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1 Introduction

Affine variational inequalities (AVIs) in finite-dimensional Euclidean spaces, including linear
complementarity problems (LCPs), have attracted a lot of attention from researchers worldwide
during the last five decades. Solution existence and properties of the solution sets of LCPs (resp.,
of AVIs) have been discussed, e.g., in [1, Chapter 3] (resp., in [2] and [3, Chapter 6]). Solution
stability and/or sensitivity of LCPs (resp., of AVIs) when the problem in question undergoes
small perturbations have been studied, for example, in [1, Chapter 7] and [4–9] (resp., in [2],
[3, Chapter 7], and [10–12]). The pioneering work of Dontchev and Rockafellar [13] and the
subsequent studies in [14–22] show that the tools from variational analysis are very useful for
investigating various stability properties of LCPs and AVIs . Meanwhile, global error bounds,
local error bounds, and their applications to convergence analysis of iterative methods for solving
LCPs and AVIs are presented in [23, 24]. We refer to the classical book of Cottle, Pang, and
Stone [1, Chapters 4, 5] for a systematic presentation of the solution methods for LCPs.

The notion of generalized polyhedral convex set as defined by Bonnans and Shapiro [25,
Definition 2.195] allows one to study not only generalized linear programming problems and
quadratic programming problems under linear constraints on normed spaces [25, Chapter 2] but
also infinite-dimensional AVIs on normed spaces.

This paper aims at establishing two basic facts about infinite-dimensional AVIs: the Lagrange
multiplier rule and the solution set decomposition. We will see how the known results on finite-
dimensional AVIs [2, 3] can be developed in the infinite-dimensional setting.

It is worthy to observe that infinite-dimensional quadratic programming problems and infinite-
dimensional linear fractional vector optimization problems can be studied by using infinite-di-
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mensional AVIs. But these notions only lead respectively to symmetric AVIs and anti-symmetric
AVIs. Since a general AVI needs neither to be symmetric nor anti-symmetric, studies on infinite-
dimensional AVIs are not confined to those serving as the first-order optimality conditions for
quadratic programming and linear fractional vector optimization problems.

Note that very general necessary and sufficient optimality conditions for nonsmooth vector
optimization problems can be found in the work by Jeyakumar and Yang [26]. For quadratic
vector optimization problems under finitely many linear constraints on Banach spaces, necessary
and sufficient optimality conditions have been obtained by Zheng and Yang [27, Proposition 4.1].

The rest of the paper has four sections. Quadratic programming and linear fractional vector
optimization on normed spaces are discussed, respectively, in Sects. 2 and 3. Infinite-dimensional
affine variational inequalities are introduced and studied in Sect. 4. Some concluding remarks are
given in Sect. 5.

2 Quadratic Programming on Normed Spaces

Two fundamental optimization models leading to infinite-dimensional affine variational inequal-
ities are investigated in this section and the next one. The first model is infinite-dimensional
quadratic programming (see [25, Chapter 3]); the second one is infinite-dimensional linear frac-
tional vector optimization (for the traditional finite-dimensional setting, see, e.g., [3, Chapter 8]).

From now on, if not otherwise stated, X is a normed space over the reals and X∗ is the dual
space of X. The value of x∗ at x ∈ X is denoted by 〈x∗, x〉.

Following [25, p. 193], we say that a function ψ : X × X → IR is bilinear iff for any x ∈ X
the functions ψ(., x) and ψ(x, .) are linear. A bilinear function ψ is called symmetric iff ψ(x, y) =

ψ(y, x) for any x, y ∈ X. One says that a function f : X → IR is a quadratic form iff there is a
symmetric bilinear function ψ : X × X → IR such that f (x) = ψ(x, x) for every x ∈ X. Since

ψ(x, y) =
1
4

( f (x + y) − f (x − y)) , (1)

the symmetric bilinear function ψ is uniquely defined via f . It is known [25, Proposition 3.71]
that a quadratic form f is a convex function on X if and only if it is non-negative, i.e., f (x) ≥ 0
for all x ∈ X.

The next proposition states an interesting but rather simple fact: The Fréchet differentiability
of a quadratic form is equivalent to the continuity of the corresponding bilinear function. This
kind of results should be known. But, having no related reference apart from [28, Example 2,
pp. 36–37], we present here a detailed formulation of the fact and a proof to make our subsequent
discussions as clear as possible.

Proposition 2.1. Let ψ be the symmetric bilinear function corresponding to a quadratic form f
defined on a normed space X. Then, the following properties are equivalent:

(a) f is Fréchet differentiable at a point x̄ ∈ X;
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(b) ψ is continuous at (0, 0) ∈ X × X;

(c) There is a constant β ≥ 0 such that |ψ(x, y)| ≤ β‖x‖‖y‖ for all x, y ∈ X;

(d) ψ is continuous at any point (u, v) ∈ X × X;

(e) f is Fréchet differentiable at any point u ∈ X.

If one of these properties is valid, then the Fréchet derivative of f at every point u ∈ X is computed
by the formula ∇ f (u) = 2ψ(u, .).

Proof Assuming the fulfillment of (a), we have that f is continuous at x̄ ∈ X. In order to
obtain (b), given any vector sequences {xk} and {yk} in X converging to 0, we need to show that
ψ(xk, yk)→ 0 as k → ∞. For each k, from (1) it follows that

ψ(x̄ + xk, yk) =
1
4

[
f (x̄ + xk + yk) − f (x̄ + xk − yk)

]
. (2)

By the continuity of f at x̄, one has lim
k→∞

f (x̄ + xk + yk) = f (x̄) and

lim
k→∞

f (x̄ + xk − yk) = f (x̄).

So, (2) and the expression ψ(x̄+xk, yk) = ψ(x̄, yk)+ψ(xk, yk) yield the desired equality lim
k→∞

ψ(xk, yk) =

0, if we can show that
lim
k→∞

ψ(x̄, yk) = 0. (3)

We can deduce (3) from the differentiability of f at x̄ as follows. Since f is differentiable at
x̄, it is Gâteaux differentiable at that point, i.e., for each v ∈ X there directional derivative

f ′(x̄; v) := lim
t↓0

f (x̄ + tv) − f (x̄)
t

exists, and the functional f ′(x̄; .) : X → IR is linear and con-

tinuous. Therefore, from the relation

f (x̄ + tv) − f (x̄) = 2tψ(x̄, v) + t2ψ(v, v),

which is valid for any t ∈ IR, we deduce that f ′(x̄; v) = 2ψ(x̄, v) for all v ∈ X. In addition, the
linear functional ψ(x̄, .) is continuous on X. In particular, ψ(x̄, .) is continuous at 0. This obviously
yields (3). Thus, (a) implies (b).

Now, suppose that (b) is valid. Then there is δ > 0 such that |ψ(u, v)| ≤ 1 for all u, v ∈ X with
‖u‖ ≤ δ and ‖v‖ ≤ δ. Given any x, y ∈ X \ {0}, by the last property we have

|ψ(x, y)| = δ−2‖x‖‖y‖|ψ
(
δ

x
‖x‖

, δ
y
‖y‖

)
| ≤ β‖x‖‖y‖,

where β := δ−2. Hence (c) is valid.

Next, assuming that (c) is fulfilled with some β ≥ 0 and (u, v) ∈ X × X is given arbitrarily, to
get (d) we need to show ψ is continuous at (u, v). For any h1, h2 ∈ X, since

|ψ(u + h1, v + h2) − ψ(u, v)| = |ψ(u, h2) + ψ(h1, v) + ψ(h1, h2)|
≤ β(‖u‖‖h2‖ + ‖v‖‖h1‖ + ‖h1‖‖h2‖),
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the value |ψ(u+h1, v+h2)−ψ(u, v)| is smaller than a given constant ε > 0, provided that the norms
of h1 and h2 are small enough. This means that ψ is continuous at (u, v).

Suppose now that (d) is valid and u ∈ X is an arbitrary vector. By (d), ψ(u, .) is a continuous
linear functional and ψ is continuous at (0, 0). As shown above, the latter implies the existence of
β > 0 such that |ψ(x, y)| ≤ β‖x‖‖y‖ for all x, y ∈ X. Since

f (u + h) = f (u) + 2ψ(u, h) + ψ(h, h)

and ψ(h, h) = o(‖h‖) because ψ(h, h) ≤ β‖h‖2, we can assert that f is Fréchet differentiable at u
and ∇ f (u) = 2ψ(u, .).

Property (e) obviously implies (a). Hence the proof of the equivalence between (a)-(e) is
complete. The second assertion has been established by our preceding arguments. �

Let f be a quadratic form on X with ψ being the corresponding symmetric bilinear function.
Suppose that f is Fréchet differentiable at a point in X. Then f is differentiable at any point in X
by the above proposition. Moreover, there exists a constant β > 0 satisfying the condition in (c).
Then, the formula Mx := 2ψ(x, .) defines a bounded linear operator mapping X to X∗. Namely,
‖Mx‖ ≤ 2β‖x‖ for all x ∈ X or, the same, ‖M‖ ≤ 2β. We have seen that each differentiable
quadratic form on X uniquely generates a bounded linear operator M : X → X∗. In the sequel, we
say that M is the bounded linear operator associated with f . The symmetry of ψ is equivalent to
the requirement that

〈Mx, y〉 = 〈My, x〉 ∀x, y ∈ X. (4)

Since the latter may not hold for an arbitrarily given operator M : X → X∗, formula ψ(x, y) =

〈Mx, y〉 may give a non-symmetric bilinear function ψ.

In connection with Proposition 2.1, one may ask: On an infinite-dimensional normed space,
is there any discontinuous quadratic form? To solve this question in the affirmative we can use
the following standard construction.

Suppose that X is a normed space of infinite dimension. Let {eτ : τ ∈ T } be an algebraic basis
of X, ‖eτ‖ = 1 for all τ ∈ T . Select a countable subset T0 = {τk : k ∈ IN} of T , where IN denotes
the set of non-negative integers. Put ϕ(eτk) = k for all k ∈ IN, and ϕ(eτ) = ατ for all τ < T0, where
the numbers ατ ∈ IR can be chosen arbitrarily. Every vector x ∈ X admits a unique representation
of the form x =

∑
τ∈T

µτeτ where, except for finitely many indexes τ, one has µτ = 0. The formula

ϕ(x) =
∑
τ∈T

µτϕ(eτ) defines an unbounded linear functional ϕ : X → IR. Setting ψ(x, y) = ϕ(x)ϕ(y)

we obtain a discontinuous symmetric bilinear function. Then, in accordance with Proposition 2.1,
the quadratic function f (x) := ψ(x, x) = ϕ(x)2 is not Fréchet differentiable at any point in X.

A set K ⊂ X is said to be a polyhedral convex (see [25, p. 133]where the simpler adjective
“polyhedral” is used) iff it can be represented as the intersection of a finite number of closed half
spaces, i.e., there exist x∗i ∈ X∗ and αi ∈ IR, i = 1, . . . ,m, such that

K = {x ∈ X : 〈x∗i , x〉 ≤ αi, i = 1, . . . ,m}. (5)

One says [25, p. 133] that a set C ⊂ X is generalized polyhedral convex (or, simpler, generalized
polyhedral) iff it can be represented as the intersection of a polyhedral convex set and a closed
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affine subspace of X. That is, there exist a closed affine subspace L ⊂ X and x∗i ∈ X∗, αi ∈ IR,
i = 1, . . . ,m, such that

K = {x ∈ L : 〈x∗i , x〉 ≤ αi, i = 1, . . . ,m}. (6)

If L = a + L0, where L0 is a closed linear subspace of X, then we put

L⊥ = {x∗ ∈ X∗ : 〈x∗, v〉 = 0 ∀v ∈ L0}.

Thus L⊥ is the annihilator of L0 in X∗.

Recently, a representation formula for generalized convex polyhedra in locally convex Haus-
dorff topological vector spaces has been obtained in [30]. Various applications of that formula to
infinite-dimensional linear vector optimization problems have been given in [30, 31].

Definition 2.1. If f is a Fréchet differentiable quadratic form on X, q ∈ X∗ is a given vector, and
K ⊂ X is a polyhedral convex set, then the problem

min{ f (x) + 〈q, x〉 : x ∈ K} (7)

is called a quadratic programming problem, or a quadratic program.

Definition 2.2. If f is a Fréchet differentiable quadratic form on X, q ∈ X∗ is a given vector,
and K ⊂ X is a generalized polyhedral convex set, then (7) is said to be a generalized quadratic
programming problem, or a generalized quadratic program.

The following two theorems formulate the Fermat rule for quadratic programs and general-
ized quadratic programs. We refer to [3, Theorem 3.1 and Proposition 5.1] for standard proof
arguments of the necessity part. The proof of the sufficiency part will be given only for the first
theorem, but it also works for the the second one.

Theorem 2.1. Consider a quadratic program of the form (7) and suppose that M : X → X∗ is the
bounded linear operator associated with f . If x̄ is a local solution of the program, then

〈Mx̄ + q, x − x̄〉 ≥ 0 ∀x ∈ K. (8)

Conversely, if f is non-negative on X, then (8) is sufficient for x̄ to be a global solution of (7).

Proof (Sufficiency) Let x ∈ K be given arbitrarily. By the convexity and the differentiability
of the function f̃ (x) := f (x) + 〈q, x〉, from (8) we have

0 ≤ 〈Mx̄ + q, x − x̄〉 = 〈∇ f̃ (x̄), x − x̄〉 ≤ f̃ (x) − f̃ (x̄)

for all x ∈ K. This shows that x̄ is a global solution of (7). �

Theorem 2.2. Consider a generalized quadratic program of the form (7), where K is a gener-
alized polyhedral convex set, and suppose that M : X → X∗ is the bounded linear operator
associated with f . If x̄ is a local solution of the program, then (8) is valid. Conversely, if f is
non-negative on X, then (8) is sufficient for x̄ to be a global solution of (7).
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The above first-order necessary optimality conditions for quadratic programs can be put in the
form involving Lagrange multipliers. The infinite-dimensional Farkas lemma [32] can be used
for proving the Lagrange multipliers rule for quadratic programs, while the Moreau-Rockafellar
theorem [28, Theorem 0.3.3 on pp. 47–50, and Theorem 1 on p. 200] is an additional suitable tool
for getting that rule for generalized quadratic programs.

Theorem 2.3. (See [27] and also [25, Proposition 3.118 and Theorem 3.130] for a more general
result) Suppose that f is a quadratic form on X and M is the linear operator associated with
f . If x̄ is a local solution of (7), where K is given by (5), then there exist Lagrange multipliers
λ1 ≥ 0, . . . , λm ≥ 0 such that

Mx̄ + q +

m∑
i=1

λix∗i = 0 (9)

and λi(〈x∗i , x̄〉 − αi) = 0 for i = 1, ...,m. If f is non-negative on X, then the converse is also valid.

Proof Let x̄ be a local solution of (7) and K be given by (5). Condition (8) can be rewritten
equivalently as

0 ∈ Mx̄ + q + N(x̄; K), (10)

where N(x̄; K) := {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ 0 for all x ∈ K} is the normal cone to K at x̄. Put
I = {1, . . . ,m}. The active index set I(x̄) of the feasible point x̄ is defined by I(x̄) := {i ∈ I :
〈x∗i , x〉 = αi}. The pseudo-face F of K corresponding to the index set I(x̄) is given by

F =
{
x ∈ X : 〈x∗i , x〉 = αi ∀i ∈ I(x̄), 〈x∗i , x〉 < αi ∀i ∈ I \ I(x̄)

}
. (11)

It is clear that, for any u ∈ F , N(u; K) = N(u; K(x̄)) with

K(x̄) := {x ∈ X : 〈x∗i , x〉 ≤ αi ∀i ∈ I(x̄)}.

Hence, x∗ ∈ N(u; K) if and only if 〈x∗, v〉 ≤ 0 for every v ∈ X satisfying 〈x∗, v〉 ≤ 0 for all i ∈ I(x̄).
By the Farkas lemma [26, Lemma 1], the latter is valid if and only if there exist multipliers λi ≥ 0,
i ∈ I(x̄), such that x∗ =

∑
i∈I(x̄)

λix∗i . Thus

N(u; K) =
{
x∗ =

∑
i∈I(x̄)

λix∗i : λi ≥ 0 ∀i ∈ I(x̄)
}
.

This means that (10) holds if and only if there exist multipliers λi ≥ 0, i ∈ I(x̄), such that

Mx̄ + q +
∑
i∈I(x̄)

λix∗i = 0.

Therefore, choosing λi = 0 for all i ∈ I \ I(x̄), we get a set of Lagrange multipliers λi ≥ 0,
i = 1, ...,m, such that (9) is satisfied and λi(〈x∗i , x̄〉 − αi) = 0 for every i ∈ I. The second assertion
follows from the sufficiency part of Theorem 2.1. �

Theorem 2.4. Let f and M be as in the preceding theorem. If x̄ is a local solution of the gen-
eralized quadratic program with K being given by (6), then there exist λ1 ≥ 0, . . . , λm ≥ 0 such
that

Mx̄ + q +

m∑
i=1

λix∗i ∈ L⊥ (12)

and λi(〈x∗i , x̄〉 − αi) = 0 for i = 1, ...,m. If f is non-negative on X, then the converse holds true.
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Proof Suppose that x̄ is a local solution of the generalized quadratic program, where K is
described by (6). According to Theorem 2.2, (8) is valid. We can derive (12) from the latter in
the following way. Put

K1 = {x ∈ X : 〈x∗i , x〉 ≤ αi, i = 1, . . . ,m}.

Since K = L ∩ K1 and L is a generalized polyhedral convex set, while K1 is a polyhedral convex
set, by the intersection rule in [29, Theorem 4.10] we have

N(x̄; K) = N(x̄; L) + N(x̄; K1). (13)

It is easy to see that N(x̄; L) = L⊥. Note that the normal cone N(x̄; K1) has been computed in the
proof of Theorem 2.3. Namely,

N(x̄; K1) =
{
x∗ =

∑
i∈I(x̄)

λix∗i : λi ≥ 0 ∀i ∈ I(x̄)
}
,

where the index set I(x̄) remains the same as in the preceding proof. Combining these facts with
the inclusion (10), we find a set of Lagrange multipliers satisfying (12) such that λi(〈x∗i , x̄〉−αi) = 0
for i = 1, ...,m. �

Remark 2.1. For generalized polyhedral convex sets of the form (6), the notion of pseudo-face
is given similarly as that for polyhedral convex sets (see (11)). Namely, the pseudo-face corre-
sponding to an index set I1 ⊂ I is given by

F1 =
{
x ∈ L : 〈x∗i , x〉 = αi ∀i ∈ I1, 〈x∗i , x〉 < αi ∀i ∈ I \ I1

}
.

It is worthy to observe that the normal cone N(u;F1) is the same for all u ∈ F1. This fact is crucial
for our subsequent decomposition of the solution set of an infinite-dimensional affine variational
inequality in Sect. 4.

3 Linear Fractional Vector Optimization on Normed Spaces

Linear fractional vector optimization (LFVO) is a remarkable segment of the theory of vec-
tor optimization (see, e.g., Choo and Atkins [33, 34], Steuer [35], Malivert [36], Malivert and
Popovici [37], Hoa et al. [38, 39], Yen and Yao [40], and Yen [41]). LFVO problems appear in
finance and production management; see [35]. In a LFVO problem, any point satisfying the first-
oder necessary optimality condition is a solution. Up to now, LFVO has been considered only in
a finite-dimensional setting. Here, following the scheme described in [3, Chapter 8], we present
basic facts about LFVO problems in an infinite-dimensional setting.

Let f j : X → IR ( j = 1, 2, · · · , p) be linear fractional functions, that is

f j(x) =
〈u∗j, x〉 + β j

〈v∗j, x〉 + γ j

for some u∗j ∈ X∗, v∗j ∈ X∗, β j ∈ IR, and γ j ∈ IR. Let K ⊂ X be a convex set. Suppose that
all the functions f j are well defined on K. Then, without loss of generality we can assume that
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〈v∗j, x〉 + γ j > 0 for all j ∈ {1, · · · , p} and for all x ∈ K. Note that the vector function f (x) :=
( f1(x), . . . , fp(x)) maps K into IRp.

In the sequel, the inequality y ≤ y′ (resp., y < y′) for y = (y1, . . . , yp) and y = (y′1, . . . , y
′
p) from

IRp means that yi ≤ y′i (resp., yi < y′i) for i = 1, . . . , p.

Consider the vector optimization problem

min { f (x) : x ∈ K}. (14)

If one cannot find any y ∈ K such that f (y) ≤ f (x) and f (y) , f (x), then x ∈ K is called an
efficient solution of (14). If there is no y ∈ K such that f (y) < f (x), then one says that x ∈ K
is a weakly efficient solution of (14). The efficient solution set and the weakly efficient solution
set of (14) are denoted, respectively, by E and Ew. If K is a polyhedral convex, then (VP) is
called a linear fractional vector optimization problem (LFVOP for brevity). In the case where K
is a generalized polyhedral convex set, (VP) is said to be a generalized linear fractional vector
optimization problem (g-LFVOP for brevity).

The following lemma is an analogue of a result in a finite-dimensional setting (see [36, 42]
and also [3, Lemma 8.1]).

Lemma 3.1. Let ϕ(x) =
〈u∗, x〉 + β

〈v∗, x〉 + γ
be a linear fractional function satisfying the condition 〈v∗, x〉+

γ , 0 for every x ∈ K. Then, one has

ϕ(y) − ϕ(x) =
〈v∗, x〉 + γ

〈v∗, y〉 + γ
〈∇ϕ(x), y − x〉, (15)

for any x, y ∈ K, where ∇ϕ(x) denotes the Fréchet derivative of ϕ at x.

Proof The fact that ϕ is Fréchet differentiable at every point x ∈ X satisfying 〈v∗, x〉 + γ , 0 is
clear. Now, for any x, y ∈ K, we observe that

〈∇ϕ(x), y − x〉

= lim
t↓0

1
t
[
ϕ(x + t(y − x)) − ϕ(x)

]
= lim

t↓0

1
t

[
〈u∗, x + t(y − x)〉 + β

〈v∗, x + t(y − x)〉 + γ
−
〈u∗, x〉 + β

〈v∗, x〉 + γ

]
=
〈u∗, y − x〉(〈v∗, x〉 + γ) − 〈v∗, y − x〉(〈u∗, x〉 + β)

(〈v∗, x〉 + γ)2 .

(16)

Hence,
〈v∗, x〉 + γ

〈v∗, y〉 + γ
〈 ∇ϕ(x), y − x〉

=
〈u∗, y − x〉(〈v∗, x〉 + γ) − 〈v∗, y − x〉(〈u∗, x〉 + β)

(〈v∗, x〉 + γ)(〈v∗, y〉 + γ)

=
(〈u∗, y〉 + β)(〈v∗, x〉 + γ) − (〈u∗, x〉 + β)(〈v∗, y〉 + γ)

(〈v∗, x〉 + γ)(〈v∗, y〉 + γ)

=
〈u∗, y〉 + β

〈v∗, y〉 + γ
−
〈u∗, x〉 + β

〈v∗, x〉 + γ

= ϕ(y) − ϕ(x).
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So the equality (15) is valid. �

Remark 3.1. The above proof is valid for any pair x, y ∈ X belonging to the effective domain of
ϕ. Now, suppose that 〈v∗, x〉 + γ , 0. Substituting y = x + τv, where v ∈ X is an arbitrary vector
and τ > 0 is chosen as small as 〈v∗, y〉 + γ , 0, into (16) yields

〈∇ϕ(x), τv〉 = τ
〈u∗, v〉(〈v∗, x〉 + γ) − 〈v∗, v〉(〈u∗, x〉 + β)

(〈v∗, x〉 + γ)2 .

Hence,

〈∇ϕ(x), v〉 =
〈u∗, v〉(〈v∗, x〉 + γ) − 〈v∗, v〉(〈u∗, x〉 + β)

(〈v∗, x〉 + γ)2 ∀v ∈ X.

We have thus obtained a formula for the Fréchet derivative of ϕ at x.

For any x, y ∈ K with x , y, consider two points from the line segment [x, y]:

zt = x + t(y − x), zt′ = x + t′(y − x) (t ∈ [0, 1], t′ ∈ [0, t[).

By (15) we see that

(i) If 〈∇ϕ(x), y − x〉 > 0, then ϕ(zt′) < ϕ(zt) for every t′ ∈ [0, t[;

(ii) If 〈∇ϕ(x), y − x〉 < 0, then ϕ(zt′) > ϕ(zt) for every t′ ∈ [0, t[;

(iii) If 〈∇ϕ(x), y − x〉 = 0, then ϕ(zt′) = ϕ(zt) for every t′ ∈ [0, t[.

This shows that ϕ is monotonic on every line segment or ray contained in K.

Put Σ =
{
ξ = (ξ1, . . . , ξp) ∈ IRp

+ :
p∑

j=1

ξ j = 1
}

and notice that the relative interior of Σ is given

by

riΣ =
{
ξ ∈ IRp

+ :
p∑

j=1

ξ j = 1, ξ j > 0 for all j
}
.

From now on, if not otherwise stated, we consider the vector optimization problem (14) with
K being given by (6). If one puts I(x) = {i : 〈x∗i , x〉 = αi} for every x ∈ K, then necessary and
sufficient optimality conditions for (14) can be formulated as follows.

Theorem 3.1. Let x ∈ K. The following assertions hold:

(a) x ∈ E if and only if there exists ξ = (ξ1, . . . , ξp) ∈ riΣ such that〈 m∑
j=1

ξ j

[(
〈v∗j, x〉 + γ j

)
u∗j −

(
〈u∗j, x〉 + β j)v∗j

]
, y − x

〉
≥ 0, ∀y ∈ K. (17)

(b) x ∈ Ew if and only if there exists ξ = (ξ1, . . . , ξp) ∈ Σ such that (17) is fulfilled.

(c) If K is given by (5), then (17) is satisfied if and only if there exist Lagrange multipliers
λ1 ≥ 0, . . . , λm ≥ 0 such that

m∑
j=1

ξ j

[(
〈v∗j, x〉 + γ j

)
u∗j −

(
〈u∗j, x〉 + β j)v∗j

]
+

∑
i∈I(x)

λix∗i = 0.
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(d) If K is given by (6), then (17) is satisfied if and only if there exist Lagrange multipliers
λ1 ≥ 0, . . . , λm ≥ 0 such that

m∑
j=1

ξ j

[(
〈v∗j, x〉 + γ j

)
u∗j −

(
〈u∗j, x〉 + β j)v∗j

]
+

∑
i∈I(x)

λix∗i ∈ L⊥.

Proof (a) First, let us show that x ∈ E if and only if

Qx(K − x) ∩
(
− IRp

+

)
= {0}, (18)

where Qx : X → IRp is a bounded linear operator defined by the formal writing

Qx =


(〈v∗1, x〉 + γ1)u∗1 − (〈u∗1, x〉 + β1)v∗1

...
(〈v∗p, x〉 + γp)u∗p − (〈u∗p, x〉 + βp)v∗p


and Qx(K − x) = {Qx(y − x) : y ∈ K}, where

Qxu :=


〈
(〈v∗1, x〉 + γ1)u∗1 − (〈u∗1, x〉 + β1)v∗1, u

〉
...〈

(〈v∗p, x〉 + γp)u∗p − (〈u∗p, x〉 + βp)v∗p, u
〉


for every u ∈ X. Indeed, x < E if and only if there exist y ∈ K and j0 with

f j(y) ≤ f j(x) ∀ j ∈ {1, . . . , p}, f j0(y) < f j0(x).

Applying formula (15) to the functions f j, we can equivalently rewrite these conditions as〈
∇ f j(x), y − x

〉
≤ 0 ∀ j ∈ {1, . . . , p},

〈
∇ f j0(x), y − x

〉
< 0. (19)

Since 〈
∇ f j(x), y − x

〉
=

〈
(〈v∗j, x〉 + γ j)u∗j − (〈u∗j, x〉 + β j)v∗j, y − x

〉
(〈v∗j, x〉 + γ j)2

by (16), the inequalities system (19) can be transformed to
〈
(〈v∗j, x〉 + γ j)u∗j − (〈u∗j, x〉 + β j)v∗j, y − x

〉
≤ 0 ∀ j ∈ {1, . . . , p},〈

(〈v∗j0 , x〉 + γ j0)u
∗
j0 − (〈u∗j0 , x〉 + β j0)v

∗
j0 , y − x

〉
< 0.

Hence, x < E iff there exists y ∈ K with Qx(y − x) ∈ −IRp
+ \ {0}. This establishes the criterion (18)

for a point x ∈ K to belong to E.

Next, since K is a generalized polyhedral convex set given by (6). Fixing any x ∈ K, one has

K − x = {z ∈ L − x : 〈x∗i , z〉 ≤ αi − 〈x∗i , x〉, i = 1, . . . ,m}. (20)
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As L−x is a closed linear subspace of X, formula (20) shows that K−x is a generalized polyhedral
convex set. Therefore, invoking [30, Theorem 2.7] we find u1, . . . , uk ∈ K, v1, . . . , v` ∈ X, and a
closed linear subspace X0 ⊂ X such that

K − x =
{ k∑

i=1

θiui +
∑̀
j=1

µ jv j : θi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

θi = 1, µ j ≥ 0, ∀ j = 1, . . . , `
}

+ X0.

(21)

From (21) and the linearity of Q − x it follows that

Qx(K − x)

=
{ k∑

i=1

θiQx(ui) +
∑̀
j=1

µ jQx(v j) : θi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

θi = 1, µ j ≥ 0, ∀ j = 1, . . . , `
}

+ Qx(X0).

Using this formula and [43, Theorem 19.1] we see at once that D := Qx(K − x) is a polyhedral
convex set in IRp. Then, by [43, Corollary 19.7.1] we can assert that KD := {tw : t ≥ 0, w ∈ D}
is a polyhedral convex cone. In particular, KD is a closed convex cone. It is clear that (18) yields
KD ∩

(
− IRp

+

)
= {0}. Setting

K+
D = {z ∈ IRp : 〈z, v〉 ≥ 0 ∀v ∈ KD},

we haveK+
D ∩ intIRp

+ , ∅. Indeed, ifK+
D ∩ intIRp

+ = ∅ then, by the separation theorem, there exists
ξ ∈ IRp \ {0} such that

〈ξ,w〉 ≤ 0 ≤ 〈ξ, z〉 ∀w ∈ intIRp
+, ∀z ∈ K+

D.

This yields ξ ∈ −IRp
+ and ξ ∈ (K+

D)+ = KD. So we get ξ ∈ KD ∩ (−IRp
+) = {0}, a contradiction.

Select any ξ̃ ∈ K+
D ∩ intIRp

+ and put ξ = ξ̃/(̃ξ1 + · · · + ξ̃m). It is clear that ξ ∈ K+
D ∩ riΣ. Since

〈ξ, v〉 ≥ 0 for every v ∈ KD, we have 〈ξ,Qx(y − x)〉 ≥ 0 for every x ∈ K. Hence (17) is valid.

(b) Arguing similarly as above, we can show that x ∈ Ew if and only if

Qx(K − x) ∩
(
− intIRp

+

)
= ∅.

Then, by the separation theorem we can find a multiplier λ = (λ1, . . . , λm) ∈ Σ satisfying (17).

For getting (c) and (d) from (a) and (b), respectively, it suffices to apply the infinite-dimensional
Farkas lemma as it was done in the proofs of Theorems 2.3 and 2.4. �

Remark 3.2. Theorem 3.1 is an extension of the corresponding results of Choo and Atkins [33]
and Malivert [36] to the general normed space setting. The above proof is based on the proof
scheme in [3] and a new result of Luan and Yen [30] on generalized polyhedral convex sets.
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4 Infinite-Dimensional AVIs

In this section, we first define the notions of affine variational inequality and generalized affine
variational inequality, and then we clarify the decomposition structure of their solution sets. Con-
nections of the new concepts with the two classes of optimization problems considered in the
preceding sections will be discussed in detail.

Definition 4.1. If M : X → X∗ is a bounded linear operator, q ∈ X∗ a vector, and K ⊂ X a
polyhedral convex set, then the problem of finding a vector x̄ ∈ K satisfying

〈Mx̄ + q, x − x̄〉 ≥ 0 ∀x ∈ K (22)

is called the affine variational inequality (AVI for brevity) defined by the data set {M, q,K}.

Definition 4.2. If M : X → X∗ is a bounded linear operator, q ∈ X∗ a vector, and K ⊂ X a
generalized polyhedral convex set, then the problem of finding a vector x̄ ∈ K satisfying (22)
is called the generalized affine variational inequality (g-AVI for brevity) defined by the data set
{M, q,K}.

Remark 4.1. The above notions of AVI and g-AVI are just, in fact, two special cases of the concept
of variational inequality studied in many books and papers. For instance, in [44, Chapter 3],
instead of our affine operator x 7→ Mx + q one considers a mapping F : K → X∗ and instead of
our polyhedral convex set K ⊂ X (resp., generalized polyhedral convex set K ⊂ X) one considers
any closed convex set K ⊂ X. Note that, here we do not require the reflexiveness of X and
monotonicity of the operator x 7→ Mx + q on K.

Remark 4.2. In the case X = IRn, the definition of g-AVI reduces to that of AVI. This model
has been studied intensively by many authors; see, e.g., [2, 3] and the references therein. If, in
addition, K is the non-negative octant IRn

+ in IRn, then (22) is a linear complementarity problem
[1], which can be rewritten as

Mx̄ + q ≥ 0, x̄ ≥ 0, 〈Mx̄ + q, x̄〉 = 0. (23)

Different studies on the problem (23) have been mentioned in Sect. 1.

Definition 4.3. If 〈Mx, y〉 = 〈My, x〉 for every pair (x, y) ∈ X × X, then one says that the gen-
eralized affine variational inequality (4.1), with K being a generalized polyhedral convex set, is
symmetric.

Based on the important research of Luo and Tseng [24], we think that symmetric AVIs and
g-AVIs deserve a special attention.

Proposition 4.1. The generalized affine variational inequality corresponding to a generalized
quadratic programming problem is symmetric.

Proof The assertion is immediate from Theorem 2.2 and formula (4). �
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Definition 4.4. If 〈Mx, y〉 = −〈My, x〉 for every pair (x, y) ∈ X × X, then one says that the
generalized affine variational inequality (4.1), with K being a generalized polyhedral convex set,
is anti-symmetric.

In [45], it has been noted that linear fractional vector optimization problems lead to anti-
symmetric (or skew-symmetric) affine variational inequalities. Hence, anti-symmetric AVIs (resp.,
anti-symmetric g-AVIs) also form interesting class of AVIs (resp., of g-AVIs).

Proposition 4.2. The generalized affine variational inequalities corresponding to a generalized
linear fractional vector optimization problem are anti-symmetric.

Proof The assertion can be deduced from Theorem 3.1 as follows. For each ξ ∈ Σ, denote the
bounded linear operator from X to X∗ corresponding to the affine variational inequality (17) by
Mξ and the solution set of the latter by Sol

(
VIξ

)
. Then one has

Mξx =

m∑
j=1

ξ j

[
〈v∗j, x〉u

∗
j − 〈u

∗
j, x〉v

∗
j

]
∀x ∈ X.

So, for every x ∈ X one can notice that

〈Mξx, x〉 =

m∑
j=1

ξ j

[
〈v∗j, x〉〈u

∗
j, x〉 − 〈u

∗
j, x〉〈v

∗
j, x〉

]
= 0.

Given any pair (y, z) ∈ X × X, combing the last property with the evident equality

〈Mξ(y − z), y − z〉 = 〈Mξy, y〉 − 〈Mξy, z〉 − 〈Mξz, y〉 + 〈Mξz, z〉,

one obtains 〈Mξy, z〉 = −〈Mξz, y〉 for every pair (x, y) ∈ X×X. The anti-symmetric property of Mξ

has been established for every ξ ∈ Σ. By assertion (a) of Theorem 3.1, E =
⋃
ξ∈riΣ

Sol
(
VIξ

)
. Hence

the efficient solution set of (14) is the union of the solution sets of a family of anti-symmetric
AVIs. Similarly, the assertion (b) of Theorem 3.1 implies that Ew =

⋃
ξ∈Σ

Sol
(
VIξ

)
. Thus, the

weakly efficient solution set of (14) is also the union of the solution sets of a family of anti-
symmetric AVIs. �

Theorem 4.1. A vector x̄ ∈ K is a solution the generalized affine variational inequality problem
(22) with K being given by (6) if and only if there exist Lagrange multipliers λ1 ≥ 0, . . . , λm ≥ 0
such that

Mx̄ + q +

m∑
i=1

λix∗i ∈ L⊥ (24)

and λi(〈x∗i , x̄〉 − αi) = 0 for i = 1, ...,m.

Proof The necessity can be obtained by repeating the arguments given in the proof of Theorem
2.4. Let us prove the sufficiency by direct verification. Suppose that x̄ ∈ K and there exist
Lagrange multipliers λ1 ≥ 0, . . . , λm ≥ 0 satisfying (24) with λi(〈x∗i , x̄〉 − αi) = 0 for i = 1, ...,m.
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To show that x̄ is a solution the g-AVI problem (22) with K being given by (6), we take any x ∈ K
and use (24) to represent

Mx̄ + q = −

m∑
i=1

λix∗i + v∗

for some v∗ ∈ L⊥. Since both vectors x and x̄ belong to L, one has x − x̄ ∈ L0. Therefore,

〈Mx̄ + q, x − x̄〉 =
〈
−

m∑
i=1

λix∗i + v∗, x − x̄
〉

= −
〈 m∑

i=1

λix∗i , x − x̄
〉

= −

m∑
i∈I(x̄)

λi
[
〈x∗i , x〉 − αi

]
≥ 0.

We have thus shown that x̄ is a solution of (22). �

Remark 4.3. Theorem 4.1 extends a result of Gowda and Pang [2, p. 834] (see also [10, Theo-
rem 5.3]) on finite-dimensional AVIs to the general normed spaces setting.

Theorem 4.2. The solution set of the generalized affine variational inequality problem (22) with
K being given by (6) is the union of finitely many generalized polyhedral convex sets.

Proof First, let us show that the solution set of (22), which is denoted by S, is closed. From
the Definition 4.2 it is clear that x̄ ∈ S if and only if x̄ ∈

⋂
x∈K

Kx, where Kx := {u ∈ K :

〈Mu + q, x − u〉 ≥ 0}. For each x ∈ K, since the function u 7→ 〈Mu + q, x − u〉 is continuous, we
see that Kx is a closed set. As S =

⋂
x∈K

Kx, this implies that S is closed.

Now, put I = {1, . . . ,m}. By Theorem 4.1, x ∈ X is a solution of (22) if and only if there exist
λ = (λ1, . . . , λm) ∈ IRm such that

Mx + q +
∑m

i=1 λix∗i ∈ L⊥,
〈x∗i , x〉 ≤ αi ∀i ∈ I, λi ≥ 0 ∀i ∈ I,
λi(〈x∗i , x〉 − αi) = 0 ∀i ∈ I.

(25)

Given a point x ∈ S, we put I0 = {i ∈ I : 〈x∗i , x〉 = αi} and

I1 = {i ∈ I : 〈x∗i , x〉 < αi}.

Then I = I0 ∪ I1 and I0 ∩ I1 = ∅. Let λ ∈ IRm be a Lagrange multiplier corresponding to x. From
the last line of (25) it follows that λi = 0 for every i ∈ I1. So the pair (x, λ) satisfies the system

Mx + q +
∑m

i=1 λix∗i ∈ L⊥,
〈x∗i , x〉 = αi ∀i ∈ I0, λi ≥ 0 ∀i ∈ I0,

〈x∗i , x〉 ≤ αi ∀i ∈ I1, λi = 0 ∀i ∈ I1.

(26)
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It is clear that the formula Ψ(x, λ) = Mx+

m∑
i=1

λix∗i defines a bounded linear operator Ψ : X×IRm →

X∗. As L⊥ is a closed linear subspace of X∗, the set

L := (Ψ(.) + q)−1(L⊥) =
{
(x, λ) ∈ X × IRm : Mx + q +

m∑
i=1

λix∗i ∈ L⊥
}

is a closed affine subspace of X × IRm. Hence, denoting by QI0 the set of all (x, λ) satisfying (26),
we observe that QI0 is the solution set of the system

(x, λ) ∈ L,
〈x∗i , x〉 = αi ∀i ∈ I0, λi ≥ 0 ∀i ∈ I0,

〈x∗i , x〉 ≤ αi ∀i ∈ I1, λi = 0 ∀i ∈ I1.

This implies that QI0 is a polyhedral convex set in Z := X × IRm. Hence, according to [30,
Theorem 2.7], there exist we z1, . . . , zk ∈ QI0 , w1, . . . ,w` ∈ Z, and a closed linear subspace Z0 ⊂ Z
such that

QI0 =
{ k∑

i=1

θizi +
∑̀
j=1

µ jw j : θi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

θi = 1, µ j ≥ 0, ∀ j = 1, . . . , `
}

+ Z0.

(27)

In the above notation, we have
S =

⋃
I0⊂I

PrX(QI0), (28)

where PrX(x, λ) := x is the natural projection of Z = X × IRm onto X. Setting S I0 = PrX(QI0), we
deduce from (27) that

S I0 =
{ k∑

i=1

θiPrX(zi) +
∑̀
j=1

µ jPrX(w j) : θi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

θi = 1, µ j ≥ 0, ∀ j = 1, . . . , `
}

+ PrX(Z0).

(29)

Since S I0 is a subset of S and the latter is closed, from (28) and (29) it follows that

S =
⋃
I0⊂I

S I0 , (30)

where

S I0 :=
{ k∑

i=1

θiPrX(zi) +
∑̀
j=1

µ jPrX(w j) : θi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

θi = 1, µ j ≥ 0, ∀ j = 1, . . . , `
}

+ cl
(
PrX(Z0)

)
(31)
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with cl
(
PrX(Z0)

)
standing for the closure of the linear subspace PrX(Z0) of X. Using again the

characterization of generalized polyhedral convex sets in [30, Theorem 2.7], by (31) we see that
S I0 is a generalized polyhedral convex set. Hence, (30) shows that S is the union of finitely many
generalized polyhedral convex sets. �

Remark 4.4. Theorem 4.2 extends a well-known result about the decomposed structure of the
solution sets of finite-dimensional AVIs (see, e.g., [3, Theorem 5.4]).

5 Conclusions

We have established the Lagrange multiplier rule and the solution set decomposition for infinite-
dimensional AVIs on normed spaces and showed that the latter provide an effective tool for study-
ing infinite-dimensional quadratic programs and infinite-dimensional linear fractional vector op-
timization problems.

Solution existence theorems, solution stability, and local error bounds for infinite-dimensional
AVIs, similar to those which have been obtained in [2,3,24] for finite-dimensional AVIs, deserve
further investigations.
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