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ABSTRACT
Biodiesel can easily be used as an alternative fuel in diesel engines. It is environmentally friendly
and can be produced from low-cost feedstocks such as waste cooking oil (WCO). WCO contains a
significant amount of free fatty acid, which is extracted by a two-step process of converting the free
fatty acid by acid catalysis (H2S04) and converting the triglycerides using anNaOHcatalyst. Currently,
the major challenge for the industrial production of biodiesel is optimizing the yield while meeting
American Society for Testing and Materials (ASTM) standards. In this study, experiments were per-
formed to optimize the reaction conditions. The studied experimental parameters were the alcohol
types (methanol, ethanol), the alcohol-to-oil molar ratio (AOMR; 3:1, 6:1, 9:1), the amount of catalyst
(0.5, 1.0, 1.5 wt% of the oil), the temperature of the reaction (50, 60, 70, 80°C), the mixing intensity
(300, 600, 900 rpm), and the reaction time (30, 60, 90 min). The biodiesel production yield (BPY) was
optimized based on the experimental data. The optimum value of the BPY based on methanol is
95.92%, which is obtained at 73.80°C, with a reaction time of 74.02min, an AOMR of 6.58:1, a catalyst
concentration of 1.13 and a mixing intensity of 824.45 rpm. In the case of ethanol, the optimum BPY
is 95.53%. which is obtained at 64.96°C, with a reaction time of 88.02min, an AOMRof 7.005:1, a cata-
lyst concentration of 1.25 and amixing intensity of 592.18 rpm. These results of biodiesel production
were confirmed by the experimental data.
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1. Introduction

The heavy dependence on fossil fuels, the high pro-
duction volume of pollutants, the waste from and mis-
management of these pollutants, and the limited nature
of their refinement have caused an environmental cri-
sis (Bildirici & Gökmenoğlu, 2016; Franco, Mandla, &
Rao, 2017). For example, using fossil fuels for different
activities such as manufacturing and agricultural indus-
tries has led to greenhouse gas emissions being generated
in almost every region in the world (Ben Jebli & Ben
Youssef, 2015). Carbon dioxide (CO2) is the most sig-
nificant among all of the greenhouse gases emitted dur-
ing the production of fossil-based energy (Li, Baležen-
tis, Makutėnienė, Streimikiene, & Kriščiukaitienė, 2016).
This CO2 contributes to global warming as an emitted
greenhouse gas – but using biodiesel in diesel engines
reduces the CO2 addition to the atmosphere (Datta &
Mandal, 2017; Hasan & Rahman, 2017; Karavalakis et al.,
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2017). Burning fossil fuels in diesel engines has a nega-
tive impact on the environment and generates harmful
pollutants (Singh et al., 2015; Yilmaz & Morton, 2011).
On the other hand, biodiesel contains less harmful pol-
lutants (Ghazanfari, Najafi, Faizollahzadeh Ardabili, &
Shamshirband, 2017; Huang et al., 2015) and is a renew-
able fuel that can be generated from plant resources,
produced through a reaction process that uses short-
chain alcohols, vegetable oils or animal fats, and acidic
or alkaline catalysts (Zhang et al., 2017).

The fatty acid alkyl esters that make up biodiesel
are obtained by producing chemical changes in triglyc-
erides (El-Mashad, Zhang, & Avena-Bustillos, 2008).
Based on previous studies, a two-stage procedure of acid
esterification and alkaline transesterification is the best
method for biodiesel production (Knothe, 2001; Meher,
Vidyasagar, & Naik, 2006). The transesterification pro-
cess contains three consecutive reactions. Figure 1 shows
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Figure 1. Biodiesel production via transesterification reaction.

the hydrocarbon chains R1, R2, and R3. The required sto-
ichiometric ratio in this reaction for the alcohol-to-oil
molar ratio (AOMR) is 3:1. The esterification reaction is
very slow in the normal mode without using a catalyst,
and the end product is not desirable. Therefore, in order
to accelerate the process it is necessary to increase the
AOMR and apply an optimum value of a suitable catalyst
at a certain temperature, as this has a significant impact
on the biodiesel production yield (BPY; Seyyed Aram &
Najafi, 2016).

Different studies show that the BPYs using methanol,
ethanol, and butanol are 98.96%, 96%, and 96%, respec-
tively (Schwab, Bagby, & Freedman, 1987), and they show
that the best AOMR is 6:1 (Nye& Southwell, 1984). Using
a temperature higher than the boiling point of alcohol
results in a soapy solution and destroys the esters and the
catalyst; therefore, selecting a temperature in the range of
the boiling point of alcohol not only results in an increase
in the BPY but is also safer (Feuge & Gros, 1949; Maha-
jan, Konar, & Boocock, 2007). The type and amount of
catalyst used have a considerable impact on the develop-
ment of the conversion reaction. As an example, using
an NaOH catalyst by 0.8 wt% of oil with ethanol at a
temperature of 50°C leads to a BPY of 95.8% (Ahn, Kon-
car, Mittelbach, & Marr, 1995; Boocock, Konar, Mao,
Lee, & Buligan, 1998; Foglia, Nelson, & Marmer, 1998).
To produce the desired product, there is a need to use
an effective experimental design model (Muthukumaran
et al., 2017). There are several modeling methods, the
simplest of which is the mathematical approach, which
is considered the classical system (Faizollahzadeh Ard-
abili, 2014; Najafi&FaizollahzadehArdabili, 2018). Intel-
ligent systems enable the user to perform very com-
plex tasks with high accuracy, but without the need to
devise the mathematical equations in the system (Faizol-
lahzadeh Ardabili, Mahmoudi, & Mesri Gundoshmian,
2016; Najafi, Faizollahzadeh Ardabili, Mosavi, Shamshir-
band, & Rabczuk, 2018). These methods have been
successfully employed in waste management (Nabavi-
Pelesaraei, Bayat, Hosseinzadeh-Bandbafha, Afrasyabi, &
Chau, 2017), groundwater modeling (Gholami, Chau,
Fadaee, Torkaman, & Ghaffari, 2015), the assessment of

river water quality (Wang, Xu, Chau, & Lei, 2014) and
river stage forecasting (Chau, 2007). There are also sev-
eral studies on modeling and optimizing biodiesel pro-
duction from different sources. Mostafaei, Javadikia, and
Naderloo (2016) evaluated and compared the results of
a response surface methodology (RSM) and an adaptive
neuro-fuzzy inference system (ANFIS) for modeling the
transesterification yield achieved in an ultrasonic reactor,
while Naderloo, Javadikia, and Mostafaei (2017) devel-
oped an ANFIS model to estimate the ratio of energy
production from biodiesel production.

Conventionally, one of themain challenges of biodiesel
production is obtaining the maximum BPY under opti-
mum conditions, as the cost of energy and materials
puts limitations on optimized production. The present
study aims to determine the condition that produces
the maximum BPY at the minimum production cost,
and because modeling the production process remains a
major challenge, modeling tools were used. Accordingly,
this study presents an approach for modeling the process
of biodiesel production (both methyl and ethyl esters)
from waste cooking oil (WCO) and estimating the BPY
using ANFIS, multilayered perceptron (MLP), and radial
basis function (RBF)models. The presentedmodels open
up the pathway to process optimization. This study deter-
mines the optimal levels of the independent variables
for obtaining the maximum BPY using RSM. The main
aspect that distinguishes this study from similar research
is its economic approach, wherein the presented produc-
tion costs are based on the BPY. The work was carried
out in five stages: (1) studying the biodiesel production
from the WCO, (2) developing the BPY prediction mod-
els, (3) evaluating the developed models and choosing
the best one, (4) optimizing the biodiesel production
by employing the related independent variables, and (5)
using the material and energy costs to obtain the final
results.

2. Materials andmethod

In this study, WCO from the restaurant at the Univer-
sity ofMohagheghArdabili was used to produce biodiesel
because of its reasonable price. Using WCO as a source
of biodiesel production imposes greater complexity due
to the presence of impurities such as free fatty acids and
water. In this study, the effects of the reaction temperature
(50, 60, 70, 80°C), the type of alcohol (methanol, ethanol),
the AOMR (3:1, 6:1, 9:1), the wt% of the catalyst (0.5,
1.0, 1.5), themixing intensity (300, 600, 900 rpm) and the
reaction time (30, 60, 90min) on BPY were investigated
(as independent parameters), with BPY as the dependent
parameter (Table 1). The experiments were performed in
a completely randomized design with three replications.
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Table 1. The investigated factors and their experimental values.

Factor Values

Reaction temperature (°C) 50, 60, 70, 80
Alcohol type methanol, ethanol
Alcohol-to-oil molar ratio 3:1, 6:1, 9:1
Wt% of the catalyst 0.5, 1.0, 1.5
Mixing intensity (rpm) 300, 600, 900
Reaction time (min) 30, 60, 90

The WCO used in this study contained contaminants
such as water, solid particles and free fatty acids. Water
has a significant effect on the BPY (Najafi, Pirouzpanah,
Najafi, Yusaf, & Ghobadian, 2007), so in the first step
the water was extracted from the WCO using a vacuum
evaporation method, and then filter paper was used to
remove the solid particles. The fatty acids in the WCO
were 0.9 wt%, which is higher than the allowed value of
0.5 wt%. A pre-treatment stage (esterification) was per-
formed to reduce the free fatty acids in the WCO, during
which the acids reacted withmethanol (or ethanol) in the
presence of a sulfuric acid catalyst and were converted to
ester (or ethyl ester). The AOMR was 10:1 and the value
of the sulfuric acid catalyst was 2.0 wt% of theWCO. The
excess alcohol and the water produced were extracted
using a vacuum evaporation method during this process.

2.1. Experimental method

After the esterification process and the extraction of the
water, the solid particles and the free fatty acids, a 100-
cc sample of the WCO was poured into a 200-cc beaker
and heated to 30°C. During the heating process, the sam-
ple was mixed using a mechanical mixer at 300 rpm.
Simultaneously, methanol with an AOMR of 3:1 and an
NaOH catalyst with a value of 0.5 wt% of the WCO was
solved at 30°C (the temperature of theWCO) in a 100-cc
beaker. Then, the oil and the produced methoxide were
mixed together and the reaction timewas recorded. After
20min, the reaction temperature was reduced to room
temperature using liquid nitrogen and the progress of the
reaction was halted. Then, the final product was defused
using hydrochloric acid. To fully break down the glycerin
and salt deposits produced, a centrifuge with a rotational
speed of 6000 rpm was used for 5min. The upper phase
of the residual fluid (yellow color) is biodiesel (or methyl
ester) and the lower phase (brown color) is glycerine, and
these phases were separated. After this, the biodiesel was
passed through a filter to eliminate the waxy particulate
matter. The biodiesel was then washed with a volume of
distilled water equal to the volume of biodiesel at a tem-
perature of 60°C in order to remove the soap that had
been produced.

It is essential that the mixture of emulsion is mixed
slowly after adding distilledwater to the ester. To separate
the emulsion phases, a centrifuge with a rotational speed
of 6000 rpmwas again used for a period of 5min. During
this stage three phases are completely separated, and the
biodiesel – which is lighter than the other two phases – is
collected from the top layer. Soap, which forms as a white
foam, makes up the middle layer, and the residual solu-
tion of water and salt, which has a yellow color, forms the
bottom layer. The biodiesel was separated and purified
using a filterwith a fine grid. Thewater and excess alcohol
in the biodiesel were extracted using vacuumevaporation
at a temperature lower than 100°C, because separating
the water and alcohol from biodiesel at temperatures
higher than 100°C forms a waxy ester and reduces the
BPY. Leaching operations do not remove the monoglyc-
erides and diglycerides from biodiesel, so this process
was conducted by passing the biodiesel through a sorbent
such as silica gel, as this results in the monoglycerides
and diglycerides – which have a high polarity – being
adsorbed onto the gel. Because of its high concentration,
biodiesel cannot easily pass through a sorbent; therefore,
a hexane solvent was used after removing the monoglyc-
erides and diglycerides, and the hexane was extracted
from the biodiesel using a distillation method. Absorb-
ing operations were performed at room temperature.
After the monoglyceride absorption, the purity of the
biodiesel produced in accordance with the chromatogra-
phy test was more than 98.5%. Finally, the wt% ratio of
biodiesel to WCO was calculated. These operations were
performed in three repetitions for each of the different
conditions of reaction temperature: (1) alcohol type, (2)
AOMR, and (3) catalyst quantity and mixing intensity.

2.2. Modeling process

The modeling process was performed for communi-
cation between the independent and dependent vari-
ables. The main purpose of using soft computing meth-
ods is to develop a black box model without the need
to mathematical models. The data were separated into
two categories according to the qualitative parameter of
the type of alcohol: methanol and ethanol. Thus, for
each type of alcohol, a separate predictive network was
developed. The MATLAB software package was used to
develop the models, and the modeling was performed
in two stages: training and testing (Faizollahzadeh Ard-
abili, Mahmoudi, Mesri Gundoshmian, & Roshanian-
fard, 2016). The training stage is an important step in
the formation of networks. After developing the target
network (which is formed in the training process), the
testing data is then applied to the network in order to
obtain the results of the testing stage.
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2.2.1. Artificial neural network (ANN)modeling
The artificial neural network (ANN) is one of the most
popular modeling methods, and MLP is one of the most
commonly applied ANN methods. The ANN Toolbox
in MATLAB was used to design the MLP network. The
inputmatrixwas created using the independent variables,
while the only dependent variable was the BPY. Initially,
the network divided the data into training data (70%),
test data (25%) and validation data (5%). Determining
the optimal number of neurons in the hidden layer is the
most important operation in the training process; there-
fore, at each training stage, the network was trained with
different numbers of neurons in the hidden layer, and
the value of the performance function was calculated for
certain numbers.

The second stage was to develop an RBF model. This
type of ANN is a feed-forward network with a nonlin-
ear input and a linear output. Due to the characteristics
of nonlinear approximations, RBF networks can model
complex systems (Jiang, Dong, Wang, & Li, 2015). Con-
trary to the MLP network, increasing the number of
neurons in the hidden layer increases the performance
of RBF models until a threshold is reached, after which
point no further significant benefit is obtained; therefore,
the aim is to find the number of neurons closest to this
threshold in order to obtain the maximum output accu-
racy using the minimum number of neurons. At each
stage of the training process, 2 neurons were added to
the number of neurons and the networks were retrained,
and each time the training decreased the mean square
error (MSE). As before, the independent variables were
the reaction temperature, the AOMR, the wt% of the cat-
alyst, the mixing intensity and the reaction time, and the
only dependent variable was the BPY.

2.2.2. ANFISmodeling
ANFIS is a hybrid of neural networks and fuzzy sys-
tems that combines the advantages of both of its com-
ponents (Wali, Al-Shamma’a, Hassan, & Cullen, 2012).
The desired ANFIS model for predicting the BPY based
on the reaction temperature, the AOMR, the wt% of
the catalyst, the mixing intensity and the reaction time
was developed using MATLAB (Faizollahzadeh Ardabili
et al., 2016). The training process was performed with g-
bell, gaussian, and trap membership functions in order
to determine which is the most effective, and the per-
formance parameters were separately calculated for each
function.

2.3. Evaluation

In order to compare the accuracy and performance of
the designed networks, three performance factors were

used (Faizollahzadeh Ardabili, Najafi, Ghaebi, Shamshir-
band,&Mostafaeipour, 2017): the rootmean square error
(RMSE), the correlation coefficientR, and themean abso-
lute error (MAE). Calculation of the difference between
the target and estimated values was performed using the
RMSE, while the Pearson correlation coefficient was used
for expressing a linear correlation between the target and
estimated values. The equations are as follows:

RMSE =
√√√√ 1

N

N∑
i=1

(A − P)2 (1)

R =
(
1 −

(∑n
i=1 (A − P)2∑n

i=1 A
2
i

))1/2

(2)

MAE =
∑N

i=1 |A − P|
N

(3)

where P is the predicted value, A is the target value, and
N is the number of data points.

3. Results

Several studies in the field of biodiesel production have
been conducted on variousmaterials under different con-
ditions. In a study by Sinha, Agarwal, and Garg (2008),
biodiesel was produced from rice bran with a BPY of
90.2% in the presence of 0.75wt% of NaOH at 55°C with
an AOMR of 9:1 and a reaction time of 60 min. Meng,
Chen, and Wang (2008) produced biodiesel from WCO
with a BPY of 89.9% in the presence of 1.00wt% ofNaOH
at 50°C with a reaction time of 90 min. Leung and Guo
(2006) used waste frying oil to produce biodiesel and
achieved a BPY of 88.8% at 60°C with a reaction time of
20 min and an AOMR of 7:1. In the present study, the
various conditions of biodiesel production were exam-
ined, and the initial results are divided into eight groups:
(1) reaction time, (2) alcohol type, (3) AOMR, (4) reac-
tion temperature, (5) catalyst value, (6) mixing intensity
on BPY, (7) determination of biodiesel quality, and (8)
optimization of BPY.

3.1. Effect of the reaction time on the BPY

Increasing the reaction time increases the BPY. The trend
has a high slope at the beginning of the reaction then pro-
ceeds towards equilibrium over time. As expected, the
highest BPY was obtained at 90 min after starting the
reaction. In all tested cases, the difference in BPYbetween
60 and 90 min was less than 5% (Figure 2). Based on the
optimization results presented, the optimized durations
are 74.02 min for methanol and 88.02 min for ethanol,
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Figure 2. The effect of the reaction time, alcohol type and AOMR
on the BPY.

resulting in BPYs of 95.92% and 95.53%, respectively. In
a study by Zabeti, Wan Daud, and Aroua (2009), a water
bath was used to heat up the mixture and a BPY of 94%
was obtained at 65°C. In a study byRashid, Anwar,Moser,
and Ashraf (2008), sunflower oil methyl esters were pro-
duced with a BPY of 97.1% in the presence of 1.00wt%
of NaOH at 60°C with an AOMR for methanol of of
6:1, a mixing intensity of 600 rpm and a reaction time of
120 min.

3.2. Effect of the alcohol type on the BPY

Methanol converts more oil into biodiesel than ethanol
because the energy required for separating the OH− is
lower for methanol than for ethanol; therefore, methanol
has a higher affinity with the oil in the transesterification
reaction (Figure 1). The purity of the alcohol has a signifi-
cant impact on the rate of the transesterification reaction;
when the purity is high enough it eliminates the possibil-
ity of producing a waxymixture while also increasing the
BPY.However, as can be seen fromFigure 2, both alcohol
types have a similar effect on the BPY and similar trends
of variation.

3.3. Effect of the AOMR on the BPY

The transesterification reaction is an equilibrium reac-
tion. According to Le Chatelier’s principle, increasing the
molar ratio also increases the BPY. The results of the
experiments prove this principle. As shown in Figure 2,
increasing the AOMR from 3:1 to 6:1 increases the BPY,
but increasing the AOMR higher than 6:1 increases the
glycerin and excess alcohol in the separation stage, thus
decreasing the purity and the BPY. Therefore, the best
molar ratio for a high BPY is 6:1 for both methanol and
ethanol. In a study by Roosta and Sabzpooshan (2016),
the best molar ratio of an AOMR for methanol of 7:1,

Figure 3. The effect of the reaction temperature and the wt% of
the catalyst on the BPY.

but these results have no significant impact on the results
of the present study, for which the optimized value of an
AOMR for methanol of 6.58:1.

3.4. Effect of the reaction temperature on the BPY

The transesterification process involves three successive
endothermic or exothermic reactions. However, this pro-
cess has positive activation energy and the reaction is
endothermic. As a result, increasing the temperature to
70°C increases the BPY. However, at high temperatures
(close to the boiling point of alcohol) the triglycerides in
the WCO become soapy, thus reducing the purity of the
biodiesel and accordingly reducing the BPY (Figure 2). It
should also be noted that if the temperature is too high
when the alcohol and the catalyst are added to the oil, a
waxy solution forms and no biodiesel is produced.

3.5. Effect of the catalyst value on the BPY

Using an alkaline catalyst with a high percentage due
to the presence of free fatty acids in the WCO leads to
the formation of soap and thus increases the viscosity of
the mixture, reducing the affectivity of the mixing the
oil and ethanol and in turn reducing the BPY. There-
fore, increasing the wt% of the catalyst (from 0.5wt% to
1.5 wt%) initially increases the BPY and then reduces it.
In all experiments, the maximumBPYwas obtained with
1.0 wt% of the catalyst (Figure 3).

3.6. Effect of themixing intensity on the BPY

Due to the low solubility coefficient between them, oil
and alcohol are practically insoluble with each other. As
a result of this, the transesterification reaction proceeds
slowly if the oil and alcohol are not sufficiently well
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Figure 4. The effect of the mixing intensity on the BPY.

mixed. As expected, increasing the mixing intensity
increases the effective surface of the reaction and accord-
ingly increases the BPY. In all experiments, themaximum
BPY was obtained at 600 rpm when using ethanol and
800 rpm when using methanol (Figure 4).

3.7. Determination of the biodiesel quality

In order to determine the quality of the biodiesel that
was produced, its physical and chemical properties

Table 2. Thepercentages of ethyl esters in biodiesel derived from
WCO.

Number Rotational name Trivial name
Common
acronym Wt%

1 Ethyl hexadecanoate Ethyl palmitate C16:0 5.12
2 Ethyl 9,12-

octadecadienoate
Ethyl linoleate C18:2 57.13

3 Ethyl 9-octadecenoate Ethyl oleate C18:1 33.34
4 Ethyl 9,12,15-

octadecadienoate
Ethyl linolenate C18:3 3.54

6 Ethyl octadecanoate Ethyl stearate C18:0 0.87

Table 3. The physical and chemical properties of biodiesel pro-
duced fromWCO.

Property
Measuring
standard

WCO biodiesel
(present study)

ASTM
standard

Viscosity at 40°C (mm2/s) ASTM D445 6.482 1.900–6.000
Density at 15°C (g/cm3) ASTM 6751-02 0.878 0.870–0.900
Low heat value (Mj/kg) ASTM D240 – 39.9
Cetane number D613 52 > 47
Flash point (°C) ASTM D93 146 > 130
Cloud point (°C) D2500 5 −3 to 12
Pour point (°C) D97 −4.5 −15 to 10

Note: ASTM = American Society for Testing and Materials; WCO = waste
cooking oil.

were established according to the American Society for
Testing and Materials (ASTM) 2006 standard. A gas-
chromatography mass method with a polar column was

Figure 5. Gas-chromatography mass test with a polar column.
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(a) (b)

Figure 6. The optimal conditions for BPY maximization for: (a) methanol; (b) ethanol.
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employed based onASTMD6584 to determine the purity
of the biodiesel and the composition of its constituents
(Figure 5, Table 2). The results of the analysis indicate that
the biodiesel’s purity was greater than 98%, which con-
firms that its quality meets the requirements and exceeds
the standard values. The formula of C20H39O2 was
obtained by considering the percentage of the biodiesel’s
esters. As a result, the weight of onemole of biodiesel was
determined to be 311 g (Table 3).

3.8. Optimization of the BPY

The optimization process was performed using the
Design-Expert® software package (Faizollahzadeh Ard-
abili et al., 2017). RSM was employed to fit a quadratic
model in order to optimize the BPY (as the dependent
variable) based on the values of the independent variables
obtained from the experimental data. In all cases, the aim
of the optimization was tomaximize the BPY under opti-
mal conditions for each independent variable. Figure 6
presents the results of the RSM optimization, which was
performed separately for methanol (left-hand side) and
ethanol (right-hand side). Each graph includes the pre-
dictions X1 and X2, whose values are optimized to the
value of the BPY, where X1 relates to the horizontal axis
and X2 to the vertical axis. In all cases, the vertical axis
relates to the reaction temperature.

The optimum value of the BPYwhenmethanol is used
is 95.92%, which is obtained at 73.8°C with a reaction
time of 74.02 min, an AOMR of 6.58:1, a catalyst concen-
tration of 1.13wt% and a mixing intensity of 824.45 rpm
(Figure 6(a)). In the case of ethanol, the optimum BPY
is 95.53%, which is obtained at 64.96°C, with a reac-
tion time of 88.02 min, an AOMR of 7.005:1, a catalyst
concentration of 1.25 wt% and a mixing intensity of
592.18 rpm (Figure 6(b)).

Table 4 displays a comparison of each independent
parameter’s effect on the BPY with the optimization
results presented above; it can be seen that the optimiza-
tion results are within the ranges obtained from studying
the effects of the independent parameters.

3.9. Results of themodeling

The first stage of developing networks is the training pro-
cess, after which the second stage tests each model and
generates its results.

3.9.1. Results of the ANNmodeling
TwoMLPnetworkswere developed separately for the two
types of alcohol. Table 5 presents the results of the MLP
network training process; the network with 8 neurons in
the hidden layer was selected as the best MLP prediction
model for both types of alcohol due to having the lowest

Table 4. The effect of each independent parameter on the BPY
and their optimized values.

Independent
parameter

Effect on BPY Optimization results

Reaction time The highest yield was
obtained 90 min
after the start of the
reaction.

Methanol 74.02min

Ethanol 88.02min
Alcohol type Methanol converts

more oil to biodiesel
than ethanol.

Methanol 95.92%

Ethanol 95.53%
Alcohol-to-oil
molar ratio

The best AOMR for a
high BPY is 6:1 for
both methanol and
ethanol.

Methanol 6.58:1

Ethanol 7.00:1
Reaction
temperature

Increasing the
temperature to 70°C
increases the BPY.

Methanol 73.80°C

Ethanol 64.96°C
Catalyst value Increasing the wt%

of catalyst (from
0.5 wt% to 1.5 wt%)
first increases
the BPY and then
reduces it.

Methanol 1.13 wt%

Ethanol 1.25 wt%
Mixing
intensity

The maximum BPY
was obtained at
600 rpm for ethanol
and 800 rpm for
methanol.

Methanol 824.45 rpm

Ethanol 592.18 rpm

Note: BPY = biodiesel production yield.

Table 5. The results of training theMLPnetwork in two stepswith
ethanol and methanol as the alcohol types.

Number of neurons RMSE (%) R MAE (%)

Ethanol
8 3.40 .92 1.80
10 5.19 .86 2.55
12 6.77 .73 2.94
14 5.80 .79 3.43
Methanol
8 3.09 .91 2.03
10 3.41 .89 2.32
12 4.01 .85 2.42
14 3.76 .88 2.96

Note:MAE = meanabsolute error; RMSE = rootmean square error. Italic font
denotes the best prediction model selected for the testing stage.

RMSE (3.40% for ethanol and 3.09% for methanol) and
MAE (1.80% for ethanol and 2.03% for methanol) and
the highest R (.92 for ethanol and .91 for methanol).

After the training process was completed, the testing
of the developed models was undertaken. The testing
data was imported into the selected models, and the
output values were exported for each model separately.
Figure 7 presents a scatter chart, which makes it eas-
ier to study the pattern of output values against target
values. Based on Figure 7(a), the target and output val-
ues of methanol have a linearity of 81.99%, and based on
Figure 7(b) the target and output values of ethanol have
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(a) (b)

Figure 7. Scatter chart of output values against target values for the MLP model for: (a) methanol; (b) ethanol.

Table 6. The results of training the RBF network in two stepswith
ethanol and methanol as the alcohol types.

Number of neurons RMSE (%) R MAE (%)

Ethanol
14 3.95 .89 2.35
16 3.34 .92 2.35
20 3.21 .93 1.33
22 3.21 .93 1.33
Methanol
14 3.13 .91 2.08
16 2.52 .94 1.54
20 2.20 .95 1.18
22 2.20 .95 1.18

Note:MAE = meanabsolute error; RMSE = rootmean square error. Italic font
denotes the best prediction model selected for the testing stage.

a linearity of 84.67%. The results of the model testing are
presented in the next section.

Table 6 presents the results of the RBF network train-
ing process. It can be seen that the networks with 20 and
22 neurons in the hidden layer have similar results, which
indicates that the training process is finished. Therefore,
the network with 20 neurons in the hidden layer was
selected as the best RBF prediction model for both types
of alcohol due to having the lowest RMSE (3.21% for
ethanol and 2.20% for methanol) and MAE (1.33% for

ethanol and 1.18% for methanol) and the highest R (.93
for ethanol and .95 for methanol).

The output values were again exported by importing
the testing data into each model after the training and
selection process had been completed. Figure 8 shows the
scatter chart of output values against target values for the
RBF models. Based on Figure 8(a) the target and output
values of methanol have a linearity of 90.52%, and based
on Figure 8(b) the target and output values of ethanol
have a linearity of 85.54%.The results of themodel testing
are presented in the next section.

3.9.2. Results of the ANFISmodeling
The trap membership function was selected as the type
with the best performance, although no significant differ-
ence was found between the results of all the three mem-
bership functions tested. As can be seen from Table 7,
the trapmembership functionwas selected for theANFIS
method due to having the lowest RMSE (3.21 for ethanol
and 2.02 for methanol) and MAE (1.33 for ethanol and
1.19 for methanol) and the highest R (.93 for ethanol and
.95 for methanol).

The output values were again obtained by importing
the testing data into each model. Figure 9 shows the scat-

(a) (b)

Figure 8. Scatter chart of output values against target values for the RBF model for: (a) methanol; (b) ethanol.
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Table 7. The results of training the ANFIS network in two steps
with ethanol and methanol as the alcohol types.

Number of neurons RMSE (%) R MAE (%)

Ethanol
Gauss. 3.21 .93 1.34
Trap. 3.21 .93 1.33
Gbell. 3.21 .93 1.34
Methanol
Gauss. 2.20 .95 1.19
Trap. 2.20 .95 1.18
Gbell. 2.20 .95 1.19

Note:MAE = meanabsolute error; RMSE = rootmean square error. Italic font
denotes the best prediction model selected for the testing stage.

Table 8. The results of the testing of themodels in two stepswith
ethanol and methanol as the alcohol types.

Parameter MLP RBF ANFIS

Ethanol
RMSE (%) 3.53 3.39 3.37
R .92 .92 .92
MAE (%) 2.04 1.56 1.58
Deviation (%) 73.65 56.25 57.04
Methanol
RMSE (%) 3.35 2.34 2.42
R .90 .95 .94
MAE (%) 2.31 1.38 1.48
Deviation (%) 83.22 49.87 53.28

Note: ANFIS = adaptive neuro-fuzzy inference system; MAE = mean abso-
lute error; MLP = multilayered perceptron; RBF = radial basis function;
RMSE = root mean square error.

ter chart of output values against target values. Based on
Figure 9(a) the target and output values of methanol have
a linearity of 89.79%, and based on Figure 9(b) the target
and output values of ethanol have a linearity of 85.72%.

The results of the testing of all the models (MLP, RBF,
ANFIS) are presented in Table 8, which shows that their
performance is poorer than in the training process. The
deviation is the sum error percentage between the pre-
dicted and target values based on the BPY. An increase in
the deviation between the target and output values of the
models results in an increase in BPY loss; therefore, this
can decrease the precision of models.

Figure 10. Deviations from the target values for each model.

Based on the results of Table 8, the RBF model has
the second lowest and lowest RMSE (3.39 for ethanol
compared to 3.37 with the ANFIS model and 2.34 for
methanol), the lowestMAE (1.56 for ethanol and 1.38 for
methanol) and deviation (56.25 for ethanol and 49.87 for
methanol) and the highest R (.92 for ethanol and .95 for
methanol), thus exhibiting the best overall performance
compared to the MLP and ANFIS models. Based on
Figure 10, it is clear that theMLP andANFISmodels have
high deviations compared with the RBF model – there-
fore, the RBF model was selected as the best predictor of
BPY identified in the present study.

3.10. Economic approach

In the present study,WCOwas used to produce biodiesel
in the presence of ethanol and methanol, with NaOH as
the catalyst. In Iran, the price of WCO is 30 /kg, the
price of ethanol and methanol is 30 /kg and the price
of NaOH is about 10 $/kg (all stated currency values are
United States dollars and cents). The experimental setup

(a) (b)

Figure 9. Scatter chart of output values against target values for the ANFIS model for: (a) methanol; (b) ethanol.
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Table 9. Material and energy costs of biodiesel production.

Material (g) and energy (kWh) Cost (US$)

WCO Alc Cat Elec WCO Alc Cat Elec×10−4 Total cost (US$) BSC (US$/kg) BPY (%)

1000 106.5 10 0.024 0.3 0.426 0.10 7.265 0.827 1.503 55
1000 106.5 10 0.024 0.3 0.426 0.10 7.265 0.827 1.312 63
1000 106.5 10 0.024 0.3 0.426 0.10 7.265 0.827 1.292 64
1000 213.0 5 0.015 0.3 0.852 0.05 4.593 1.202 1.542 78
1000 319.5 10 0.031 0.3 1.278 0.10 9.270 1.679 2.099 80
1000 213.0 5 0.021 0.3 0.852 0.05 6.430 1.203 1.449 83
1000 319.5 10 0.031 0.3 1.278 0.10 9.270 1.679 1.975 85
1000 213.0 5 0.034 0.3 0.852 0.05 10.105 1.203 1.415 85
1000 213.0 5 0.028 0.3 0.852 0.05 8.267 1.203 1.399 86
1000 213.0 10 0.028 0.3 0.852 0.10 8.267 1.253 1.457 86
1000 319.5 10 0.031 0.3 1.278 0.10 9.270 1.679 1.952 86
1000 213.0 10 0.015 0.3 0.852 0.10 4.593 1.252 1.440 87
1000 213.0 10 0.034 0.3 0.852 0.10 10.105 1.253 1.424 88
1000 213.0 15 0.015 0.3 0.852 0.15 4.593 1.302 1.447 90
1000 213.0 10 0.021 0.3 0.852 0.10 6.430 1.253 1.392 90
1000 213.0 10 0.028 0.3 0.852 0.10 8.267 1.253 1.377 91
1000 213.0 15 0.034 0.3 0.852 0.15 10.105 1.303 1.432 91
1000 213.0 10 0.015 0.3 0.852 0.10 4.593 1.252 1.361 92
1000 213.0 10 0.028 0.3 0.852 0.10 8.267 1.253 1.362 92
1000 213.0 15 0.021 0.3 0.852 0.15 6.430 1.303 1.401 93
1000 213.0 10 0.034 0.3 0.852 0.10 10.105 1.253 1.347 93
1000 213.0 10 0.021 0.3 0.852 0.10 6.430 1.253 1.333 94
1000 213.0 15 0.028 0.3 0.852 0.15 8.267 1.303 1.386 94
1000 213.0 10 0.028 0.3 0.852 0.10 8.267 1.253 1.333 94
1000 213.0 10 0.028 0.3 0.852 0.10 8.267 1.253 1.319 95
1000 213.0 10 0.028 0.3 0.852 0.10 8.267 1.253 1.312 95

Note: Alc = alcohol; BPY = biodiesel production yield; BSC = biodiesel special cost; Cat = catalyst; Elec = electricity; WCO =
waste cooking oil.

included an electric heater and an electric mixer. The
value of electricity consumption was measured and cal-
culated based on the reaction temperatures (50, 60, 70,
80°C), the weight of the oil (1000 g), the weight of the
alcohol (106.5, 213.0, 319.5 g), the reaction time (30, 60,
90 min) and the mixing intensity (300, 600, 900 rpm).
The price of electricity in Iran is 3 /kWh (Statistical Cen-
ter Of Iran, 2017). The results of the calculations of the
special cost of producing 1 kg of biodiesel from WCO
– defined as the biodiesel special cost (BSC) – are pre-
sented in Table 9. Based on the results, the highest BSC
is 2.1 $/kg, which was obtained with a reaction tempera-
ture of 70°C, a reaction time of 30min, an AOMR of 9:1,
a mixing intensity of 600 rpm and 1.0wt% of the cata-
lyst, generating a BPY of 80%. The lowest BSC is 1.3 $/kg,
which was obtained with a reaction temperature of 70°C,
a reaction time of 90 min, an AOMR of 3:1, a mixing
intensity of 600 rpm and 1.0wt% of catalyst, generating
a BPY of 64%. Comparing these two extremes, although
the BSC is significantly decreased, so is the BPY, ren-
dering the minimum condition insufficient due to the
lower yield and the higher condition insufficient due to
the cost-to-yield ratio.

Figure 11 was extracted from Table 9 to display the
dependency of the BSC and the BPY. Based on Table 9
and Figure 11, the highest BPY is 95.5% at a BSC of
1.31 $/kg, the highest BSC is 2.10 $/kg with a BPY of
80.0%, and the lowest BSC is 1.29 $/kg with a BPY of

Figure 11. Results of the dependency of the production cost and
the BPY.

64.0%. It can be seen that reaching the highest BPY com-
pared to the lowest BSC of biodiesel production shows a
difference of 2 /kg, whichmeans that paying 2 /kgmore
for the BSC increases the BPY by 31.5%. Therefore, it can
be seen that achieving the highest BPY is not equal to
paying the highest BSC.

Now, it should be considered that there is a decision
tree with the aim of managing biodiesel production with
a focus on the developed models. Accordingly, the max-
imum BPY from the experimental data was imported
into the developed models with the aim of finding the
maximum predicted BPY in each model. The results are
presented in Table 10. Through simple calculations in
relation to the BSC and the BPY according to Table 9, the
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Table 10. Material and energy costs of biodiesel production.

Method BSC ($/kg) BPY (%) BPY difference (%)

Experimental results 1.31 95.5 0.0
MLP output 1.37 91.0 4.5
ANFIS output 1.37 91.5 4.0
RBF output 1.34 93.2 2.3

Note: ANFIS = adaptive neuro-fuzzy inference system; BPY = biodiesel
production yield; BSC = biodiesel special cost; MLP = multilayered per-
ceptron method; RBF = radial basis function method.

MLP model generates a BPY of 91.0% and thus has the
maximumdeviation from the target value of 95.5%, while
the RBF model with a BPY of 93.2% generates the pre-
diction that is closest to the target, and the ANFIS model
with a BPY of 91.5% is only slightly closer than the maxi-
mumdeviation. Based on the cost ofmaterials and energy
in Iran (Statistical Center Of Iran, 2017), the MLPmodel
produces an increase in the BSC of 6.5 /kg, the ANFIS
model produces an increase in the BSC of 5.7 /kg, and
finally the RBFmodel produces an increase in the BSC of
3.2 /kg. The lowest difference in BPY is 2.3% from the
experimental results.

4. Conclusion

One of the main challenges in biodiesel production is
obtaining the maximum BPY under optimum condi-
tions – but the cost of energy andmaterials puts limits on
the definition of optimized production. The present study
was conducted to determine the condition that gener-
ates themaximumBPY at theminimumproduction cost.
Modeling tools were used to simulate the production pro-
cess, as modeling this process still remains a major chal-
lenge. Accordingly, this study presents an approach for
modeling the process of producing biodiesel fromWCO
(using both methyl and ethyl esters) and estimating the
BPY using ANFIS, MLP, and RBF models. Biodiesel was
produced through the transesterification process, and the
experimental parameters examinedwere the alcohol type
(methanol, ethanol), the AOMR (3:1, 6:1, 9:1), the con-
centration of the catalyst (0.5, 1.0, 1.5 wt% of the oil), the
temperature of the reaction (50, 60, 70, 80°C), the mixing
intensity (300, 600, 900 rpm) and the reaction time (30,
60, 90 min) as the independent variables. Based on the
results of the optimization process, the optimum value
of the BPY when using methanol is 95.92%, which is
obtained at 73.80°C with a reaction time of 74.02 min, an
AOMRof 6.58:1, a catalyst concentration of 1.13%wt and
a mixing intensity of 824.45 rpm. The optimum value of
the BPY when using ethanol is 95.53%, which is obtained
at 64.96°Cwith a reaction time of 88.02min, anAOMRof
7.005:1, a catalyst concentration of 1.25wt% and amixing
intensity of 592.18 rpm. Table 4 shows that the results of
the optimization are in the range of the results obtained

from studying the effects of the independent parameters
on the BPY.

The modeling process was performed using MLP,
RBF and ANFIS methods. The RBF model has the sec-
ond lowest and lowest RMSE (3.39% for ethanol com-
pared to 3.37% with the ANFIS model and 2.34% for
methanol), the lowest MAE (1.56% for ethanol and
1.38% for methanol) and deviation (56.25% for ethanol
and 49.87% for methanol) and the highest R (.92 for
ethanol and .95 for methanol), producing the best over-
all response compared to the MLP and ANFIS models
for predicting BPY values. From an economic viewpoint,
based on the prices of materials and energy in Iran, the
highest BSC of the biodiesel is 2.1 $/kg with a BPY of
80.0% and the lowest BSC is 1.29 $/kg with a BPY of
64.0%. On the other hand, the highest BPY is 95.5% with
a BSC of 1.31 $/kg. It is clear that the production con-
dition with the highest performance has a difference of
only 2 /kg compared to the production condition with
the lowest cost; therefore, reaching the highest BPY is not
equal to paying the highest BSC.

Using the maximum BPY from the experimental
results with the aim of finding the relation between the
BSC and the prediction accuracy of the developed mod-
els, it was found that if the developed models are placed
in a decision tree, the MLP model generates a BPY of
91.0% resulting in an increase in the BSC of 6.5 /kg,
the ANFIS model generates a BPY of 91.5% resulting in
an increase in the BSC of 5.7 /kg, and the RBF model
generates a BPY of 93.2% resulting in an increase in the
BSC of 3.2 /kg. Therefore, the results of the RBF model
are confirmed as the closest match to the experimental
results. The overall finding is that attaining the highest
BPY compared to the lowest BSC only involves a differ-
ence of 2 /kg, and paying that extra 2 /kg increases the
BPY by 31.5%. Therefore, attaining the highest BPY does
not also require paying the highest BSC.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research is funded by the Foundation for Science and
Technology Development of Ton Duc Thang University (FOS-
TECT) under Grant [FOSTECT.2017.BR.19].

ORCID

Sina FaizollahzadehArdabili http://orcid.org/0000-0002-7744-7906
Shahaboddin Shamshirband http://orcid.org/0000-0002-6605-498X

http://orcid.org/0000-0002-7744-7906
http://orcid.org/0000-0002-6605-498X


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 623

References

Ahn, E., Koncar, M., Mittelbach, M., & Marr, R. (1995). A
low-waste process for the productionof biodiesel. Separation
Science and Technology, 30(7–9), 2021–2033.

Ben Jebli, M., & Ben Youssef, S. (2015). The role of renewable
energy and agriculture in reducing CO2 emissions: Evidence
for North Africa countries.

Bildirici, M. E., & Gökmenoğlu, S. M. (2016). Environmental
pollution, hydropower energy consumption and economic
growth: Evidence from G7 countries. Renewable and Sus-
tainable Energy Reviews, 75, 68–85.

Boocock, D. G. B., Konar, S. K., Mao, V., Lee, C., & Buligan,
S. (1998). Fast formation of high-purity methyl esters from
vegetable oils. Journal of the American Oil Chemists’ Society,
75(12), 1167–1172.

Chau, K. W. (2007). A split-step particle swarm optimization
algorithm in river stage forecasting. Journal of Hydrology,
346(3–4), 131–135.

Datta, A., & Mandal, B. K. (2017). Engine performance, com-
bustion and emission characteristics of a compression igni-
tion engine operating on different biodiesel-alcohol blends.
Energy, 125, 470–483.

El-Mashad, H.M., Zhang, R., & Avena-Bustillos, R. J. (2008). A
two-step process for biodiesel production from salmon oil.
Biosystems Engineering, 99(2), 220–227.

Faizollahzadeh Ardabili, S. (2014). Simulation and comparison
of control system in mushroom growing rooms environment
(Thesis of Master science). Department of mechanic of agri-
culturalmachinery engineering. University of Tabriz, Tabriz,
Iran.

Faizollahzadeh Ardabili, S., Mahmoudi, A., & Mesri Gundosh-
mian, T. (2016).Modeling and simulation controlling system
of HVAC using fuzzy and predictive (radial basis function,
RBF) controllers. Journal of Building Engineering, 6, 301–308.

Faizollahzadeh Ardabili, S., Mahmoudi, A., Mesri Gundosh-
mian, T., &Roshanianfard,A. (2016).Modeling and compar-
ison of fuzzy and on/off controller in a mushroom growing
hall.Measurement, 90, 127–134.

Faizollahzadeh Ardabili, S., Najafi, B., Ghaebi, H., Shamshir-
band, S., & Mostafaeipour, A. (2017). A novel enhanced
exergy method in analyzing HVAC system using soft com-
puting approaches: A case study onmushroom growing hall.
Journal of Building Engineering, 13, 309–318.

Feuge, R. O., & Gros, A. T. (1949). Modification of vegetable
oils. VII. Alkali catalyzed interesterification of peanut oil
with ethanol. Journal of the American Oil Chemists’ Society,
26(3), 97–102.

Foglia, T. A., Nelson, L. A., & Marmer, W. N. (1998). Produc-
tion of biodiesel, lubricants and fuel and lubricant additives:
Google Patents.

Franco, S., Mandla, V. R., & Rao, K. R. M. (2017). Urban-
ization, energy consumption and emissions in the Indian
context a review. Renewable and Sustainable Energy Reviews,
71, 898–907.

Ghazanfari, J., Najafi, B., Faizollahzadeh Ardabili, S., &
Shamshirband, S. (2017). Limiting factors for the use of
palm oil biodiesel in a diesel engine in the context of the
ASTM standard. Cogent Engineering (just-accepted), 4(1),
1411221.

Gholami, V., Chau, K. W., Fadaee, F., Torkaman, J., & Ghaffari,
A. (2015). Modeling of groundwater level fluctuations using

dendrochronology in alluvial aquifers. Journal of Hydrology,
529, 1060–1069.

Hasan, M. M., & Rahman, M. M. (2017). Performance and
emission characteristics of biodiesel–diesel blend and envi-
ronmental and economic impacts of biodiesel production:
A review. Renewable and Sustainable Energy Reviews, 74,
938–948.

Huang, R., Cheng, J., Qiu, Y., Li, T., Zhou, J., & Cen, K. (2015).
Using renewable ethanol and isopropanol for lipid trans-
esterification in wet microalgae cells to produce biodiesel
with low crystallization temperature. Energy Conversion and
Management, 105, 791–797.

Jiang, H., Dong, Y., Wang, J., & Li, Y. (2015). Intelligent opti-
mization models based on hard-ridge penalty and RBF for
forecasting global solar radiation. Energy Conversion and
Management, 95, 42–58. doi:10.1016/j.enconman.2015.02.020

Karavalakis, G., Gysel, N., Schmitz, D. A., Cho, A. K., Sioutas,
C., Schauer, J. J., . . . Durbin, T.D. (2017). Impact of biodiesel
on regulated and unregulated emissions, and redox and
proinflammatory properties of PM emitted from heavy-
duty vehicles. Science of the Total Environment, 584–585,
1230–1238.

Knothe, G. (2001). Analytical methods used in the production
and fuel quality assessment of biodiesel. Transactions of the
ASAE, 44(2), 193–200.

Leung, D. Y. C., & Guo, Y. (2006). Transesterification of neat
and used frying oil: Optimization for biodiesel production.
Fuel Processing Technology, 87(10), 883–890.

Li, T., Baležentis, T., Makutėnienė, D., Streimikiene, D., &
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