the weekend. Hence, when the production quantity exceeds q1 but is no greater than q2,

the workers must work overtime on weekdays and receive 1.5 times the regular pay. The marginal

19



labor cost to produce one more unit is thus 1.5l. If the production quantity is greater than q2,

the workers must work on weekends and the marginal labor cost increases to 2l. In summary, the

weekly labor cost that depends on the production quantity is

l(z) =


0 if z ≤ q1,
1.5l(z − q1)+ if q1 < z ≤ q2,
1.5l(q2 − q1)+ + 2l(z − q2)+ if q2 < z ≤ q3,

which is a piecewise linear convex function of the production quantity.

We generate l uniformly in [0.4, 0.8] and q1 uniformly in [1000, 2000]. We set q2 to 1.3q1 and q3

to 1.6q1, respectively. To capture economies of scale in the non-labor production cost, we uniformly

generate two independent random variables βq and βc in [0.5, 1.5] and [0.6, 0.8], respectively. The

non-labor production cost is 1 − l per unit if the production quantity is less than βqq1, and it

decreases to βc(1 − l) if the production quantity exceeds βqq1. This results in a piecewise linear

concave non-labor production cost. Summing up the convex labor cost and concave non-labor cost,

the production cost c(z) is thus a non-convex, non-concave function with four linear pieces, which

is illustrated in Figure 2. The production capacity is 1.6q1.

Figure 2: Variable production costs

We set T = 10 and α = 0.9. We assume that the demand in each period t is identically and

independently distributed and that the support of Dt is set to {500, 1000, 1500, 2000, 2500, 3000}.

To verify whether the performance of heuristic policies is sensitive to demand distribution, we test

three different types of demand distributions and generate 100 instances for each type. We report

the average and worst performance of different policies over these 100 instances.

• The first demand distribution has a randomly generated probability mass function. For any

i = 1, 2, ..., 6,

P (Dt = 500i) =
Ui∑6
i′=1 Ui′

, (7)

where Ui are i.i.d random variables uniformly generated in [0,1].
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• The second demand distribution is a uniform distribution in {500, 1000, ..., 3000}, i.e., P (Dt =

500i) = 1/6 for any i = 1, 2, ..., 6.

• The third demand distribution is a discrete normal distribution. We generate µ uniformly

in [1500, 2000] and σ uniformly in [µ/4, µ/3]. The demand distribution is set to P (Dt =

500) = Φ(750, µ, σ), P (Dt = 500i) = Φ(500i+ 250, µ, σ)− Φ(500i− 250, µ, σ) for i = 2, ..., 5,

and P (Dt = 3000) = 1 − Φ(2750, µ, σ), where Φ(·, µ, σ) denotes the cumulative distribution

function of a normal distribution with a mean of µ and a standard deviation of σ.

For each period t, we choose Ht(yt) = E[h(yt −Dt)
+ + p(yt −Dt)

−], where the unit inventory

holding cost h and the unit shortage cost p are uniformly generated in [0.02, 0.2]. The cost incurred

at the end of the planning horizon is VT+1(xT+1) = pT+1x
−
T+1, where pT+1, the cost to fulfill a

backlogged demand at the end of the planning horizon, is generated uniformly in [1.4, 2.2].

For the purpose of comparison, we also consider a heuristic policy that assumes that the unit

production cost is c(1.6q1)/1.6q1 and the production capacity is 1.6q1 for any period t. That is,

this heuristic linearizes the production cost (OCLA for short). The resulting policy is a capacitated

base-stock policy.

Let V H
t denote the total expected cost from period t to T + 1 under a specific heuristic pol-

icy. As the maximum demand in each period is 3000 and the time horizon is 10 periods, we

restrict the state region on [−3× 104, 3× 104] in the numerical experiments. In particular, we use

supxt∈[−3×104,3×104]

{
V H
t (xt)/Vt(xt)− 1

}
to measure the performance of the corresponding heuris-

tic policy for a problem with T − t+ 1 periods. As T = 10, t = 1 implies that there are 10 periods,

whereas t = 9 implies that there are 2 periods.

Table 2 displays the average and worst performance of different heuristic policies over 100 ran-

domly generated instances for each demand distribution. It can be observed that the performance

of CTGEA approach is always bounded by 1.94%, which implies that its cost is at most 101.94%

of the optimal cost. Its average performance over all the tested instances in Table 2 is 100.02%

of the optimal cost. The worst and average performance of the CTGA approach over all of tested

instances are 103.71% and 100.27% of the optimal cost, respectively. For the OCA approach, the

average performance over all of the tested instances is 109.34%, while the worst-case performance

is around 182.51%. Finally, the OCLA approach is on average 126.56% of the optimal cost, and

the worst case exceeds 218% of the optimal cost.

These results indicate that both the CTGEA and CTGA approaches are close to optimal and

significantly better than the OCA and OCLA approaches. Moreover, as expected, the CTGEA
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Table 2: Performance of three heuristics and base-stock heuristics for general production cost (%)
Distribution by (7) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

CTGEA
Average 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.05 0.09 0
Worst 0.06 0.07 0.08 0.11 0.10 0.15 0.30 0.84 1.94 0

CTGA
Average 0.14 0.16 0.17 0.20 0.22 0.24 0.28 0.38 0.41 0
Worst 0.55 0.59 0.66 0.72 0.95 1.31 1.37 2.09 2.74 0

OCA
Average 8.72 8.47 8.21 8.03 8.11 8.12 8.73 9.17 10.61 14.01
Worst 66.21 65.05 63.10 60.87 58.93 55.26 48.34 46.02 44.17 62.73

OCLA
Average 25.83 26.33 28.10 27.84 28.42 29.11 30.25 30.28 28.29 29.41
Worst 70.26 71.81 73.57 72.35 74.36 78.62 81.37 83.62 81.98 118.13

Uniform distribution t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

CTGEA
Average 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0
Worst 0.03 0.03 0.03 0.05 0.05 0.06 0.06 0.18 0.45 0

CTGA
Average 0.14 0.14 0.15 0.16 0.18 0.20 0.24 0.27 0.21 0
Worst 0.52 0.57 0.59 0.62 0.86 1.03 1.20 1.44 1.57 0

OCA
Average 9.51 9.32 9.27 9.19 9.01 8.82 9.34 9.83 11.75 15.05
Worst 46.17 49.27 51.69 55.94 62.03 63.86 67.15 68.68 67.26 82.51

OCLA
Average 26.08 25.81 25.98 26.57 27.13 28.81 29.10 29.37 28.95 29.21
Worst 74.87 75.24 74.68 75.25 75.89 76.07 76.12 76.58 76.83 95.53

Discrete normal distribution t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

CTGEA
Average 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.06 0.12 0
Worst 0.09 0.13 0.16 0.22 0.27 0.32 0.49 0.78 1.26 0

CTGA
Average 0.29 0.31 0.32 0.34 0.42 0.48 0.53 0.66 0.73 0
Worst 1.38 1.56 1.47 1.51 1.64 1.77 1.74 2.48 3.71 0

OCA
Average 8.37 8.46 8.35 8.29 8.21 8.36 8.49 8.62 9.50 10.19
Worst 67.52 67.21 65.90 64.05 61.24 58.11 55.25 53.03 51.18 54.74

OCLA
Average 21.08 21.51 22.09 22.43 23.89 24.69 26.15 27.27 23.92 23.04
Worst 69.33 70.14 71.07 71.85 70.63 73.91 79.55 72.67 77.35 76.84

approach performs a bit better than the CTGA approach because smoothing by expectation can

make the objective function more convex. Finally, the performance of both the CTGEA and CTGA

approaches is consistent for all three types of distribution, i.e., not sensitive to demand distribution.

4.2 Two-supplier Case

In this subsection, we conduct a set of comprehensive numerical experiments for the two-supplier

case in which the firm faces two suppliers with different fixed costs, linear ordering costs, and

capacities. For supplier one, we assume that the variable cost c1 = 1, capacity Q1 = 1000, and

fixed cost K1 is uniformly generated in [50, 100]. We assume that supplier two has unlimited

capacity and a higher fixed cost, but a lower variable cost c2 = 0.8.

In each period, the firm must determine which supplier to choose and how many units of product

to order from each supplier. To cover different cost structures, we assume that the fixed cost of

supplier two K2 takes the values of 100, 200, 300, 500, 800, and 1000. Figure 3 depicts the ordering

cost structures when K2 = 300 and 500. It can be seen that when K2 = 300, the cost includes a

fixed cost and a variable concave ordering cost. However, when K2 = 500, the cost has two jumps
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that lead to a neither concave nor convex discontinuous cost structure. All of the other parameters

are generated in the same way as those in Section 4.1.
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Figure 3: Ordering Costs when K1 = 100 and K2 = 300 and 500

Table 3: Performance of three heuristics for the two-supplier case (%)
Distribution by (7) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

CTGEA
Average 0.48 0.45 0.52 0.57 0.61 0.64 0.66 0.42 0.30 0
Worst 3.77 4. 12 4.75 4.91 5.16 4.83 5.06 5.38 6.15 0

CTGA
Average 1.20 1.19 1.15 1.17 1.22 1.25 1.20 1.13 0.71 0
Worst 11.39 11.51 11.78 12.05 12.42 11.04 10.36 10.06 8.61 0

OCA
Average 8.84 9.01 8.92 9.16 9.55 10.14 10.38 11.47 12.33 23.57
Worst 47.61 46.32 45.19 43.26 41.43 39.58 36.17 40.22 66.20 89.83

Uniform distribution t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

CTGEA
Average 0.45 0.47 0.48 0.47 0.52 0.55 0.61 0.43 0.29 0
Worst 2.55 2.47 2.61 2.83 3.28 3.16 2.60 3.74 3.26 0

CTGA
Average 1.41 1.39 1.33 1.35 1.37 1.43 1.31 1.24 0.71 0
Worst 9.23 9.35 8.86 9.03 8.71 8.74 8.43 7.51 6.32 0

OCA
Average 9.42 9.51 9.59 9.60 9.82 10.11 10.73 11.02 11.57 21.33
Worst 48.05 47.17 45.81 44.46 42.48 39.13 36.21 31.30 35.10 58.85

Discrete normal distribution t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

CTGEA
Average 0.51 0.52 0.55 0.60 0.66 0.71 0.73 0.58 0.50 0
Worst 3.28 3.48 3.91 4.15 4.36 4.23 3.37 4.82 6.95 0

CTGA
Average 1.21 1.20 1.24 1.25 1.27 1.31 1.30 1.27 0.89 0
Worst 9.78 9.42 9.33 9.58 10.25 10.10 9.92 9.63 8.82 0

OCA
Average 11.26 11.33 11.52 11.84 12.05 12.19 12.73 13.21 13.94 28.49
Worst 56.18 54.90 53.67 52.28 49.36 46.81 41.95 37.23 44.35 73.55

Table 3 presents the average and worst performance of three proposed heuristic policies in tested

instances. It can be seen that the overall average (worst) performance of the CTGEA approach

is within 100.48% (106.95%); that of the CTGA approach is within 101.09% (112.42%); and that

of the OCA approach is 112.15% (189.83%). Overall, the CTGEA approach outperforms both

the CTGA and OCA approaches. Note that the average and worst performance reported in each

entry is not only over 100 randomly generated instances, as in the previous section, but also over

6 different values of the fixed cost of supplier two, K2. Hence, for each period t and demand

distribution, those reported values are the average and worst of 600 instances.

We next illustrate how the performance of the CTGEA and CTGA approaches depends on the
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Table 4: Performance of Algorithms 3 and 4 with respect to K (%)
K-Approximation t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

K=50
CTGEA

Average 0.09 0.09 0.10 0.11 0.12 0.13 0.14 0.08 0.01 0
Worst 0.85 0.87 0.89 0.89 0.94 1.03 1.10 0.74 0.38 0

CTGA
Average 0.28 0.27 0.27 0.26 0.26 0.29 0.32 0.39 0.02 0
Worst 1.05 0.98 0.94 0.92 0.99 1.01 1.09 1.15 0.61 0

K=100 CTGEA
Average 0.18 0.19 0.20 0.23 0.24 0.28 0.33 0.25 0.03 0
Worst 1.29 1.34 1.47 1.55 1.62 1.85 1.58 1.07 0.71 0

CTGA
Average 0.82 0.72 0.73 0.76 0.78 0.81 0.77 1.03 0.11 0
Worst 2.14 2.06 1.93 1.89 2.23 2.37 2.19 2.26 1.30 0

K=150 CTGEA
Average 0.28 0.30 0.33 0.35 0.39 0.41 0.59 0.35 0.06 0
Worst 1.71 1.68 1.83 1.95 2.04 2.17 2.42 1.70 1.05 0

CTGA
Average 1.06 1.04 1.01 0.99 1.18 0.98 1.02 1.21 0.22 0
Worst 3.34 3.28 3.13 3.09 3.02 2.98 3.11 3.27 2.24 0

K=250 CTGEA
Average 0.45 0.48 0.52 0.55 0.68 0.76 0.82 0.41 0.13 0
Worst 2.57 2.68 2.72 3.10 3.36 3.48 2.75 1.85 1.33 0

CTGA
Average 1.51 1.48 1.45 1.41 1.45 1.50 1.58 1.40 0.90 0
Worst 4.83 4.55 4.62 4.66 4.81 5.36 5.25 4.58 3.61 0

K=400 CTGEA
Average 0.92 1.01 1.01 1.06 1.12 1.15 1.09 0.74 0.62 0
Worst 3.58 3.63 4.05 4.66 4.71 4.70 3.92 3.80 3.20 0

CTGA
Average 2.15 2.13 2.11 2.05 2.17 2.27 2.15 1.60 1.35 0
Worst 8.60 8.04 7.56 7.63 8.02 7.94 7.83 7.22 5.83 0

K=500 CTGEA
Average 1.04 1.12 1.15 1.20 1.29 1.33 1.16 1.10 1.35 0
Worst 4.52 4.81 5.20 5.55 5.87 5.48 5.51 6.03 6.95 0

CTGA
Average 1.91 1.88 1.85 1.89 2.10 2.15 1.89 1.62 1.87 0
Worst 11.41 11.96 12.14 12.42 12.33 12.07 10.92 9.66 8.83 0

approximate value K with respect to the ordering cost. For our tested instances, the value of K

happens to be K2
2 . Hence, K takes the values of 50, 100, 150, 250, 400, and 500. As we can see from

Table 4, both the CTGEA and CTGA approaches perform slightly worse when K increases, which

is expected. It should be noted that K = 500 (K2 = 1000) is already a very large value in this

application because the maximal demand is 3000 and the unit ordering costs of the two suppliers are

1 and 0.8, respectively. The overall performance of the two approaches is very impressive, perhaps

because the minimal solutions of two functions may be close to each other even if the maximum

distance K between these two functions is large. Our way of approximating a function by its lower

convex envelope makes this scenario likely to happen.

4.3 Comparison of Approximation Approaches

In this section, we try to provide some explanations for why the CTGA and CTGEA approaches

perform much better than the OCA approach. We make two important observations and establish

one proposition.

Observation 4.1. The heuristic policies of the CTGA and CTGEA approaches are optimal for

the single-period problem, while the heuristic policy of the OCA approach is not optimal.
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Figure 4: Structure of the heuristic policy by OCA approach

This observation indicates that the OCA approach loses to the CTGA and CTGEA approaches

in the beginning because it is not even optimal for the single period problem.

Observation 4.2. The structure of the heuristic policies of the CTGA and CTGEA approaches

illustrated in Figure 1 is more flexible than the structure of the heuristic policy of the OCA approach

illustrated in Figure 4, which makes the heuristic policies of the CTGA and CTGEA approaches

closer to optimal.

The OCA approach leads to a piecewise linear convex cost structure. Bensoussan et al. (1983)

showed that the structure of the inventory control policy is that illustrated in Figure 4, where the

produce-up-to level is a continuously increasing function of the initial inventory level. However, we

know that this property does not hold for the optimal policy. This makes the heuristic policy of

the OCA approach restrictive and hence not perform well. In contrast, Figure 1 shows that the

produce-up-to level of the CTGA and CTGEA approaches can be up and down and even have

jumps. This flexibility can make it closer to the optimal policy. For example, for the inventory

control problems in Porteus(1971, 1972), the optimal policies shared the same structure as that

illustrated in Figure 1.

Observation 4.3. If the production/ordering cost is piecewise linear convex, all three of the heuris-

tic policies of the CTGA, CTGEA, and OCA approaches are optimal.

If the production cost c(z) in (2) is convex, it is easy to show that the cost-to-go function Vt(x)

is convex, which immediately implies that all three of the heuristics are optimal. One may wonder
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what would happen if the production cost is piecewise linear concave. For the stochastic demand

case, it is very difficult to compare their performance. However, under deterministic demand, we

are able to show in the following proposition that the CTGA and CTGEA approaches are always

better than the OCA approach.

Consider a T -period inventory control problem where the demand Dt in any period t is deter-

ministic. We assume that the production cost c(z) is a piecewise linear concave increasing function

for any z ≥ 0. Note that K1 may be strictly positive, implying that it is possible to have a positive

fixed ordering cost. Suppose that a shortage is not allowed and hence xt ≥ 0 for any period t. In

this case, the inventory holding cost in period t and the cost incurred at the end of the planning

horizon are specified by Ht(yt) = h(yt −Dt) for any yt ≥ Dt and VT+1(xT+1) = hT+1xT+1 for any

xT+1 ≥ 0, respectively. Such an inventory control model is referred to as the dynamic lot-sizing

problem with a concave production cost.

Proposition 8. In the dynamic lot-sizing problem with a concave production cost, for any xt ≥ 0

and t ∈ {1, ..., T}, the costs under the CTGA and CTGEA approaches are both equal to V̄t(xt) and

are less than the cost under the OCA approach V̂t(xt), i.e., V̄t(xt) ≤ V̂t(xt).

5 Conclusion

We study an inventory control problem with general piecewise linear production costs. We fully

characterize the optimal policy for the single-period problem and propose several practically imple-

mentable and close-to-optimal heuristic policies for the multi-period problem. The worst-case per-

formance bounds of the heuristic policies are established by applying the concept of K-approximate

convexity. We test these heuristic policies on a set of practical applications that were previously diffi-

cult to solve and observe excellent performance. Overall, numerical experiments show that CTGEA

approach outperforms CTGA and OCA approaches. For a lost-sales model, our CTGEA algorithm

still works because we can always get a convex approximation of E[Rt((yt−1−Dt−1)+)]. However, the

worst-case performance bound in Theorem 3 does not hold any more because E[Rt((yt−1−Dt−1)+)]

may not be K-approximate convex even if Rt(x) is K-approximate convex.

Given the generality of the cost structure, our model may find many other applications in real-

world problems. Specifically, our method can be applied to solve dynamic programming problems

where the cost-to-go function is not convex, whereas convexity is necessary to have a well-structured

policy to implement in practice. These problems include a finite horizon joint pricing and inventory

control problem with nonlinear ordering cost and a stochastic cash balance problem with fixed costs,
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among others.
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A Online Appendix

Proof of Proposition 1. The K-approximate convexity of f implies that there exists a convex

function g : S 7→ R such that ‖f − g‖∞ ≤ K. Define h : S 7→ R such that h(x) = g(x) − K

for any x ∈ S. Note that ‖f − g‖∞ ≤ K implies g(x) ∈ [f(x) − K, f(x) + K] and hence h(x) ∈

[f(x)− 2K, f(x)] for any x ∈ S. As h is a convex function, the definition of convex envelope yields

f(x) ≥ f∗(x) ≥ h(x) ≥ f(x)− 2K for any x ∈ S. Therefore, we have ‖f − f∗‖∞ ≤ 2K.

For any x ∈ S such that f(x)− f∗(x) ≤ 1
2‖f − f

∗‖∞, we have 0 ≤ f(x)− f∗(x) ≤ 1
2‖f − f

∗‖∞
and hence

f(x)− f̄(x) = f(x)− f∗(x)− 1

2
‖f − f∗‖∞ ∈

[
−1

2
‖f − f∗‖∞, 0

]
.

Similarly, for any x ∈ S such that f(x) − f∗(x) > 1
2‖f − f∗‖∞, we can obtain 1

2‖f − f∗‖∞ <

f(x)− f∗(x) ≤ ‖f − f∗‖∞ and

f(x)− f̄(x) = f(x)− f∗(x)− 1

2
‖f − f∗‖∞ ∈

(
0,

1

2
‖f − f∗‖∞

]
.

Consequently, ‖f − f̄‖∞ ≤ 1
2‖f − f

∗‖∞ ≤ K.

Proof of Proposition 2. We first show that if W (x) is a K-approximate convex function whose

convex envelope is w(x), then ∂−w(x∗) ≥ b0 for any x∗ ≤ x1 and ∂+w(x∗) ≤ bm−1 for any x∗ ≥ bm−1,

where ∂−w(x) and ∂+w(x) denote the left and right derivatives of w(x) at x, respectively.

As w(x) is a convex function of x, ∂−w(x) and ∂+w(x) are well-defined for any x ∈ (−∞,+∞).

Assume for contradiction that ∂−w(x∗) < b0 for some x∗ ≤ x1. For any x < x∗ ≤ x1, we have

W (x) = limx′↑x∗W (x′)+b0(x−x∗) by the definition of W (x). Also, w(x) ≥ w(x∗)+∂−w(x∗)·(x−x∗)

by the convexity of w(x). Therefore,

w(x)−W (x) ≥ w(x∗)− lim
x′↑x∗

W (x′) +
(
∂−w(x∗)− b0

)
(x− x∗)

= lim
x′↑x∗

(
w(x′)−W (x′)

)
+
(
∂−w(x∗)− b0

)
(x− x∗) ≥ −2K +

(
∂−w(x∗)− b0

)
(x− x∗),

where the first equality holds because the convexity of w(x) yields its continuity at x∗ and the second

inequality follows from ‖W −w‖∞ ≤ 2K shown in Proposition 1. It follows that w(x)−W (x) > 0

for any x < x∗ − 2K
b0−∂−w(x∗) ≤ x∗, which contradicts the fact that w(x) is the convex envelope of

W (x).

Similarly, we can also show that ∂+w(x∗) ≤ bm−1 for any x∗ ≥ xm−1. Furthermore, because

the convexity of w(x) yields ∂−w(x1) ≤ ∂+w(xm−1), ∂−w(x1) ≥ b0 and ∂+w(xm−1) ≤ bm−1 imply

b0 ≤ bm−1, which will be used in the subsequent proof.
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Next, we prove that Algorithm 1 returns a well-defined convex function W̄ (x) in O(m). Suppose

that m > 2. Then we have x′1 = x1 < xm−1 = xm′ in Step 2, which implies m′ ≥ 2. Consequently,

b′j for any j ∈ {1, ...,m′− 1}, l, and u in Step 3 are all well-defined. In this case, we can show l ≤ u

as follows.

• Suppose that b′1 ≥ b0, which yields l = 1. As u ∈ {1, ...,m′}, it is straightforward that l ≤ u.

• Suppose that b′1 < b0. Recall that b0 ≤ bm−1. The definition of l yields b′l−1 < b0 ≤ bm−1.

Note that b′j , where j ∈ {1, ...,m′ − 1}, corresponds to the slope of piece j of the lower hull

of P , which is a piecewise linear convex function. Therefore, b′j is increasing in j, and hence

b′j ≤ b′l−1 ≤ bm−1 for any j ≤ l− 1. If l = m′, then u = m′ = l. Otherwise, the definition of u

immediately implies u > l − 1, i.e., l ≤ u.

Also note that l = u = 1 when m = 2. Therefore, l and u in Step 3 always satisfy l ≤ u. Consider

the function W ∗(x) defined in Step 3.

• If l = u, then

W ∗(x) =

{
y′l + b0(x− x′l), for any x ≤ x′l,
y′l + bm−1(x− x′l), for any x > x′l,

which is a piecewise linear continuous and convex function as b0 ≤ bm−1.

• Suppose that l < u. l, u ∈ {1, ...,m′} implies l < m′ and u > 1, i.e., 1 ≤ l ≤ u− 1 ≤ m′ − 1.

The definitions of b′j for all j ∈ {1, ...,m′} imply that W ∗(x) is a piecewise linear continuous

function. According to the definitions of l and u, we obtain b′l ≥ b0 and b′u−1 ≤ bm−1. Recall

that b0 ≤ bm−1 and b′j is increasing in j. It follows that W ∗(x) is convex in x.

As a result, W ∗(x) in Step 3 and hence W̄ (x) in Step 4 are both well-defined piecewise linear

continuous and convex functions. Furthermore, because the points in P are sorted according to

xj , the monotone chain algorithm obtains the lower hull of P in O(m) (c.f. Andrew 1979). It is

straightforward that the computational complexity of Algorithm 1 is also O(m).

Finally, we show that ‖W − W̄‖∞ ≤ K through the following three parts.

Part 1 shows that W ∗(x) ≥ w(x) for any x ∈ (−∞,+∞), where w(x) is the convex envelope of

W (x). The convexity of w(x) implies that w(x) is continuous at any x ∈ (−∞,+∞). Combining

with w(x) ≤ W (x) for any x ∈ (−∞,+∞), we have w(xj) ≤ W (xj), w(xj) = limx↑xj w(x) ≤

limx↑xj W (x), and w(xj) = limx↓xj w(x) ≤ limx↓xj W (x) for any j ∈ {1, ...,m − 1}. The definition

of yj in Step 1 yields w(xj) ≤ yj for any j ∈ {1, ...,m− 1}.
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Note that the lower hull of P can be represented by the piecewise linear continuous and convex

function LP (x) with the domain [x1, xm−1] = [x′1, x
′
m′ ], where

LP (x) =

{
y′1, if x = x′1,

y′j + b′j(x− x′j), for any x ∈ (x′j , x
′
j+1], j ∈ {1, ...,m′ − 1}.

Let the function UP (x) with the domain [x1, xm−1] be the upper hull of P , i.e., the part of P ’s convex

hull visible from above, which runs from the leftmost point to the rightmost point in clockwise order.

Then the convex hull of P can be represented as

HP =
{

(x, y) : x ∈ [x1, xm−1], y ∈ [LP (x), UP (x)]
}
. (8)

Obviously, UP (x) is a concave function of x ∈ [x1, xm−1]. As P ⊆ HP , we have yj ≤ UP (xj) for

any j ∈ {1, ...,m − 1}. Recall that w(x) is convex in x and w(xj) ≤ yj for any j ∈ {1, ...,m − 1}.

Therefore, we can define the following convex set

H̃P =
{

(x, y) : x ∈ [x1, xm−1], y ∈ [w(x), UP (x)]
}
.

such that P ⊆ H̃P . Note that the convex hull HP of P is the minimum convex set containing

all the points in P . It is straightforward that HP ⊆ H̃P , which, by (8) and the definition of H̃P ,

immediately yields LP (x) ≥ w(x) for any x ∈ [x1, xm−1]. Applying this property, we can show that

W ∗(x) ≥ w(x) for any x ∈ (−∞,+∞) by considering the following three cases.

• Consider any x ∈ [x′l, x
′
u] ⊆ [x′1, x

′
m′ ] = [x1, xm−1]. According to the definition of W ∗(x) in

Step 4, it is straightforward that W ∗(x) = LP (x) ≥ w(x).

• For any x ≤ x′l, we have W ∗(x) = LP (x′l)+b0(x−x′l). Recall that ∂−w(x) ≥ b0 for any x ≤ x1.

According to the convexity of w(x), ∂−w(x) is increasing in x, which implies ∂−w(x) ≥ b0 for

any x ∈ (−∞,+∞). Consequently, W ∗(x)−w(x) is decreasing in x for any x ≤ x′l. Applying

W ∗(x′l) = LP (x′l) ≥ w(x′l) shown in the previous case, we have W ∗(x) ≥ w(x) for any x ≤ x′l.

• Similar to the case with x ≤ x′l, we can show that W ∗(x) ≥ w(x) for any x ≥ x′u.

Part 2 shows that W ∗(x) ≤ W (x) for any x ∈ (−∞,+∞). The following two cases prove

LP (x) ≤W (x) for any x ∈ [x1, xm−1].

• For any j ∈ {1, ...,m− 1}, the definition of yj implies yj ≤W (xj). As HP is the convex hull

of P , we have (xj , yj) ∈ HP and so (8) yields LP (xj) ≤ yj ≤W (xj).
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• Consider any x ∈ (xj , xj+1) where j ∈ {1, ...,m − 2}, i.e., x = λxj + (1 − λ)xj+1 for some

λ ∈ (0, 1). Then

W (x) = λ lim
x′↓xj

W (x′) + (1− λ) lim
x′↑xj+1

W (x′) ≥ λyj + (1− λ)yj+1.

Note that (xj , yj), (xj+1, yj+1) ∈ HP andHP is a convex set. We obtain (x, λyj+(1−λ)yj+1) ∈

HP . Again, (8) shows that LP (x) ≤ λyj + (1− λ)yj+1 ≤W (x).

Now consider W ∗(x) and LP (x) for any x ∈ [x1, xm−1]. Note that W ∗(x) = LP (x) for any x ∈

[x′l, x
′
u] ⊆ [x′1, x

′
m′ ] = [x1, xm−1]. If l > 1, the definition of l yields b′j < b0 for any j ∈ {1, ..., l − 1}.

Recall that both W ∗(x) and LP (x) are continuous piecewise linear functions, whose slopes in the

interval [x′j , x
′
j+1] are b0 and b′j respectively for any j ∈ {1, ..., l − 1}. As W ∗(x′l) = LP (x′l) and

b′j < b0, we have W ∗(x) ≤ LP (x) for any x ∈ [x′1, x
′
l] = [x1, x

′
l]. Symmetrically, it can be shown

that W ∗(x) ≤ LP (x) for any x ∈ [x′u, x
′
m′ ] = [x′u, xm−1]. Combining with LP (x) ≤ W (x) for any

x ∈ [x1, xm−1], we obtain W ∗(x) ≤ LP (x) ≤W (x) for any x ∈ [x1, xm−1].

For any x < x1, we have W (x) = limx′↑x1 W (x′) + b0(x− x1) and

W ∗(x) = W ∗(x1) + b0(x− x1) ≤ LP (x1) + b0(x− x1) = y1 + b0(x− x1),

where the second equality is obtained because LP (x1) = LP (x′1) = y′1 = y1. The definition of y1

yields y1 ≤ limx′↑x1 W (x′), and hence W ∗(x) ≤W (x) for any x < x1. Similarly, we can prove that

W ∗(x) ≤W (x) for any x > xm−1, which completes the proof of Part 2.

Part 3 shows that ‖W − W̄‖∞ ≤ K. According Parts 1 and 2, we have w(x) ≤W ∗(x) ≤W (x)

for any x ∈ (−∞,+∞). Recall that W ∗(x) is convex in x and w(x) is the convex envelope of W (x).

It is straightforward that w(x) = W ∗(x), i.e., W ∗(x) is the convex envelope of W (x). Note that

W ∗(x) is a piecewise linear function whose breakpoints are a subset of those of W (x). Consequently,

the distance in `∞ norm between W (x) and W ∗(x) is measured by

max

{
max

{
W (xj), lim

x↑xj
W (x), lim

x↓xj
W (x)

}
−W ∗(xj) : j ∈ {1, ...,m− 1}

}
.

Proposition 1 immediately implies ‖W − W̄‖∞ ≤ K.

The following lemma (given in Lu et al. 2016) is useful for proving Proposition 3.

Lemma 2. For any f, g : S 7→ R, if ‖f − g‖∞ ≤ K, then

(a) |minx∈X f(x)−minx∈X g(x)| ≤ K for any X ⊆ S;

(b) g(xf )−minx∈X g(x) ≤ 2K for any X ⊆ S, where xf ∈ arg minx∈X f(x).
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Proof of Proposition 3. As c is K-approximate convex, there exists a convex function c̄ such

that ‖c − c̄‖∞ ≤ K. Define ḡ(x) = miny≥x{c̄(y − x) + f(y)}. For any x1, x2 ∈ R, we define

y∗i ∈ miny≥x{c̄(y − xi) + f(y)} for i = 1, 2. Then for any λ ∈ [0, 1],

ḡ(λx1 + (1− λ)x2) ≤ c̄(λy∗1 + (1− λ)y∗2 − (λx1 + (1− λ)x2)) + f(λy∗1 + (1− λ)y∗2)

≤ λc̄(y∗1 − x1) + (1− λ)c̄(y∗2 − x2) + λf(y∗1) + (1− λ)f(y∗2)

= λḡ(x1) + (1− λ)ḡ(x2),

where the first inequality follows from λy∗1 + (1−λ)y∗2 ≥ λx1 + (1−λ)x2, and the second inequality

is yielded by the convexity of c̄ and f . Hence, ḡ is convex.

For any fixed x, ‖c− c̄‖∞ ≤ K yields |c(y−x)+f(y)− c̄(y−x)−f(y)| = |c(y−x)− c̄(y−x)| ≤ K

for any y ≥ x. Applying Lemma 2 (a), we have |miny≥x{c(y−x)+f(y)}−miny≥x{c(y−x)+f̄(y)}| =

|g(x)−ḡ(x)| ≤ K. As x is arbitrary, we have ‖g−ḡ‖∞ ≤ K. Because ḡ is convex, g is K-approximate

convex.

Proof of Proposition 4. Let J(x, z) = c(z)+Ht(x+z). Then z∗(x) = min{arg minz≥0{J(x, z)}}.

As Ht(x) is a convex function, J(x, z) is supermodular in x and z. As the constraint is independent

of x, we have by Theorem 8.1 in Porteus (2002) that z∗(x) is decreasing in x.

To prove Proposition 5, we first show that x̂i defined in Step 2 of Algorithm 2 satisfies the

following inequality.

Lemma 3. x̂i+1 ≤ x̂i ≤ max{x̂i+1, S
i − qi−1} for any i ∈ {1, ..., n}.

Proof of Lemma 3. Applying the convexity of Ht(y), it is straightforward that f i(x) defined in

Step 1 of Algorithm 2 satisfies

f i(x) = min
z∈[qi−1,qi]

{Ki + ciz +Ht(x+ z)} for all i ∈ {1, ..., n}. (9)

For any x ≥ Si − qi−1, we have

f i(x) = Ki + ciqi−1 +Ht(x+ qi−1) ≥ Ki−1 + ci−1qi−1 +Ht(x+ qi−1) ≥ f i−1(x),

where the two inequalities follows from the monotonicity of c(z) and (9), respectively. The defini-

tions of x̄i,i−1 and x̂i imply

x̂i ≤ x̄i,i−1 = inf{x ≥ x̂i+1 : f i−1(x) ≤ f i(x)} ≤ max{x̂i+1, S
i − qi−1}.

In addition, x̂i = min{x̄i,0, x̄i,1, ..., x̄i,i−1} ≥ x̂i+1 as x̄i,j ≥ x̂i+1 for all j ∈ {0, 1, ..., i − 1} by

definition.
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Proof of Proposition 5. According to the convexity of Ht(y), for any i ∈ {1, ..., n}, f i(x) in

Step 1 of Algorithm 2 satisfies (9). Recall that c(z) = Ki + ciz for any z ∈ (qi−1, qi] and c(qi−1) ≤

Ki + ciqi−1. The single-period problem (3) is equivalent to

V (x) = min
i∈{0,1,...,n}

{f i(x)} and z∗(x) = min
i∈{0,1,...,n}

{zi(x) : V (x) = f i(x)}, (10)

where z0(x) = 0 for any x and, due to the convexity of Ht(y),

zi(x) = min

{
arg min

z∈[qi−1,qi]
{Ki + ciz +Ht(x+ z)}

}
=


qi, if x < Si − qi,
Si − x, if Si − qi ≤ x < Si − qi−1,

qi−1, if x ≥ Si − qi−1,

(11)

for any i ∈ {1, ..., n}. Also note that f i(x), i ∈ {0, 1, ..., n}, is continuous in (−∞,∞) because

Ht(x) is convex and so continuous in (−∞,∞).

Consider x̂i, i ∈ {0, 1, ..., n + 1}, defined in Step 2. We would show by induction on i that

z∗(x) ≤ qi for all x ∈ [x̂i+1,∞) \ {−∞} and i ∈ {0, 1, ..., n}. As qn = ∞, this is trivially true

when i = n. Now consider any i ∈ {0, 1, ..., n − 1} and suppose that z∗(x) ≤ qi+1 for all x ∈

[x̂i+2,∞) \ {−∞}. As x̂i+1 ≥ x̂i+2, for all x ∈ [x̂i+1,∞) \ {−∞}, we have z∗(x) ≤ qi+1 and, by

(10),

V (x) = min
j∈{0,1,...,i+1}

{f j(x)} and z∗(x) = min
j∈{0,1,...,i+1}

{zj(x) : V (x) = f j(x)}.

Assume for contradiction that z∗(u) ∈ (qi, qi+1] for some u ∈ [x̂i+1,∞) \ {−∞}. According to

Proposition 4, for all x ∈ [x̂i+1, u] \ {−∞}, z∗(x) ∈ (qi, qi+1] and hence z∗(x) = zi+1(x) > qi ≥

qj ≥ zj(x) for all j ∈ {0, 1, ..., i}. Therefore, f j(x) > f i+1(x) for any j ∈ {0, 1, ..., i} and x ∈

[x̂i+1, u] \ {−∞}. Consider the following cases.

• Suppose that x̂i+1 > −∞. According to the definition of x̂i+1, there exists some j∗ ∈

{0, 1, ..., i} such that x̂i+1 = x̄i+1,j∗ = inf{x ≥ x̂i+2 : f j
∗
(x) ≤ f i+1(x)} > −∞. As f j

∗
(x)

and f i+1(x) are both continuous functions, f j
∗
(x̂i+1) ≤ f i+1(x̂i+1), which contradicts f j(x) >

f i+1(x) for any j = 0, 1, ..., i and x ∈ [x̂i+1, u] \ {−∞} = [x̂i+1, u].

• Suppose that x̂i+1 = −∞, which implies x̂i+2 = −∞ as x̂i+2 ≤ x̂i+1. Similarly, there exists

some j∗ ∈ {0, 1, ..., i} such that x̂i+1 = x̄i+1,j∗ = inf{x : f j
∗
(x) ≤ f i+1(x)} = −∞. Recall

that f j
∗
(x) > f i+1(x) for any x ∈ [x̂i+1, u] \ {−∞} = (−∞, u]. We have inf{x : f j

∗
(x) ≤

f i+1(x)} ≥ u > −∞, which results in a contradiction.

As a result, we conclude that for any i ∈ {0, 1, ..., n}, z∗(x) ≤ qi for all x ∈ [x̂i+1,∞) \ {−∞}.
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Next, we would like to show that

V (x) = f i(x) and z∗(x) = zi(x) for any x ∈ [x̂i+1, x̂i) \ {−∞} and i ∈ {0, 1, ..., n}. (12)

Note that z∗(x) ≤ qi for any x ∈ [x̂i+1, x̂i) \ {−∞} ⊆ [x̂i+1,∞) \ {−∞}, implying

V (x) = min
j=0,1,...,i

{f j(x)} and z∗(x) = min
j=0,1,...,i

{zj(x) : V (x) = f j(x)}.

(12) is trivially true when i = 0, which yields V (x) and z∗(x) for x ∈ [x̂1, x̂0) \ {−∞} = [x̂1,∞) \

{−∞} obtained in Step 3 of Algorithm 2.

Consider any i ∈ {1, ..., n}. For any j ∈ {0, 1, ..., i − 1}, according to the definition of x̂i,

x ∈ [x̂i+1, x̂i) \ {−∞} yields x < x̄i,j = inf{x ≥ x̂i+1 : f j(x) ≤ f i(x)} and hence f j(x) > f i(x),

which implies (12). According to Lemma 3, for any x ∈ [x̂i+1, x̂i)\{−∞} and i ∈ {1, ..., n}, we have

x̂i+1 ≤ x < x̂i ≤ max{x̂i+1, S
i−qi−1} = Si−qi−1. To see why max{x̂i+1, S

i−qi−1} = Si−qi−1, note

that max{x̂i+1, S
i− qi−1} = x̂i+1 would result in the contradiction that x̂i+1 < x̂i+1. Furthermore,

we have qn =∞, implying that Sn − qn = −∞ = x̂n+1. Combining with the definition of zi(x) in

(11), it is straightforward to show than V (x) and z∗(x) for x ∈ [x̂i+1, x̂i) \ {−∞} and i ∈ {1, ..., n}

can be computed in Step 3 of Algorithm 2.

To see the computational complexity of Algorithm 2, note that f i(x) is also piecewise linear

function with O(m) number of pieces. Steps 1 and 3 can be both completed in O(mn). Step 2

requires O(mn2) operations as x̄i,j for any i, j can be computed in O(m).

Proof of Theorem 1. According to Step 3 of Algorithm 2, z∗(x) is computed as follows.

• For any x ∈ (−∞, x̂n), z∗(x) = Sn−x. Note that −∞ = x̂n+1 < x < x̂n. According to Lemma

3, x̂n ≤ max{x̂n+1, S
n− qn−1}. If max{x̂n+1, S

n− qn−1} = x̂n+1, we obtain the contradiction

x̂n+1 < x < x̂n ≤ x̂n+1. Thus, max{x̂n+1, S
n − qn−1} = Sn − qn−1 and x < x̂n ≤ Sn − qn−1,

implying z∗(x) = Sn − x > qn−1 > 0. Also note that z∗(x) ≤ qn =∞.

• For any x ∈ [x̂i+1,min{x̂i,max{x̂i+1, S
i − qi}}) where i ∈ {1, ..., n− 1}, z∗(x) = qi > 0.

• For any x ∈ [min{x̂i,max{x̂i+1, S
i − qi}}, x̂i) where i ∈ {1, ..., n − 1}, z∗(x) = Si − x.

Applying Lemma 3 and an argument similar to that in the first case, we have Si − qi ≤

max{x̂i+1, S
i−qi} = min{x̂i,max{x̂i+1, S

i−qi}} ≤ x < x̂i ≤ max{x̂i+1, S
i−qi−1} = Si−qi−1.

Thus, z∗(x) = Si − x ∈ (qi−1, qi] ⊆ (0,∞).

• For any x ∈ [x̂1,∞), z∗(x) = 0.
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Note that −∞ = x̂n+1 ≤ x̂n ≤ · · · ≤ x̂1 ≤ x̂0 = ∞. The result follows immediately from the

definitions of a0, a1, ..., al and s = al = x̂1.

Proof of Proposition 6. Let v = sup{x : z∗(x) ≥ q} ≤ s. Proposition 4 implies that z∗(x) ≥ q

for any x < v and z∗(x) < q for any x ∈ (v, s). According to Theorem 1, z∗(x) is right continuous.

Therefore, we have z∗(v) ≤ q. In other words, y∗(x) ≥ x+ q for any x ∈ (−∞, v) and x < y∗(x) ≤

x+ q for any x ∈ [v, s).

For any x ∈ (−∞, v), as y∗(x) ≥ x+ q, y∗(x) should be the solution of the following problem:

y∗(x) = min

{
arg min

y≥x+q
{c(y − x) +Ht(y)}

}
.

The convexity of c(z) in [q,∞) implies that the function c(y− x) +Ht(y) is a submodular function

of x and y defined on the lattice {(x, y) : y ≥ x + q}. The feasible decision set is ascending in x.

By Theorem 8.1 in Porteus (2002), we have that y∗(x) is increasing for any x ∈ (−∞, v).

For any z ∈ (0, q), let c′(z) denote the left derivative of c(z) at z. Define K(z) such that

c(z) = K(z)+c′(z)z. According to the concavity of c(z) ∈ [0, q], it is straightforward that K(z) ≥ 0

and c(z̃) ≤ K(z) + c′(z)z̃ for any z̃ ∈ [0, q]. In addition, for any z ∈ (0, q), define

S(z) = inf

{
arg inf

y∈(−∞,+∞)
{c′(z)y +Ht(y)}

}
.

First, we show that S(z∗(x)) > x for any x ∈ (v, s). Recall that z∗(x) ∈ (0, q) for any x ∈ (v, s).

Assume for contradiction that S(z∗(x)) ≤ x. Because c′(z∗(x))y +Ht(y) is a convex function, the

definition of S(z∗(x)) implies that c′(z∗(x))x + Ht(x) ≤ c′(z∗(x))y∗(x) + Ht(y
∗(x)) as S(z∗(x)) ≤

x < y∗(x). Therefore,

Ht(x) ≤ c′(z∗(x))y∗(x) +Ht(y
∗(x))− c′(z∗(x))x

≤ K(z∗(x)) + c′(z∗(x))y∗(x) +Ht(y
∗(x))− c′(z∗(x))x

= K(z∗(x)) + c′(z∗(x))(y∗(x)− x) +Ht(y
∗(x))

= c(y∗(x)− x) +Ht(y
∗(x)).

where the second inequality follows from K(z∗(x)) ≥ 0 and the last equality is yielded by c(z) =

K(z)+c′(z)z and z∗(x) = y∗(x)−x. This inequality implies that it is better not to order at x, which

contradicts the definition of y∗(x) as the minimum optimal order-up-to level and the property that

y∗(x) > x for any x < s.

Next, we show that S(z∗(x)) < x+q for any x ∈ (v, s). Again, we assume for contradiction that

S(z∗(x)) ≥ x + q. According to the convexity of c′(z∗(x))y + Ht(y), as S(z∗(x)) is the minimum

global minimizer of this function, the function is strictly decreasing in (−∞, S(z∗(x))], and hence
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c′(z∗(x))(x+ q) +Ht(x+ q) < c′(z∗(x))y∗(x) +Ht(y
∗(x)) as S(z∗(x)) ≥ x+ q > y∗(x). Therefore,

applying the concavity of c(q) in [0, q], we obtain

c(q) +Ht(x+ q) ≤ K(z∗(x)) + c′(z∗(x))q +Ht(x+ q)

= K(z∗(x)) + c′(z∗(x))(x+ q) +Ht(x+ q)− c′(z∗(x))x

< K(z∗(x)) + c′(z∗(x))y∗(x) +Ht(y
∗(x))− c′(z∗(x))x

= c(y∗(x)− x) +Ht(y
∗(x)),

which contradicts that the optimal order quantity is z∗(x) < q.

Assume for contradiction that y∗(x) < S(z∗(x)). Since S(z∗(x)) ∈ (x, x + q), the concavity of

c(z) in [0, q] yields

c(S(z∗(x))− x) +Ht(S(z∗(x))) ≤ K(z∗(x)) + c′(z∗(x))(S(z∗(x))− x) +Ht(S(z∗(x)))

= K(z∗(x)) + c′(z∗(x))S(z∗(x)) +Ht(S(z∗(x)))− c′(z∗(x))x

< K(z∗(x)) + c′(z∗(x))y∗(x) +Ht(y
∗(x))− c′(z∗(x))x

= c(y∗(x)− x) +Ht(y
∗(x)),

where the second inequality follows from the definition of S(z∗(x)). Similarly, if y∗(x) > S(z∗(x))

we can show that c(S(z∗(x))− x) +Ht(S(z∗(x))) ≤ c(y∗(x)− x) +Ht(y
∗(x)). As a result, we have

y∗(x) = S(z∗(x)).

Note that c′(z) is decreasing for z ∈ (0, q), and hence it is straightforward that S(z) is increasing

for z ∈ (0, q). As z∗(x) ∈ (0, q) is decreasing for x ∈ (v, s), the property that y∗(x) = S(z∗(x))

yields that y∗(x) is decreasing for x ∈ (v, s). Also note that y∗(x) is right continuous by Theorem

1. Therefore, y∗(x) is decreasing for x ∈ [v, s).

Proof of Lemma 1. (i) From Definition 3.1, we know that s1 is the minimal number that satisfies

c1x+Ht(x) ≤ K1 +c1S
1 +Ht(S

1). Hence, the relationship of S1−q1 < s1 implies that S1−q1 does

not satisfy the above equality. That is, we have c1(S1 − q1) +Ht(S
1 − q1) > K1 + c1S

1 +Ht(S
1),

i.e., Ht(S
1 − q1)−Ht(S

1) > K1 + c1q1, which implies that s2 ≥ S1 − q1 by the definition of s2.

(ii) It follows from the definition of s1 that

c1s
1 +Ht(s

1) ≤ K1 + c1S
1 +Ht(S

1). (13)

As S1 is a minimizer of c1y +Ht(y), we have

c1S
1 +Ht(S

1) ≤ c1(s1 + q1) +Ht(s
1 + q1). (14)
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Therefore, we have that

Ht(s
1)−Ht(s

1 + q1) ≤ Ht(s
1)− c1S

1 −Ht(S
1) + c1(s1 + q1)

≤ K1 + c1S
1 +Ht(S

1)− c1S
1 −Ht(S

1) + c1q1

= K1 + c1q1, (15)

where the first inequality follows from (14), and the second one follows from (13).

By the definition of s2, the inequality (15) implies s2 ≤ s1.

(iii) As c(z) increases with z, we have K2 + c2q1 ≥ K1 + c1q1. Therefore, we can obtain

c2(S2 − q1) +Ht(S
2) ≤ K2 + c2S

2 − c1q1 −K1 +Ht(S
2). By the definition of s3, s3 ≤ S2 − q1.

(iv) As S2 − q1 > s2, it follows by the definition of s2 that Ht(S
2 − q1) −Ht(S

2) ≤ K1 + c1q1

which implies that c2(S2 − q1) + Ht(S
2 − q1) ≤ K1 + c1q1 + Ht(S

2) + c2(S2 − q1) ≤ K2 + c2q1 +

Ht(S
2) + c2(S2− q1) = K2 + c2S

2 +Ht(S
2), where the second inequality follows from the fact that

K2 + c2q1 ≥ K1 + c1q1. Thus, s4 ≤ S2 − q1 by the definition of s4.

Define Π1(x) = minx+q1≥y≥xK1 ∗1{y>x}+c1(y−x)+Ht(y) and Π2(x) = miny≥x+q1 K2 +c2(y−

x) +Ht(y). We first note that when n = 2, the optimization problem (3) becomes

min {Π1(x),Π2(x)} . (16)

The following lemma presents the expressions of Π1(x) and Π2(x).

Lemma 4. (i) If S1 − q1 < s1, then

Π1(x) =


Ht(x), if x ≥ s1,
K1 + c1(S1 − x) +Ht(S

1) if S1 − q1 ≤ x < s1.
K1 + c1q1 +Ht(x+ q1) if x < S1 − q1.

(17)

If S1 − q1 ≥ s1, then

Π1(x) =

{
Ht(x), if x ≥ s2,
K1 + c1q1 +Ht(x+ q1) if x < s2.

(18)

(ii) Π2(x) can be expressed as:

Π2(x) =

{
K2 + c2q1 +Ht(x+ q1), if x ≥ S2 − q1,
K2 + c2(S2 − x) +Ht(S

2) if x < S2 − q1.
(19)

(iii) For any x > S2 − q1, Π1(x) ≤ Π2(x).
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Proof. (i) When x ≥ s1, for any y > x, we have

K1 + c1y +Ht(y) ≥ K1 + c1S
1 +Ht(S

1)

≥ c1x+Ht(x), (20)

where the first inequality follows from the definition of S1 and the second from the definition of s1

and x ≥ s1.

Equation (20) implies that when x ≥ s1, it is optimal to order nothing. We next first consider

the case of S1−q1 < s1. When S1−q1 ≤ x < s1, it is clear that ordering up-to S1 is optimal. When

x < S1 − q1, it is worthy noting that if placing an order, then it should order exactly q1. Thus, we

only need to compare two decisions: ordering nothing or exactly q1. Lemma 1 (i) indicates that

s2 ≥ S1 − q1. Therefore, by the definition of s2, for any x < S1 − q1 ≤ s2, ordering exactly q1 is

better.

We now consider the case of S1 − q1 ≥ s1. Clearly, for any x < s1, it is optimal to either order

nothing or exactly q1. Note that Lemma 1 (ii) indicates that s2 ≤ s1. When s2 ≤ x < s1, again by

the definition of s2, it is optimal not to order. Similarly, when x < s2, it is optimal to order exactly

q1.

(ii) The results immediately follow from the convexity of Ht(x).

(iii) As c(z) increases with z, we have K2 + c2q1 ≥ K1 + c1q1. Therefore, for any x > S2 − q1,

Π2(x) = K2 + c2q1 +Ht(x+ q1) ≥ K1 + c1q1 +Ht(x+ q1) ≥ Π1(x), where the first equality follows

from (ii), and the second inequality follows from the definition of Π1(x).

Proof of Theorem 2. The policy structure in Table 1 is equivalent to the following description.

(i) If S1 − q1 < s1 and S2 ≤ S1, it is optimal to

(a) order nothing when x ≥ s1;

(b) order up-to S1 when S1 − q1 ≤ x < s1;

(c) order exactly q1 when s3 ≤ x < S1q1;

(d) order up-to S2 when x < s3;

(ii) If S1 − q1 < s1 and s1 + q1 ≥ S2 > S1, it is optimal to

(a) order nothing when x ≥ s1;

(b) order up-to S1 when min{max{s5, S1 − q1}, S2 − q1} ≤ x < s1;

40



(c) order up-to S2 when S1 − q1 ≤ x < min{max{s5, S1 − q1}, S2 − q1};

(d) order exactly q1 when min{s3, S1 − q1} ≤ x < S1 − q1;

(e) order up-to S2 when x < min{s3, S1 − q1};

(iii) If S1 − q1 < s1 and S2 > s1 + q1, it is optimal to

(a) order nothing when x ≥ min{S2 − q1,max{s4, s1}};

(b) order up-to S2 when s1 ≤ x < min{S2 − q1,max{s4, s1}};

(c) order up-to S1 when min{s1,max{s5, S1 − q1}} ≤ x < s1;

(d) order up-to S2 when S1 − q1 ≤ x < min{s1,max{s5, S1 − q1}};

(e) order exactly q1 when min{s3, S1 − q1} ≤ x < S1 − q1;

(f) order up-to S2 when x < min{s3, S1 − q1};

(iv) If S1 − q1 ≥ s1 and S2 − q1 ≤ s2, it is optimal to

(a) order nothing when x ≥ s2;

(b) order exactly q1 when s3 ≤ x < s2;

(c) order up-to S2 when x < s3;

(v) If S1 − q1 ≥ s1 and S2 − q1 > s2, it is optimal to

(a) order nothing when x ≥ max{s4, s2};

(b) order up-to S2 when s2 ≤ x < max{s4, s2}

(c) order exactly q1 when min{s3, s2} ≤ x < s2

(d) order up-to S2 when x < min{s3, s2}.

We now prove the results from (i) to (v).

(i) We prove the cases (a)-(d).

(a) For any x ≥ s1 > S1 − q1 ≥ S2 − q1, Lemma 4 (iii) implies that we only need to optimize

Π1(x). Lemma 4 (i) shows that it is optimal to order nothing for x ≥ s1.

(b) For any s1 > x ≥ S1 − q1 ≥ S2 − q1, Lemma 4 (iii) implies that we only need to optimize

Π1(x). Lemma 4 (i) shows that it is optimal to order up-to S1 for any S1 − q1 ≤ x < s1.
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(c,d) Similarly, for any S2 − q1 ≤ x < S1 − q1, we only need to consider Π1(x), and Lemma 4 (i)

shows that it is optimal to order exactly q1. For any x < S2−q1, Lemma 4 (i) and (ii) implies

Π1(x) = K1 + c1q1 + Ht(x + q1) and Π2(x) = K2 + c2(S2 − x) + Ht(S
2). By the definition

of s3 and s3 ≤ S2 − q1 of Lemma 1 (iii), we know that it is optimal to order exactly q1 if

s3 ≤ x < S2 − q1 and up-to S2 if x < s3. Hence, we can obtain cases (c) and (d).

(ii) We prove cases (a)-(e).

(a) For any x ≥ s1 > S2 − q1 ≥ S1 − q1, Lemma 4 (iii) implies that we only need to optimize

Π1(x). Lemma 4 (i) shows that it is optimal to order nothing for x ≥ s1.

(b,c) For any S1 − q1 ≤ x < s1, Equation (17) shows that Π1(x) = K1 + c(S1 − x) + Ht(S
1),

i.e., it is optimal to order up to S1. Hence, for any S1 − q1 < S2 − q1 ≤ x < s1, Lemma 4

(iii) implies that it is optimal to order up-to S1. For any S1 − q1 ≤ x < S2 − q1, Equation

(19) shows that Π2(x) = K2 + c2(S2 − x) + Ht(S
2). By the definition of s5, it is optimal to

order up-to S1 when min{max{s5, S1− q1}, S2− q1} ≤ x < S2− q1 and order up-to S2 when

S1 − q1 ≤ x < min{max{s5, S1 − q1}, S2 − q1}.

(d,e) For any x < S1 − q1, Lemma 4 implies that Π1(x) = K1 + c1q1 + Ht(x + q1) and Π2(x) =

K2 + c2(S2 − x) + Ht(S
2) because x < S2 − q1 by S2 > S1. Hence, by the definition of s3,

we can show that it is optimal to order exactly q1 when min{s3, S1 − q1} ≤ x < S1 − q1 and

order up-to S2 when x < min{s3, S1 − q1}.

(iii) We prove cases (a)-(f).

(a,b) For any x ≥ s1, Equation (17) implies that Π1(x) = Ht(x). If x ≥ S2−q1, Lemma 4 (iii) states

that Π1(x) ≤ Π2(x), which implies that it is optimal to order nothing for any x ≥ S2 − q1

because S2 − q1 > s1 . For s1 ≤ x < S2 − q1, Π2(x) = K2 + c2(S2 − x) + Ht(S
2). The

definition of s4 implies that Π1(x) ≤ Π2(x) if and only if x ≥ s4. Hence, it is optimal to order

nothing for min{S2 − q1,max{s4, s1}} ≤ x < S2 − q1, and it is optimal to order up-to S2 for

s1 ≤ x < min{S2 − q1,max{s4, s1}}, which proves (a) and (b).

(c,d) For any S1 − q1 ≤ x < s1, Lemma 4 implies that Π1(x) = K1 + c1(S1 − x) + Ht(S
1) and

Π2(x) = K2 +c2(S2−x)+Ht(S
2) because s1 < S2−q1. By the definition of s5, Π1 ≤ Π2(x) if

and only if x ≥ s5. Thus, it is optimal to order up-to S1 if min{s1,max{s5, S1−q1}} ≤ x < s1,

and order up-to S2 if S1 − q1 ≤ x < min{s1,max{s5, S1 − q1}}.
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(e,f) For any x < S1 − q1, Lemma 4 implies that Π1(x) = K1 + c1q1 + Ht(x + q1) and Π2(x) =

K2 + c2(S2 − x) + Ht(S
2). The definition of s3 implies that Π1(x) ≤ Π2(x) if and only if

x ≥ s3. Thus, it is optimal to order exactly q1 when min{s3, S1 − q1} ≤ x < S1 − q1, and

order up-to S2 when x < min{s3, S1 − q1}.

(iv) We prove the cases (a)-(c).

(a) For any x ≥ s2 ≥ S2− q1, Lemma 4 (iii) implies that we only need to optimize Π1(x). Hence,

Equation (18) implies that it is optimal to order nothing when x ≥ s2.

(b) Lemma 1 (iii) shows that s3 ≤ S2 − q1 ≤ s2. We first consider S2 − q1 ≤ x < s2 and then

s3 ≤ x < S2 − q1. For S2 − q1 ≤ x < s2, Lemma 4 (iii) implies that we only need to optimize

Π1(x), and Equation (18) implies that it is optimal to order exactly q1. For s3 ≤ x < S2− q1,

Lemma 4 shows that Π1(x) = K1 + c1q1 +Ht(x+ q1) and Π2(x) = K2 + c2(S2− x) +Ht(S
2).

Hence, by the definition of s3, it is optimal to order exactly q1 when s3 ≤ x < S2 − q1.

(c) For any x < s3 ≤ S2 − q1 ≤ s2, Lemma 4 shows that Π1(x) = K1 + c1q1 + Ht(x + q1) and

Π2(x) = K2 + c2(S2 − x) +Ht(S
2). By the definition of s3, it is optimal to order up-to S2.

(v) We prove the cases (a)-(d).

(a) Note that S2 − q1 > s2 and Lemma 1 (iv) implies that S2 − q1 ≥ s4. Hence, max{s4, s2} ≤

S2− q1. For any x ≥ S2− q1, Lemma 4 (iii) implies that we only need to optimize Π1(x) and

Equation (18) implies that it is optimal to order nothing. For max{s4, s2} ≤ x < S2 − q1,

Lemma 4 implies that Π1(x) = Ht(x) and Π2(x) = K2 + c2(S2 − x) +Ht(S
2). The definition

of s4 implies that Π1(x) ≤ Π2(x) if and only if x ≥ s4. Hence, it is optimal to order nothing

when max{s4, s2} ≤ x < S2 − q1.

(b) Lemma 1 (iv) implies that S2 − q1 ≥ s4. Hence, for any s2 ≤ x < s4 ≤ S2 − q1, Lemma 4

implies that Π1(x) = Ht(x) and Π2(x) = K2 + c2(S2 − x) +Ht(S
2). By the definition of s4,

we know that Π1(x) > Π2(x) and hence it is optimal to order up-to S2 for any s2 ≤ x < s4.

If s4 ≤ s2, (b) does not exist.

(c,d) For any x < s2 ≤ S2 − q1, Lemma 4 implies that Π1(x) = K1 + c1q1 + Ht(x + q1) and

Π2(x) = K2 + c2(S2− x) +Ht(S
2). The definition of s3 immediately implies (c) and (d).

Proof of Theorem 3. We first show that ‖Vt−Wt‖∞ ≤
∑T−t

i=1 α
iK and ‖Vt−W̄t‖∞ ≤

∑T−t
i=0 α

iK

for any t = 1, ..., T . Note that W̄T+1(xT+1) = VT+1(xT+1). (4) yields that WT (xT ) = VT (xT ) for
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any xT . Proposition 3 shows that WT (xT ) is K-approximate convex, and hence ‖WT − W̄T ‖ ≤ K

by Proposition 2. Therefore, both results hold when t = T .

Suppose that ‖Vt+1 − W̄t+1‖∞ ≤
∑T−t−1

i=0 αiK for some t = 1, ..., T − 1. Consider any xt ∈ R.

For all yt ≥ xt,∣∣∣αE[Vt+1(yt −Dt)]− αE[W̄t+1(yt −Dt)]
∣∣∣ ≤ αE[∣∣Vt+1(yt −Dt)− W̄t+1(yt −Dt)

∣∣]
≤ α

T−t−1∑
i=0

αiK =

T−t∑
i=1

αiK,
(21)

which yields |Vt(xt) −Wt(xt)| ≤
∑T−t

i=1 α
iK by Lemma 2 (a). As xt is arbitrary, we obtain ‖Vt −

Wt‖∞ ≤
∑T−t

i=1 α
iK. Also note that Wt(xt) is K-approximate convex by Proposition 3 and hence

‖Wt − W̄t‖∞ ≤ K by Proposition 2. Therefore, for any xt ∈ R,

|Vt(xt)− W̄t(xt)| ≤ |Vt(xt)−Wt(xt)|+ |Wt(xt)− W̄t(xt)| ≤
T−t∑
i=1

αiK +K =
T−t∑
i=0

αiK.

W̄T+1(xT+1) = V̄T+1(xT+1) yields V̄T (xT ) = VT (xT ), which implies that Theorem 3 holds when

t = T . Suppose that V̄t+1(xt+1) ≤ Vt+1(xt+1) + 2K
∑T−t−1

i=1 iαi for some t = 1, ..., T − 1. Consider

any xt ∈ R and

ȳt(xt) ∈ arg min
yt≥xt

{
c(yt − xt) +Ht(yt) + αE[W̄t+1(yt −Dt)]

}
.

Then
V̄t(xt) = c(ȳt(xt)− xt) +Ht(ȳt(xt)) + αE[V̄t+1(ȳt(xt)−Dt)]

≤ c(ȳt(xt)− xt) +Ht(ȳt(xt)) + αE[Vt+1(ȳt(xt)−Dt)] + 2K
T−t−1∑
i=1

iαi+1.

Applying Lemma 2 (b), (21) implies

c(ȳt(xt)− xt) +Ht(ȳt(xt)) + αE[Vt+1(ȳt(xt)−Dt)] ≤ Vt(xt) + 2

T−t∑
i=1

αiK.

Therefore, we obtain

V̄t(xt) ≤ Vt(xt) + 2

T−t∑
i=1

αiK + 2K

T−t−1∑
i=1

iαi+1 = Vt(xt) + 2K

T−t∑
i=1

iαi.

Proof of Proposition 7. First, note that ht =
∑T−t

i=0 α
ih + αT−t+1hT+1 for any t = 1, ..., T .

Recall that hT+1 satisfies cn +
∑T−t

i=0 α
ih + αT−t+1hT+1 ≥ 0, i.e., cn + ht ≥ 0 for any t = 1, ..., T .

Moreover, −pT+1 ≤ hT+1. Assume by induction that −pt+1 ≤ ht+1 for some t = 1, ..., T . As

p, h ≥ 0, we have −p− αpt+1 ≤ h+ αht+1 = ht. Combining with cn + ht ≥ 0, it is straightforward

that −pt = −min{cn, p+ αpt+1} ≤ ht.

44



Next, we define ṗ and p̈, where ṗ > cn, p̈ < +∞, and p + αpt+1 ∈ [ṗ, p̈] ∪ (−∞, cn] for any

t = 1, ..., T , based on the following cases.

• If p + αpT+1 > cn and p + αcn ≤ cn, then pT = cn and pt = p + αpt+1 ≤ cn for any

t = 1, ..., T − 1. Let ṗ = p̈ = p+ αpT+1 > cn. For any t = 1, ..., T , pt+1 ∈ {pT+1} ∪ (−∞, cn]

and hence p+ αpt+1 ∈ [ṗ, p̈] ∪ (−∞, cn].

• If p + αpT+1 > cn and p + αcn > cn, then pt = cn for any t = 1, ..., T . Let ṗ = p +

αmin{cn, pT+1} > cn and p̈ = p + αmax{cn, pT+1} > cn. For any t = 1, ..., T , pt+1 ∈

{pT+1, cn} and hence p+ αpt+1 ∈ [ṗ, p̈].

• Suppose that p+ αpT+1 ≤ cn and p ≤ (1− α) max{cn, pT+1}. For any τ = 0, 1, ..., let

ρτ =
τ∑
i=0

αip+ατ+1pT+1 =
1− ατ+1

1− α
p+ατ+1pT+1 = (1−ατ+1)

(
p

1− α
− pT+1

)
+pT+1. (22)

Alternatively, we have ρτ = p+ αρτ−1 with ρ−1 = pT+1. p ≤ (1− α) max{cn, pT+1} implies

ρτ ≤ (1− ατ+1) (max{cn, pT+1} − pT+1) + pT+1 ≤ max{cn, pT+1}.

Also note that

p+ αmax{cn, pT+1} =

{
p+ αpT+1 ≤ cn if cn ≤ pT+1

p+ αcn ≤ (1− α) max{cn, pT+1}+ αcn = cn if cn > pT+1.

It is straightforward to verify that pt = ρT−t ≤ cn for any t = 1, ..., T . Consequently, we can

set ṗ = +∞ and p̈ = cn.

• Suppose that p + αpT+1 ≤ cn and p > (1 − α) max{cn, pT+1}. Obviously, ρτ in (22) is

increasing in τ = 0, 1, ..., ρ0 = p+ αpT+1 ≤ cn, and limτ→∞ ρτ = p/(1− α) > cn. Therefore,

there exists τ∗ ∈ {1, 2, ...} such that ρτ∗ > cn and ρτ ≤ cn for any τ = 0, 1, ..., τ∗ − 1.

For any t = T − τ∗ + 1, ..., T , we have T − t ≤ τ∗ − 1 and hence pt = ρT−t ≤ cn. When

t = T − τ∗, pt = min{cn, p + αρτ∗−1} = min{cn, ρτ∗} = cn. For any t = 1, ..., T − τ∗ − 1,

pt = min{cn, p + αcn} = cn. Note that p + αpt > cn only if pt ∈ {ρτ∗−1, cn}. Thus, let ṗ =

min{ρτ∗ , p+αcn} > cn and p̈ = max{ρτ∗ , p+αcn} > cn. We have p+αpt+1 ∈ [ṗ, p̈]∪(−∞, cn].

Furthermore, let

B̄ = max

{
qn−1,

Kn

ṗ− cn
, max
i=1,...,n−1

{
(p̈− ci)qi −Ki +Kn

ṗ− cn

}}
≥ 0,

which is finite as ṗ > cn and p̈ < +∞.
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For some t = 1, ..., T , assume for induction that

W̄t+1(x) =

{
pt+1(−(T − t)B̄ − x) + W̄t+1(−(T − t)B̄) if x ≤ −(T − t)B̄
ht+1(x− (T − t)D̄) + W̄t+1((T − t)D̄) if x ≥ (T − t)D̄,

which obviously holds when t = T since W̄T+1(x) = VT+1(x) = hT+1x
+ + pT+1x

−.

Consider the optimization problem (4). Note that K1 ≥ 0 and Ki + ciqi ≤ Ki+1 + ci+1qi for

any i = 1, ..., n− 1. The definition of c(z) yields Wt(x) = min{f it (x) : i = 0, 1, ..., n}, where

f0
t (x) = E[Ht(x−Dt)

+ + p(x−Dt)
−] + αE[W̄t+1(x−Dt)];

f it (x) = min
z∈[qi−1,qi]

{
Ki + ciz + f0

t (x+ z)
}

for all i = 1, ..., n.

For any x ≤ −(T − t)B̄ and D ∈ [0, D̄], Ht(x−D)+ +p(x−D)− = p(D−x) and W̄t+1(x−D) =

pt+1(−(T − t)B̄ − x+D) + W̄t+1(−(T − t)B̄). Therefore, for any x ≤ −(T − t)B̄,

f0
t (x) = E[p(Dt − x)] + αE[pt+1(−(T − t)B̄ − x+Dt) + W̄t+1(−(T − t)B̄)]

= −(p+ αpt+1)x+ (p+ αpt+1)E[Dt] + αW̄t+1(−(T − t)B̄)− αpt+1(T − t)B̄.

Similarly, for any x ≥ (T − t+ 1)D̄,

f0
t (x) = E[Ht(x−Dt)] + αE[ht+1(x−Dt − (T − t)D̄) + W̄t+1((T − t)D̄)]

= (h+ αht+1)x− (h+ αht+1)E[Dt] + αW̄t+1((T − t)D̄)− αht+1(T − t)D̄.

Thus, we obtain

f0
t (x) =

{
(p+ αpt+1)(−(T − t+ 1)B̄ − x) + f0

t (−(T − t+ 1)B̄) if x ≤ −(T − t)B̄
(h+ αht+1)(x− (T − t+ 1)D̄) + f0

t ((T − t+ 1)D̄) if x ≥ (T − t+ 1)D̄.
(23)

For any i = 1, ..., n− 1, as B̄ ≥ qn−1 ≥ qi, it is straightforward that

f it (x) = min
z∈[qi−1,qi]

{
Ki + ciz + f0

t (x+ z)
}

=

{
f0
t (x) + minz∈{qi−1,qi}{Ki + (ci − p− αpt+1)z} if x ≤ −(T − t+ 1)B̄

f0
t (x) + minz∈{qi−1,qi}{Ki + (ci + h+ αht+1)z} if x ≥ (T − t+ 1)D̄.

Let

Snt = inf

{
arg inf

y∈(−∞,+∞)

{
cny + f0

t (y)
}}

.

Note that f0
t (y) is convex as W̄t+1(x) is convex. Recall that cn + h + αht+1 = cn + ht ≥ 0. (23)

implies Snt = −∞ if cn−p−αpt+1 ≥ 0 and Snt ∈ [−(T − t)B̄, (T − t+1)D̄] otherwise. Consequently,

fnt (x) = min
z≥qn−1

{
Kn + cnz + f0

t (x+ z)
}

=


f0
t (x) +Kn + (cn − p− αpt+1)qn−1 if x ≤ −(T − t+ 1)B̄ and cn − p− αpt+1 ≥ 0

−cnx+Kn + cnS
n
t + f0

t (Snt ) if x ≤ −(T − t+ 1)B̄ and cn − p− αpt+1 < 0

f0
t (x) +Kn + (cn + h+ αht+1)qn−1 if x ≥ (T − t+ 1)D̄.

Now we can determine Wt(x) for the following cases.
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• Suppose that x ≤ −(T − t+ 1)B̄ and cn − p− αpt+1 ≥ 0. Then

Wt(x) = min{f it (x) : i = 0, 1, ..., n}

= min

 f0
t (x), min

i=1,...,n−1

{
f0
t (x) + min

z∈{qi−1,qi}
{Ki + (ci − p− αpt+1)z}

}
,

f0
t (x) +Kn + (cn − p− αpt+1)qn−1)


= min


f0
t (x), min

i=1,...,n−1

{
f0
t (x) +Ki + (ci − p− αpt+1)qi−1}

}
,

min
i=1,...,n−1

{
f0
t (x) +Ki + (ci − p− αpt+1)qi}

}
,

f0
t (x) +Kn + (cn − p− αpt+1)qn−1)


= min


f0
t (x), min

i=0,...,n−2

{
f0
t (x) +Ki+1 + (ci+1 − p− αpt+1)qi}

}
,

min
i=1,...,n−1

{
f0
t (x) +Ki + (ci − p− αpt+1)qi}

}
,

f0
t (x) +Kn + (cn − p− αpt+1)qn−1)


= min

{
f0
t (x), min

i=1,...,n−1

{
f0
t (x) +Ki + (ci − p− αpt+1)qi}

}}
= f0

t (x) + min

{
0, min

i=1,...,n−1

{
Ki + (ci − p− αpt+1)qi}

}}
,

where the second last equality is obtained from K1 ≥ 0 and Ki + ciqi ≤ Ki+1 + ci+1qi for

i = 1, ..., n− 1.

• Suppose that x ≤ −(T − t + 1)B̄ and cn − p − αpt+1 < 0. Similar to the previous case, we

have

min{f it (x) : i = 0, 1, ..., n− 1} = f0
t (x) + min

{
0, min

i=1,...,n−1

{
Ki + (ci − p− αpt+1)qi}

}}
≥ f0

t (x) + min

{
0, min

i=1,...,n−1

{
Ki + (ci − p̈)qi}

}}
,

where the inequality follows from p+αpt+1 ∈ [ṗ, p̈]∪ (−∞, cn] and cn− p−αpt+1 < 0. Recall

that

fnt (x) = −cnx+Kn + cnS
n
t + f0

t (Snt ) ≤ −cnx+Kn + cn(−(T − t)B̄) + f0
t (−(T − t)B̄)

= −cnx+Kn + cn(−(T − t)B̄) + f0
t (x)− (p+ αpt+1)(−(T − t)B̄ − x)

= f0
t (x) +Kn + (cn − p− αpt+1)(−(T − t)B̄ − x) ≤ f0

t (x) +Kn + (cn − p− αpt+1)B̄

≤ f0
t (x) +Kn + (cn − ṗ)B̄

≤ f0
t (x) +Kn + (cn − ṗ) max

{
Kn

ṗ− cn
, max
i=1,...,n−1

{
(p̈− ci)qi −Ki +Kn

ṗ− cn

}}
= f0

t (x) +Kn −max

{
Kn, max

i=1,...,n−1

{
(p̈− ci)qi −Ki +Kn

}}
= f0

t (x) + min

{
0, min
i=1,...,n−1

{
Ki + (ci − p̈)qi

}}
,
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where the first inequality is obtained from the definition of Snt , the second equality is yielded

by (23), the second and third inequalities follow from x ≤ −(T − t+ 1)B̄, cn− p−αpt+1 < 0,

and p+αpt+1 ∈ [ṗ, p̈]∪(−∞, cn], and the last inequality is a result of ṗ > cn and the definition

of B̄. Thus, we obtain

fnt (x) ≤ min{f it (x) : i = 0, 1, ..., n− 1}

and hence

Wt(x) = min{f it (x) : i = 0, 1, ..., n} = fnt (x) = −cnx+Kn + cnS
n
t + f0

t (Snt ).

• Suppose that x ≥ (T − t+ 1)D̄. Similar to the previous two cases, we have

Wt(x) = min{f it (x) : i = 0, 1, ..., n}

= min

 f0
t (x), min

i=1,...,n−1

{
f0
t (x) + min

z∈{qi−1,qi}
{Ki + (ci + h+ αht+1)z}

}
,

f0
t (x) +Kn + (cn + h+ αht+1)qn−1)


= f0

t (x) + min

{
0, min

i=1,...,n−1

{
Ki + (ci + h+ αht+1)qi}

}}
.

Based on these results, (23) implies that Proposition 7 holds for Wt(x).

Recall that −pt ≤ ht. According to Algorithm 1, we know that W̄t(xt) and Wt(xt) have the

same slope when xt ≤ −(T − t+ 1)B̄ or xt ≥ (T − t+ 1)D̄. This completes the induction proof.

Proof of Theorem 4. We first show that ‖Vt − Ut‖∞ ≤
∑T−t+1

i=1 αiK for any t = 1, ..., T . Note

that UT+1(xT+1) = VT+1(xT+1). As c̄(z) is a K-approximation function of c(z), ‖VT −UT ‖∞ ≤ K.

Therefore, the result holds when t = T .

Suppose that ‖Vt+1 −Ut+1‖∞ ≤
∑T−t

i=0 α
iK for some t = 1, ..., T − 1. Consider any xt ∈ R. For

all yt ≥ xt,∣∣∣Vt(xt)− Ut(xt)∣∣∣ ≤ ∣∣∣c̄(yt − xt)− c(yt − xt)∣∣∣+
∣∣∣αE[Vt+1(yt −Dt)]− αE[Ut+1(yt −Dt)]

∣∣∣
≤ K + α

T−t∑
i=0

αiK =

T−t+1∑
i=1

αiK.
(24)

Consider t = T . For any xt ∈ R, we define

ŷT (xT ) ∈ arg min
yT≥xT

{
c̄(yT − xT ) +HT (yT ) + αE[UT+1(yT −DT )]

}
.

Note that UT+1 = VT+1 = V̂T+1. By Lemma 2 (b), we have

V̂T (xT ) ≤ Vt(xT ) + 2K.
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Therefore, Theorem 4 holds when t = T . Suppose that the result also holds for period t + 1,

i.e., V̂t+1(xt+1) ≤ Vt+1(xt+1) + 2K
∑T−t

i=1 iα
i. Next, we prove that the result holds for period t. For

any xt ∈ R, we define

ŷt(xt) ∈ arg min
yt≥xt

{
c̄(yt − xt) +Ht(yt) + αE[Ut+1(yt −Dt)]

}
.

Then, we have

V̂t(xt) = c(ŷt(xt)− xt) +Ht(ŷt(xt)) + αE[V̂t+1(ŷt(xt)−Dt)]

≤ c(ŷt(xt)− xt) +Ht(ŷt(xt)) + αE[Vt+1(ŷt(xt)−Dt)] + 2K

T−t∑
i=1

iαi+1.

Applying Lemma 2 (b), (24) implies

c(ŷt(xt)− xt) +Ht(ŷt(xt)) + αE[Vt+1(ŷt(xt)−Dt)] ≤ Vt(xt) + 2
T−t+1∑
i=1

αiK.

Therefore, we obtain

V̂t(xt) ≤ Vt(xt) + 2K

T−t+1∑
i=1

αi + 2K

T−t∑
i=1

iαi+1 = Vt(xt) + 2K

T−t+1∑
i=1

iαi.

Proof of Proposition 8. First, we show that the CTGA and CTGEA approaches, i.e., Algo-

rithms 3 and 4 are equivalent. Obviously, R̂T+1(y) = HT (y) + αVT+1(y − DT ) = HT (y) +

αW̄T+1(y − DT ) for all y ≥ DT . For any t ∈ {1, ..., T}, assume by induction that R̂t+1(y) =

Ht(y) + αW̄t+1(y −Dt) for all y ≥ Dt. Then, for any x ≥ 0,

Rt(x) = min
y≥max{x,Dt}

{
c(y−x)+R̂t+1(y)

}
= min

y≥max{x,Dt}

{
c(y−x)+Ht(y)+αW̄t+1(y−Dt)

}
= Wt(x).

Let R∗t and W ∗t denote the convex envelope of Ht−1(y) + αRt(y −Dt−1) for y ≥ Dt−1 and Wt(x)

for x ≥ 0, respectively. Applying the definition of convex envelope, Rt(x) = Wt(x) for all x ≥ 0,

and Ht−1(y) = h(y −Dt−1) for all y ≥ Dt−1, it is straightforward to show that R∗t (y) = Ht−1(y) +

αW ∗t (y − Dt−1) for all y ≥ Dt−1. R̂t(y) = Ht−1(y) + αW̄t(y − Dt−1) for all y ≥ Dt−1 follows

immediately from

W̄t(x) = W ∗t (x) +
1

2
sup
x≥0

∣∣Wt(x)−W ∗t (x)
∣∣ for all x ≥ 0,

R̂t(y) = R∗t (y) +
1

2
sup

y≥Dt−1

∣∣(Ht−1(y) + αRt(y −Dt−1)
)
−R∗t (y)

∣∣ for all y ≥ Dt−1.

This completes the induction proof showing the equivalence between Algorithms 3 and 4.

The remaining part of the proof compares the CTGA and OCA approaches, i.e., Algorithms 3

and 5. We start by considering Algorithm 5. Recall that c̄(z) represents the convex approximation
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of c(z) obtained in Step 0 of Algorithm 5. As c(z) is concave, it is straightforward that there exists

a constant K̄1 such that c̄(z) = K̄1 +cnz (refer to the definition of c(z) in (1)). Let ŷt(x) denote the

order-up-to level of the OCA approach (see Algorithm 5). We first show that ŷt(x) = max{x,Dt}

for any x ≥ 0 and t ∈ {1, ..., T}. This can be proved by assuming for induction that

(H1) Ut(x) is a convex function in [0,∞) with cn + h + α∂+Ut(0) ≥ 0, where ∂+f(x) denotes the

right derivative of f at x.

Note that UT+1(x) = VT+1(x) = hT+1x for any x ≥ 0, implying cn + h + α∂+UT+1(0) = cn + h +

αhT+1. As hT+1 is assumed to satisfy cn + h+ αhT+1 ≥ 0 so as to ensure the existence of a finite

optimal order-up-to level, (H1) holds when t = T + 1.

For any t ∈ {1, ..., T}, suppose that Ut+1(x) satisfies the induction hypothesis (H1). Let ŷt(x)

correspond to an optimal solution of

Ut(x) = min
y≥max{x,Dt}

{
K̄1 + cn(y − x) + h(y −Dt) + αUt+1(y −Dt)

}
. (25)

Consider the objective function in the above optimization problem. (H1) for Ut+1 implies that it

is a convex function of y and its right derivative at y = Dt is cn + h+ α∂+Ut+1(0) ≥ 0. Therefore,

it is nondecreasing for any y ≥ Dt and we have ŷt(x) = max{x,Dt}. This result yields

Ut(x) = K1 + cn(Dt − x)+ + h(x−Dt)
+ + αUt+1((x−Dt)

+),

and hence

∂+Ut(x) =

{
−cn, if 0 ≤ x < Dt;

h+ α∂+Ut+1(x−Dt), if x ≥ Dt.

If Dt > 0, then ∂+Ut(0) = −cn. If Dt = 0, then ∂+Ut(0) = h + α∂+Ut+1(0) ≥ −cn, where

the inequality follows from (H1) for Ut+1. Since h ≥ 0 and α ∈ [0, 1], cn + h + α∂+Ut(0) ≥

cn +h−αcn ≥ 0. Furthermore, the convexity of Ut+1(x) in (H1) and the definition of Ut(x) in (25)

implies the convexity of Ut(x), which completes the proof of (H1) for Ut. As a result, we obtain

ŷt(x) = max{x,Dt} and hence

V̂t(x) = c(max{x,Dt} − x) + h(max{x,Dt} −Dt) + αV̂t+1(max{x,Dt} −Dt), (26)

for any x ≥ 0 and t ∈ {1, ..., T}.

To show that V̄t(x) ≤ V̂t(x) for any x ∈ R and t ∈ {1, ..., T}, consider the following induction

hypotheses.

(H2) V̄t(x) ≤ V̂t(x) for any x ≥ 0.
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(H3) W̄t(x) is a piecewise linear, continuous, and convex function in [0,∞). It has a finite num-

ber of breakpoints denoted by the set B̄t ⊆ [0,
∑T

i=tDi] with min B̄t = 0. Furthermore,

∂+W̄t(
∑T

i=tDi) =
∑T−t

i=0 α
ih+ αT−t+1hT+1.

(H4) There exists a constant νt such that W̄t(x) = V̄t(x)+νt for any x ∈ B̄t and W̄t(x) ≤ V̄t(x)+νt

for any x ≥ 0.

(H5) c(x) ≥ W̄t(0)− W̄t(x) for any x ∈ B̄t.

(H2–5) hold for t = T+1 because V̄T+1(x) = V̂T+1(x) = W̄T+1(x) = VT+1(x) = hT+1x for any x ≥ 0

and B̄t = {0}. For any t ∈ {1, ..., T}, suppose that V̄t+1, V̂t+1, and W̄t+1 possess the properties in

(H2–5). For any x ≥ 0, the heuristic policy ȳt(x) obtained by Algorithm 3 is the minimum optimal

solution to

Wt(x) = min
y≥max{x,Dt}

{
c(y − x) + h(y −Dt) + αW̄t+1(y −Dt)

}
. (27)

For any i ∈ {1, ..., n}, define

f it (y) = ciy + h(y −Dt) + αW̄t+1(y −Dt) and Sit = min

{
arg min

y≥Dt

f it (y)

}
.

According to (H3) for W̄t+1, f it is a piecewise linear convex function, its set of breakpoints is

B0
t = {x+Dt : x ∈ B̄t+1} ⊆

[
Dt,

T∑
i=t

Di

]
, (28)

and the slope of its last piece is

∂+f
i
t

(
T∑
i′=t

Di′

)
= ci + h+ α∂+W̄t+1

(
T∑

i′=t+1

Di′

)
= ci + h+ α

T−(t+1)∑
i′=0

αi
′
h+ αT−(t+1)+1hT+1


= ci +

T−t∑
i′=0

αi
′
h+ αT−t+1hT+1 ≥ cn +

T−t∑
i′=0

αi
′
h+ αT−t+1hT+1 ≥ 0,

where the first inequality, i.e., ci ≥ cn, is obtained by the concavity of c and the second inequality

corresponds to the assumption on hT+1 ensuring the existence of a finite optimal order-up-to level.

Consequently, we have Sit ∈ B0
t .

As shown in Theorem 1, there exists st such that ȳt(x) > x if x ∈ [0, st) and ȳt(x) = x

if x ∈ [st,∞). Furthermore, the set [0, st) can be divided into at most mt ≤ 2n − 1 intervals

[ajt , a
j+1
t ), j = 0, 1, . . . ,mt − 1 with 0 = a0

t < a1
t < a2

t < · · · < amt−1
t < amt

t = st. For any

j = 0, ...,mt − 1, either there exists some i such that ȳt(x) = x + qi for all x ∈ [ajt , a
j+1
t ) or there

exists some i such that ȳt(x) = Sit for all x ∈ [ajt , a
j+1
t ). According to Porteus (1971), ȳt(x) is
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nonincreasing in x for any x ∈ [0, st). As x + qi is strictly increasing in x, we know that for any

j = 0, ...,mt − 1, there exists some i such that ȳt(x) = Sit for all x ∈ [ajt , a
j+1
t ), which also implies

that mt ≤ n. In other words, ȳt(x) for all x ∈ [0,∞) is characterized as follows:

ȳt(x) =

{
S̄jt > x, if x ∈ [aj−1

t , ajt ) for some j = 1, ...,mt,

x, if x ∈ [amt
t ,∞),

(29)

where 0 = a0
t < a1

t < a2
t < · · · < amt−1

t < amt
t = st, S̄

j
t ∈ B0

t for all j = 1, ...,mt, and mt ∈

{0, 1, ..., n}.

As ȳt(x) ≥ Dt for all x ≥ 0, we have st ≥ Dt. Assume for contradiction that st > Dt. (29)

implies Dt < ȳt(Dt) ∈ {S̄jt : j = 1, ...,mt} ⊆ B0
t . As ȳt(Dt) is the minimum optimal solution to

(27), we have

c(ȳt(Dt)−Dt) + h(ȳt(Dt)−Dt) + αW̄t+1(ȳt(Dt)−Dt) < αW̄t+1(0),

i.e.,

α
(
W̄t+1(0)− W̄t+1(ȳt(Dt)−Dt)

)
> c(ȳt(Dt)−Dt) + h(ȳt(Dt)−Dt) ≥ c(ȳt(Dt)−Dt),

which leads to W̄t+1(0)−W̄t+1(ȳt(Dt)−Dt) > c(ȳt(Dt)−Dt) as α ∈ [0, 1]. According to the definition

of B0
t , ȳt(Dt) ∈ B0

t yields ȳt(Dt) −Dt ∈ B̄t+1. Therefore, (H5) for W̄t+1 implies c(ȳt(Dt) −Dt) ≤

W̄t+1(0)−W̄t+1(ȳt(Dt)−Dt), which results in a contradiction. As a result, we have st = amt
t = Dt.

Next, we show that (H2) holds for V̄t and V̂t. For any x ∈ [amt
t ,∞) = [Dt,∞), ȳt(x) = x and

V̄t(x) = h(x−Dt) + αV̄t+1(x−Dt) ≤ h(x−Dt) + αV̂t+1(x−Dt) = V̂t(x),

where the inequality follows from (H2) for V̄t+1 and V̂t+1 and the second equality is yielded by (26).

Consider x ∈ [aj−1
t , ajt ) for some j = 1, ...,mt. We have ȳt(x) = S̄jt ∈ B0

t , which, by the definition

of B0
t in (28), implies S̄jt − Dt ∈ B̄t+1 and so V̄t+1(S̄jt − Dt) = W̄t+1(S̄jt − Dt) + νt+1 by (H4) for

W̄t+1 and V̄t+1. Therefore, we obtain

V̄t(x) = c(S̄jt − x) + h(S̄jt −Dt) + αV̄t+1(S̄jt −Dt)

= c(S̄jt − x) + h(S̄jt −Dt) + αW̄t+1(S̄jt −Dt) + ανt+1

≤ c(max{x,Dt} − x) + h(max{x,Dt} −Dt) + αW̄t+1(max{x,Dt} −Dt) + ανt+1

≤ c(max{x,Dt} − x) + h(max{x,Dt} −Dt) + αV̄t+1(max{x,Dt} −Dt)

≤ c(max{x,Dt} − x) + h(max{x,Dt} −Dt) + αV̂t+1(max{x,Dt} −Dt) = V̂t(x),

where the first inequality is obtained because ȳt(x) = S̄jt is an optimal solution to (27), the second

inequality follows from (H4) for W̄t+1 and V̄t+1, the last inequality follows from (H2) for V̄t+1 and

V̂t+1, and the last equality follows from (26). This completes the proof of (H2) for V̄t and V̂t.
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Now consider Wt. (27) and (29) yield

Wt(x) =

{
c(S̄jt − x) + h(S̄jt −Dt) + αW̄t+1(S̄jt −Dt), if x ∈ [aj−1

t , ajt ) for some j = 1, ...,mt,

h(x−Dt) + αW̄t+1(x−Dt), if x ∈ [amt
t ,∞) = [Dt,∞).

(30)

As both c and W̄t+1 are piecewise linear, Wt is obviously piecewise linear with a finite number of

breakpoints. Let Bt denote the set of the breakpoints for Wt. It is trivial that minBt = 0. Also

note that

maxBt = max{Dt,maxB0
t } ≤

T∑
i=t

Di,

as B0
t ⊆ [Dt,

∑T
i=tDi]. This implies that the slope of the last piece of Wt is

∂+W̄t

(
T∑
i=t

Di

)
= h+ α∂+W̄t+1

(
T∑

i=t+1

Di

)
= h+ α

T−(t+1)∑
i=0

αih+ αT−(t+1)+1hT+1


=

T−t∑
i=0

αih+ αT−t+1hT+1 ≥ 0,

where the second equality follows from (H3) for W̄t+1.

Furthermore, for any j = 1, ...,mt, Wt(x) is continuous in [aj−1
t , ajt ) because ȳt(x) = S̄jt > x for

all x ∈ [aj−1
t , ajt ) and the concavity of c implies its continuity in (0,∞). The continuity of W̄t+1

also suggests that Wt is continuous in [amt
t ,∞). Consequently, Wt is right continuous in [0,∞).

According to Algorithm 3, W̄t(x) = W ∗t (x) + ν ′t for all x ∈ [0,∞), where W ∗t is the convex envelope

of Wt and ν ′t is a constant. The properties of the convex envelope imply that W ∗t satisfies (H3) due

to the piecewise linearity and the right continuity of Wt; so does W̄t.

To prove (H4) and (H5) for W̄t and V̄t, we first prove W ∗t (x) = Wt(x) for all x ∈ B̄t, where B̄t
represents the set of breakpoints for both W̄t and W ∗t (x).

• Suppose that ajt ∈ B̄t for some j = 1, ...,mt. As ȳt(x) = S̄jt ≥ max{x,Dt} for all x ∈ [aj−1
t , ajt ),

we have S̄jt ≥ max{ajt , Dt} and the definition of Wt in (27) yields

Wt(a
j
t ) ≤ c(S̄

j
t − a

j
t ) + h(S̄jt −Dt) + αW̄t+1(S̄jt −Dt)

≤ lim
z↓S̄j

t−a
j
t

c(z) + h(S̄jt −Dt) + αW̄t+1(S̄jt −Dt)

= lim
x↑ajt

c(S̄jt − x) + h(S̄jt −Dt) + αW̄t+1(S̄jt −Dt) = lim
x↑ajt

Wt(x),

where the second inequality is obtained from the property of c, while the last equality follows

from the value of Wt in (30) and the continuity of W̄t+1 by (H3). As ajt ∈ B̄t \{0}, Algorithm
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1 implies

W ∗t (a
j
t ) = min

{
Wt(a

j
t ), lim

x↑ajt
Wt(x), lim

x↓ajt
Wt(x)

}
= min

{
Wt(a

j
t ), lim

x↑ajt
Wt(x)

}
= Wt(a

j
t ),

where the second equality is yielded by the right continuity of Wt.

• a0
t = 0 ∈ B̄t and, by the right continuity of Wt, W

∗
t (0) = min{Wt(0), limx′↓xWt(x

′)} = Wt(0).

• For any x ∈ B̄t such that x ∈ (aj−1
t , ajt ) for some j = 1, ...,mt or x > amt

t ,

W ∗t (x) = min

{
Wt(x), lim

x′↑x
Wt(x

′), lim
x′↓x

Wt(x
′)

}
= Wt(x),

where the two equalities follow from Algorithm 1 and the continuity ofWt in the corresponding

interval, respectively.

To prove (H4) for W̄t and V̄t, let νt = ανt+1 + ν ′t. For any x ∈ [0,∞),

W̄t(x) = W ∗t (x) + ν ′t ≤Wt(x) + ν ′t = c(ȳt(x)− x) + h(ȳt(x)−Dt) + αW̄t+1(ȳt(x)−Dt) + ν ′t

≤ c(ȳt(x)− x) + h(ȳt(x)−Dt) + αV̄t+1(ȳt(x)−Dt) + ανt+1 + ν ′t = V̄t(x) + νt,

where the two inequalities follows respectively from the definition of the convex envelope and

(H4) for W̄t+1 and V̄t+1. For any x ∈ B̄t, we show W̄t(x) = V̄t(x) + νt, which is equivalent to

W ∗t (x) = V̄t(x) + ανt+1 since W̄t(x) = W ∗t (x) + ν ′t, through the following cases.

• Suppose that x ∈ [0, amt
t ) and x ∈ B̄t. We obtain

W ∗t (x) = Wt(x) = c(ȳt(x)− x) + h(ȳt(x)−Dt) + αW̄t+1(ȳt(x)−Dt).

x ∈ [0, amt
t ) implies ȳt(x) ∈ {S̄jt : j = 1, ...mt} ⊆ B0

t . The definition of B0
t in (28) shows

ȳt(x) − Dt ∈ B̄t+1. According to (H4) for W̄t+1 and V̄t+1, we have W̄t+1(ȳt(x) − Dt) =

V̄t+1(ȳt(x)−Dt) + νt+1 and hence

W ∗t (x) = c(ȳt(x)− x) + h(ȳt(x)−Dt) + αV̄t+1(ȳt(x)−Dt) + ανt+1 = V̄t(x) + ανt+1.

• Suppose that x ≥ amt
t and x ∈ B̄t. We have W ∗t (x) = Wt(x) and the value of Wt in (30)

yields

W ∗t (x) = Wt(x) = h(x−Dt) + αW̄t+1(x−Dt).

If x = amt
t = Dt, x − Dt = 0 ∈ B̄t+1, which is the set of breakpoints of W̄t+1. If x > Dt,

Algorithm 1 implies that x is a breakpoint of Wt, so we also have x−Dt ∈ B̄t+1 by the value

of Wt in (30). (H4) for W̄t+1 and V̄t+1 then yields

W ∗t (x) = h(x−Dt) + αV̄t+1(x−Dt) + ανt+1 = V̄t(x) + ανt+1,

where the second equality follows from ȳt(x) = x for x ≥ amt
t shown in (29).
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For any x ≥ 0, we have ȳt(x) ≥ max{x,Dt} ≥ max{0, Dt}. Therefore, the definition of Wt in

(27) yields

Wt(0) ≤ c(ȳt(x)) + h(ȳt(x)−Dt) + αW̄t+1(ȳt(x)−Dt).

Also note that

Wt(x) = c(ȳt(x)− x) + h(ȳt(x)−Dt) + αW̄t+1(ȳt(x)−Dt).

We obtain

Wt(0)−Wt(x) ≤ c(ȳt(x))− c(ȳt(x)− ajt ) ≤ c(x),

where the second inequality follows from the concavity of c and c(0) = 0. Note that W̄t(x) =

W ∗t (x) + ν ′t for all x ≥ 0, W ∗t (x) = Wt(x) for all x ∈ B̄t, and 0 ∈ B̄t. Thus, for all x ∈ B̄t, we have

W̄t(0)− W̄t(x) = W ∗t (0)−W ∗t (x) = Wt(0)−Wt(x) ≤ c(x),

which proves (H5) for W̄t.
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