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Abstract: Based on the background of atomic force microscope (AFM) driven by piezoelectric
actuators (PEAs), this paper proposes a sliding mode control coupled with an inverse Bouc–Wen (BW)
hysteresis compensator to improve the positioning performance of PEAs. The intrinsic hysteresis and
creep characteristics degrade the performance of the PEA and cause accuracy loss. Although creep
effect can be eliminated by the closed-loop control approach, hysteresis effects need to be compensated
and alleviated by hysteresis compensators. For the purpose of dealing with the estimation errors,
unmodeled vibration, and disturbances, a sliding mode control with perturbation estimation (SMCPE)
method is adopted to enhance the performance and robustness of the system. In order to validate
the feasibility and performance of the proposed method, experimental studies are carried out, and
the results show that the proposed controller performs better than a proportional-integral-derivative
(PID) controller at 1 and 2 Hz, reducing error to 1.2% and 1.4%, respectively.
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1. Introduction

The atomic force microscope (AFM) is one of the most commonly used tools for imaging,
measuring, and manipulating objects at the sub-micrometer level. It belongs to the class of scanning
probe microscopy, which involves the utilization of a probe to scan sample surfaces, based on the
principle of measuring the interactive force between the tip and the surface. Forces like Van dar Waals
forces, electrostatic forces, and capillary forces are applied to the tip by the sample surface, resulting
in the bending of the cantilever. Therefore, the surface topography of the sample can be acquired
by recording the small deflections of the elastic cantilever [1,2]. As shown in Figure 1, the sample
moves under the probe in the XYZ direction, and the probe moves up and down along the Z-direction.
When the distance of the probe–surface changes, the cantilever will bend backwards or forwards,
causing the position of the reflected point changes on the photodiode, and the surface topography is
therefore recorded [3].

Among piezoelectric actuators (PEAs), magnetostrictive actuators (MGAs), shape memory alloy
(SMAs), and voice coil motors (VCMs), PEAs are the best choice as they can provide micro/nano
resolution, fast response, and high output force in applications that require ultra-high precision
motion [4,5]. However, the PEA exhibits nonlinearity characteristics, such as hysteresis and creep, and
these phenomenons can decrease the positioning accuracy and affect the quality of measuring images.
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The negative effect caused by the nonlinearity characteristic can be validated by two images obtained
with a CSPM5500 AFM (Benyuan, Guangzhou, China), as depicted in Figure 2. Referring to it, we
can conclude that the image quality of Figure 2a is better than that of Figure 2b, because Figure 2a is
measured using hysteresis compensation and Figure 2b is obtained without nonlinearity compensation.

Figure 1. A schematic diagram of an atomic force microscope (AFM).

(a) (b)

Figure 2. Measuring images with hysteresis and creep compensation vs. no compensation at a
0.5 Hz scanning rate. (a) With hysteresis and creep compensation. (b) Without hysteresis and creep
compensation. Note: these two images are measured with a CSPM5500 AFM.

The compensation and alleviation of creep and hysteresis nonlinearity have thus become urgent
for the purpose of obtaining higher image quality. Creep can be alleviated by a feedback controller,
and hysteresis can be corrected by compensation techniques and a closed-loop control approach [6,7].
Currently, there are mainly three methods to alleviate hysteresis. Charge control can be adopted to
correct the nonlinearity because of the existing linear relationship between dielectric displacement and
PEA deformation. However, this method requires a specific charge drive circuit and may cause drift and
saturation problems [8,9]. Closed-loop control with strain gauges, capacitive sensors, and laser sensors
adopted to measure the output displacement of the PEA are utilized to improve the tracking precision.
However, tracking performance is degraded with high input frequency signals. Some researchers
have focused on modeling hysteresis nonlinearity based on the Duhem Model, the Bouc–Wen (BW)
model, the Prandtl–Ishlinskii model, and the Preisach model [10–13] and have derived an inverse
hysteresis model to compensate for nonlinearity using a feedforward control approach. Although the
feedforward compensation control approach can reduce hysteresis to some degree, it cannot meet the
requirements of high-precision applications.
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In order to further improve the positioning accuracy of the PEA, this paper proposes a
feedforward compensator based on an inverse hysteresis model combined with a feedback controller.
The feedforward compensator is established based on a BW hysteresis model for the advantages
of a few unknown parameters that can be easily identified using an intelligent algorithm. Sliding
mode control with perturbation estimation is adopted to deal with parameter errors and external
disturbances for the purpose of ensuring the positioning accuracy of the system. The rest of the paper
is arranged as follows: Section 2 introduces the dynamic model based on the BW hysteresis model and
identifies the parameters by utilizing a comprehensive learning particle swarm optimization (CLPSO)
algorithm. The hysteresis compensator established based on the inverse BW hysteresis model is then
proposed in Section 3. Lyapunov stability analysis of the proposed controller is presented in Section 4.
Experimental studies are described in Section 5 to validate the performance of the controller. Section 6
summarizes this research.

2. Dynamic Modeling and Parameters Identification

2.1. Dynamic Modeling

The entire dynamic model of a PEA with BW hysteresis and perturbations can be established by
using a spring-mass-damper model, as follows [14]:

mẍ + bẋ + kx = k(deu− h) + P

ḣ = αdeu̇− βu̇|h| − γ|u̇|h
(1)

where h represents the hysteretic state variable, u is the input voltage, m, b, de, and k represent the
equivalent mass, the damping coefficient, the piezoelectric coefficient, and stiffness, respectively;
P denotes the external perturbations of the system caused by temperature, pre-load, and uncertainties
of parameters. Besides that, the parameter α controls the hysteretic amplitude, while β and γ control
the shapes of the hysteresis loop.

2.2. Parameter Identification

Methods adopted to identify the BW model parameters can be divided into two categories.
One is based on the minimization of the error equation and includes the evolutionary algorithm (EA),
differential evolution (DE), particle swarm optimization (PSO), and least square estimation (LSE);
the other one is based on the nonlinear filtering method and includes the unscented Kalman filter [15].

In this paper, the CLPSO method is adopted to identify the parameters m, b, de, k, α, β, and γ.
CLPSO is one of variants of the PSO approach, which simulates the behaviour of a swarm, like bird or
ant systems [16,17]. The fitness function also has an important effect on optimization results. There
are mainly three types of fitness functions that can be adopted as an optimized objective function.
The following one is selected in this paper for the benefits of having better performance and an
identified response [18]:

F(m, b, de, k, α, β, γ) =
1
N

n

∑
i=1

E2
i (2)

where
Ei = xi − xi

bw.

Here, N is the total number of sample points, and Ei denotes the error between the ith experimental
data xi and the ith simulation data xbw

i of the output displacement via establishing the BW model with
identified parameters m, b, de, k, α, β, γ.

The identification procedures are listed as follows:
Data Collection: With the full-range-driven voltage applied to the PEA, the output displacement is

measured and recorded. Hysteresis phenomenon is rate-dependent, namely the output of the system
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is sensitive to the variation of the input rate. This means that a higher frequency signal input results
in a larger hysteresis loop generated [19]. Referring to the specification document of the adopted
PEA, the amplitude of the input sinusoidal signal is set to 100 V with a 0.5 Hz frequency to stimulate
the PEA.

Parameters Identification: After collecting the experimental data of the PEA, the CLPSO approach
is adopted to search the model parameters which can closely match the simulation output to the
experimental data through the established Simulink model.

Based on obtained parameters shown in Table 1, the comparison between simulation hysteresis
and experimental hysteresis is presented in Figure 3a, and the error between simulation results and
experimental results are depicted in Figure 3b, which shows that the maximum deviation is about 4.2%
with respect to the travel range of the PEA.

(a) (b)

Figure 3. Hysteresis. (a) The experimental hysteresis loop and the simulation hysteresis loop. (b) Errors.

Table 1. Identified parameters of the system with the Bouc–Wen (BW) hysteresis model.

Parameter Value Unit

m 0.015 Kg
b 0.01 N s/m
k 1.1× 107 N/m
d 1× 10−6 m/V
α 0.4587 -
β 0.05 -
γ 0.0157 -

3. Hysteresis Compensation Based on the Inverse BW Model

As mentioned above, the intrinsic nonlinearity hysteresis characteristics can deteriorate the
positioning performance of the PEA. Therefore, the hysteresis nonlinearity must be compensated and
eliminated by the inverse hysteresis operator. The idea of compensating the hysteresis is to cascade the
inverse feedforward hysteresis operator H−1 with the actual hysteresis operator that is represented by
H to obtain an identified mapping between the desired output xd(t) and the actual actuator response
x(t). It can be described by the following equation:

x(t) = H[H−1[xd(t)]] = x(t). (3)

The principle to compensate the hysteresis is described in Figure 4. The hysteresis compensator is
established based on the inverse BW hysteresis model and the plant system can be decomposed into
the BW hysteresis model and the dynamic model of the PEA. After the desired input xd is applied to
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the hysteresis compensator, the obtained output voltage u(x) is adopted to drive the plant system and
then output an experimental displacement x(t). Based on Equation (1), the u(x) can be described by
the following equation:

u(x) =
mẍd + bẋd + kxd + kh + P

kde
. (4)

In order to validate the performance of the proposed compensator, the established model was
implemented in MATLAB software (R2013b, MathWorks, Natick, MA, USA). The simulation results are
presented in Figure 5, which illustrates the process of eliminating the hysteresis based on the inverse
BW hysteresis compensator. Figure 5a shows that, after the desired displacement passes through the
inverse BW model, the obtained output voltage signal is sent to the real system to cancel hysteresis
problems. Figure 5b shows the relationship between the desired input displacement and the output
displacement after hysteresis compensation, and the error is shown in Figure 5c. It can be learned that
the PEA can be treated as a linear approximation system after hysteresis compensation.

Figure 4. The principle to compensate hysteresis.

(a)

(b) (c)

Figure 5. Simulation results with the inverse BW hysteresis compensator. (a) The hysteresis loop
and inverse hysteresis loop.(b) The relationship between the desired displacement and the output
displacement. (c) The error between the desired displacement and the output displacement after
hysteresis compensation.
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4. The SMCPE Controller Coupled with Hysteresis Compensator

This section mainly focuses on controller design and stability analysis. The principle of the
proposed tracking control diagram is depicted in Figure 6. The hysteresis compensator can partially
eliminate the nonlinearity hysteresis, and the system can be treated as a linear system approximately.
To improve the robustness of the system for better tracking performance, the external/internal
disturbance, system uncertainties, and other nonlinearities are viewed as a perturbation term (denoted
by P in Equation (1)) and estimated by the perturbation technique. The perturbation estimation
technique and sliding mode controller design process will be introduced in the following subsections.
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4.1. The Perturbation Estimation Technique

This subsection briefly introduces the online perturbation estimation approach. The controllable
canonical form of the nonlinear dynamic system can be described by the following equation [20]:

x(n) = f (X) + ∆f (X) + [B(X) + ∆B(X)]u(t) + d(t) (5)

where Xi (Xi = [x(0)i , x(1)i , · · · , x(ni−1)
i ]T ∈ Rni , i = 1, 2, · · · , m, where x(n) = [xn1

1 , xn2
2 , · · · , xnm

m ] ∈ Rm

are m independent coordinates and n denotes the system order) is the state sub-vector, which forms
the global state vector X = [XT

1 , XT
2 , · · · , XT

m]
T ∈ Rr, r = ∑m

i=1 ni. The f = [ f1, f2, · · · , fm]T ∈ Rm

and ∆f = [∆ f1, ∆ f2, · · · , ∆ fm]T ∈ Rm denote the nonlinear driving terms and their perturbations,
respectively; B = [bij] ∈ Rm×m and ∆B = [∆bij] ∈ Rm×m, i, j = 1, 2, 3, · · · , m represent the control
gains and their uncertainties, respectively; the disturbance vector and control vector are described by
the d = [d1, d2, · · · , dm]T ∈ Rm and u = [u1, u2, · · · , um]T ∈ Rm, respectively.

The uncertainty and parameter estimation errors of the system can be combined together to form
the perturbation vector:

Ψ(X, t) = ∆f + ∆Bu(t) + d(t)

= x(n) − f − Bu(t).
(6)

The perturbation Ψ(X, t) can be estimated by the following equation:

Ψ(X, t)estimated = x(n)calculated − f − Bu(t− T) (7)
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where T is the sampling interval, and u(t− T) denotes the control input in the previous time step.
Theoretically, the x(n)calculated can be computed by the Backward Euler method if the sampling time
interval is very tiny.

xn =
x(n−1)(t)− x(n−1)(t− T)

T
. (8)

In fact, u(t) 6= u(t − T), so it can cause an approximate error using u(t − T) to replace u(t),
and the measured displacement with noise can also result in errors. All these aforementioned errors
can be viewed as unknown parameters about the system. To deal with these errors, the SMCPE is
adopted as an enhanced version of the conventional SMC. The major contribution of SMCPE is to
remove the requirement of estimation uncertainly bounds and replace it with a scheme for the online
estimation of the perturbations [21,22].

4.2. System Description

Based on the above analysis, the state equation of this nonlinear system can be written as

ẋ(t) = Ax(t) + Bu(t) + d(t). (9)

Referring to Equation (1), the state variable x(t) = [x1, x2]
T of the system is defined as below:{

x1 = x

x2 = ẋ1
(10)

with

A =

[
0 1
θ1 θ2

]
; B =

[
0
θ3

]
; d(t) =

[
0

P/m + θ1h

]
(11)

where θ1 = −k/m, θ2 = −b/m, θ3 = −kde/m, and h denotes the hysteresis term. After compensation
the hysteresis nonlinearity, the d(t) can be written as

d(t) =

[
0

P/m + θ1h̃

]
(12)

where h̃ denotes the error between the actual hysteresis and the estimated hysteresis.
The auxiliary control input ua is defined to simplify the analysis.

u = ua +
ĥ
de

(13)

where ĥ = h− h̃.
Thus, the system-dynamic Equation (1) can be derived as follows:

ẍ = θ1 x + θ2 ẋ + θ3 ua + θ1h̃ +
P
m

. (14)

The perturbation estimation function corresponding to the system can be defined as

Ψ(x, t) = θ1h̃ +
P
m

. (15)

Referring to Equation (7), the estimated perturbation function Ψ(x, t)est can be written as

Ψ(x, t)est = ẍ− θ1 x− θ2 ẋ− θ3 ua(t− T). (16)
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Defining Ψ̃ = Ψ(x, t)−Ψ(x, t)est, Ψ̃ is the error of actual perturbation function and its estimation.
Therefore, Equation (14) can be written as follows:

ẍ = θ1 x + θ2 ẋ + θ3 ua + Ψ̃ + Ψ(x, t)est. (17)

4.3. Sliding Mode Controller Design

The positioning tracking error of the system can be expressed as

e = x1 − xd, (18)

and the derivative of the tracking error is

ė = x2 − ẋd. (19)

Therefore, we define the sliding plane as a proportion-derivative type [23]:

S = λe + ė. (20)

Therefore, the following equation can be derived:

Ṡ = λ(ẋ− ẋd) + ẍ− ẍd. (21)

Additionally, the exponential reaching law is defined as follows [24]:

Ṡ = −kS− ηsgn(S) + Ψ̃. (22)

The control law can be derived as follows:

ua =
1
θ3
{ẍd − θ1x− θ2 ẋ−Ψ(x, t)est − kS− ηsgn(S)− λė} (23)

where k is a positive constant parameter, and sgn(.) denotes the signum function. To guarantee the
stability of the system and satisfy lim

t→∞
e(t) = 0, the η must satisfy the following condition:

η > |Ψ̃|. (24)

4.4. Stability Analysis

The proof of the stability of the proposed control law is described in this subsection. Considering a
positive definite Lyapunov function V = 1

2 S2, the first derivative can be written as

V̇ = SṠ
= S(−kS− ηsgn(S) + ψ̃)

≤ −kS2 + (|ψ̃| − η) |S|
≤ 0

. (25)

Based on the above analysis, when t→ ∞, sliding surface S→ 0. Therefore, tracking error e→ 0
and asymptotical stability can be achieved. Therefore, the proposed control law can guarantee good
tracking performance in theory. The discontinuity of the signum function may cause a chattering
phenomenon in the control system. To eliminate this problem, the concept of a boundary layer is
utilized to replace the signum function to smooth the control signal [25]. Therefore, the control law can
be written as
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u =
1
θ3
{ẍd − θ1x− θ2 ẋ−Ψ(x, t)est − kS− ηsat(

S
ε
)− λė}+ ĥ

de
. (26)

Here, ε is a positive constant that denotes the boundary layer thickness.

5. Performance Validation and Discussion

In this section, the experimental setup is introduced and experimental studies are described to
validate the performance of the proposed controller.

5.1. Experimental Setup Configuration

A preloaded PEA P-840.60 from Physik Instruments (PI, Karlsruhe, Germany) was adopted,
with a nominal maximum travel range of 90 µm and an input voltage range of 0–100 V. The PEA was
driven by a voltage amplifier with a gain ratio of 10. The displacement of the PEA was measured
by the laser displacement sensor Microtrak II, LTC-025-02, from MTI Instrument, Inc., Albany, NY,
USA. To suppress the external vibration, the PEA and laser sensor were mounted on an anti-vibration
table. The system connection of the experimental setup is illustrated in Figure 7. The control block
was designed and implemented via Simulink and the input signal through D/A block to drive the
PEA. The measured analog signal was transferred to the Simulink through A/D block for recording
and analyzing.

Figure 7. System block diagram.

5.2. Experimental Results and Discussion

To validate the performance of the proposed controller, experimental studies are described in
this section. The proposed controller and the PID controller were compared. The value of the control
parameters are listed in Table 2. During the experimental studies, sine wave signals with 0.5, 1, 1.5,
and 2 Hz input signals were used to stimulate the PEA, and the maximum output displacement of PEA
was 75 µm, some experimental results are shown in Figures 8 and 9. Figure 8a shows the relationship
between desired displacement and the actual output displacement with the PID controller under a
1 Hz input signal. The maximum absolute error was approximately 1.5 µm (2%) when the 1 Hz input
frequency was applied, as shown in Figure 8b. As shown in Figure 8c, the error became larger and
close to 3.9 µm (5.2%) when the 2 Hz input signal was applied. The relationship between desired
displacement and the actual output displacement with the proposed controller is shown in Figure 9a,
indicating an approximately linearity line under a 1 Hz input signal. The maximum absolute error was
approximately 0.9 µm (1.2%) with a 1 Hz input signal, as shown in Figure 9b; the error was increased
to 1.1 µm (1.4%) when the input frequency was up to 2 Hz.
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We can conclude that the positioning performance of the proposed SMCPE approach is better
than that of the PID controller, with an error decreasing to 1.2% and 1.4% at 1 and 2 Hz, respectively.
Meanwhile, the positioning accuracy of the PEA performs better under a low input frequency compared
with a high input frequency. For example, the tracking error of the PEA decreased from 5.2% to 2%
with the PID controller and decreased from 1.4% to 1.2% with the proposed controller, with input
frequency decreasing from 2 to 1 Hz, respectively, which means that the proposed controller cannot
adapt to different input frequencies.

Table 2. Value of the control parameters.

PID SMCPE

kp = 0.0002 λ = 1800
ki = 1.01 × 10−5 k = 2200
kd = 2.6 × 10−6 η = 1.2

∼ ε = 0.001

(a) (b)

(c)

Figure 8. Experimental results with the feedforward hysteresis compensator and the PID controller.
(a) The relationship between desired and actual displacement of the PEA under a 1 Hz sinusoidal input.
(b) Tracking error in the case of a 1 Hz input signal. (c) Tracking error in the case of a 2 Hz input signal.
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(a) (b)

(c)

Figure 9. Experimental results with the feedforward hysteresis compensator and the proposed
controller. (a) The relationship between the desired and the actual displacement of the PEA under a
1 Hz sinusoidal input. (b) Tracking error in the case of a 1 Hz input signal. (c) Tracking error in the case
of a 2 Hz input signal.

6. Conclusions

A SMCPE approach coupled with a hysteresis compensator based on the BW model is proposed
in this paper for the purpose of improving the tracking performance of PEAs. The BW hysteresis
model is utilized to model the hysteresis of the PEA for the benefit of a few unknown parameters,
and the CLPSO approach is adopted to identify the parameters of the hysteresis model. Then,
the inverse hysteresis model is derived to compensate for hysteresis nonlinearity. In order to
improve the robustness of the system and obtain better tracking performance, the external disturbance,
system uncertainties, and other nonlinearities are viewed as perturbation terms and estimated by the
perturbation technique. The experimental results showed that the designed controller can provide
superior tracking performance for PEAs with low input frequencies.
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