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Abstract — This paper attempts to study the bifurcation phe-
nomena of a system of parallel-connected dc/dc boost converters.
In particular, it is shown that simple averaged models can be used
to predict the occurrence of Hopf bifurcation in such systems. The
results provide important information for the design of stable cur-
rent sharing in a master-slave configuration.

I INTRODUCTION

Recently, paralleling converters has become a popular tech-
nique in power supply design for improving power capabil-
ity, reliability and flexibility. The main design issue in paral-
lel converters is the control of the sharing of current among
the constituent converters. In practice, mandatory control
is needed to ensure proper current sharing, and many effec-
tive control schemes have been proposed in the past [1}-[2].
One common approach is to employ an active control scheme
to force the current in one converter to follow that of the
other. Such a scheme is commonly known as the master-slave
current-sharing scheme [1]-[2].

Bifurcation behaviour in dc/dc converter systems is usu-
ally studied via a discrete-time approach [3]-{4]. However, the
mathematics involved is rather complicated when using such
an approach. In this paper, we use a simple state-space aver-
aged model to study some low-frequency nonlinear behaviour
of a system of parallel-connected boost converters.

II MASTER-SLAVE CURRENT-SHARING CONTROLLED
PARALLEL-CONNECTED DC/DC CONVERTERS

The system under study consists of two dc/dc converters
which are connected in parallel feeding a common load. De-
noting the two converters as Converter 1 and Converter 2 as
shown in Fig. 1, the operation of the system can be described
as follows. Both converters are controlled via a simple pulse-
width modulation (PWM) scheme, in which a control voltage
Ucon is compared with a sawtooth signal to generate a pulse-
width modulated signal that drives the switch. The sawtooth
signal of the PWM generator is

tmod T
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VUramp = Vi + (VU - VL)
where Vi and Vi are the lower and upper voltage limits of
the ramp, and T is the switching period. The PWM output
is “high” when the control voltage is greater than vramp, and
is “low” otherwise.

The control voltages of Converters 1 and 2 are given by the
following equations:
Voffset - K’ul(v - ‘/ref) (2)
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Fig. 1: Block diagram of parallel-connected dc/dc converters
under a master-slave current-sharing control

where Vogser is a dc offset voltage that gives the steady-state
duty cycle, Vs is the reference voltage, K,; and K, are the
voltage feedback gains, Kj; is the current feedback gain, and m
is a current weighting factor. Under this scheme, the output
current of both Converter 2 will follow that of Converter 1 at
a ratio of m to 1, where m > 0. In this paper, we assume
m=1. Converter 1 is commonly referred to as the “master”
and Converter 2 the “slave” which imitates the master’s cur-
rent value.

IIT STATE-SPACE AVERAGED MODEL FOR TWO
PARALLEL BooST CONVERTERS

Figure 2 shows two boost converters connected in parallel.
The space-space averaged model for the parallel-connected
boost converters is shown in Fig. 3. The system can be rep-
resented by the state-space averaged equations:

G _ -dw B

da L L1

ﬂz (1 —da)v n E

dt Ly Lo

dv _ (1 —d1)iz (1 - d2)i2 v

dt c "7 ¢ Tre @)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 15, 2008 at 21:54 from IEEE Xplore. Restrictions apply.



Converter 1

r=--=-=-===-====7==7—7+% ]

I D 1
MR N

1 : +

ECRS B o

S Cr DL R
—{+ -
E

iy Sa :

: e DZ:

Ir-rr] I [ Il

y L2 Tia '

Converter 2

Fig. 2: Two parallel-connected boost converters

Fig. 3: The state-space averaged model of parallel-connected
boost converters

where d; and d2 are the duty cycles of Converter 1 and Con-
verter 2 respectively. We assume that rpi, r12 and r¢ are
zero in order to simplify the subsequent analysis. The duty
cycles d; and d2 can be represented by:
dl =D"kv1(v_‘/ref); (5)
dy = D — ky2(v — Vier) — ki(t2 — 41), (6)
where D is the steady-state duty cycle, k,1 = Vf—_"{,;—, ky2 =
7232~ and ki = ;25— It should be noted that 0 < di < 1
U L U
and 0 < d2 < 1 should be satisfied. Putting (5) and (6) into
(4), we get a set of autonomous equations that that can be
further simplified in a dimensionless form.
We define the dimensionless state variables as follows:
ilR izR v
= , Tp = T3 = . 7
‘/ref z ‘/ref ’ 8 ‘/ref ( )
‘We also define the dimensionless time and parameters as fol-
lows:

X1

t L, L2 CR
T_T’ §1—ﬁ, f2—ﬁ,c—?,
kiV; E
Kyl = ku1Viet, Kv2 = kv2Vief, Ki = _ef’ e= . (8)
R Viet

Direct substitution of these new dimensionless variables, time
and parameters in (4), (5) and (6) yields the following dimen-
sionless autonomous equations:

We should note that (5) and (6) can be written as

d1 =D — Kyi(z3 — 1), (10)

(11)
To complete the model, saturation must be included. When
d; < 0orfand d2 < 0, we put d; = 0 or/and d2 = 0 in (4)
and perform dimensionless substitution. Similarly, when d; >
dmex or/and dz > dmax, We put di = dmax or/and dz = dmax
in (4) and perform dimensionless substitution (dmax < 1 since
the duty cycle of the boost converter cannot be equal to 1
exactly in practice).

The equilibrium point can be calculated by setting all time-
derivatives in (9) to zero and solve for z1,z2 and x3. This

gives
X, <
X3 1
IV  STABILITY OF EQUILT™RRIUM POINT AND HOPF
BIFURCATION

d2 = D — Kky2(x3 — 1) — ki(T2 — T1)-

)

X= (12)

The Jacobian, J(X), for the dimensionless system evaluated
at the equilibrium point is given by

0 ={ry1+1-D)

J(X) = &=
2e(1—€B)—-ni 2e(1—£B)+n,~
2¢el 2e(

0
fd. 2

We attempt to study the stability of the equilibrium point and
the trajectory in the neighbourhood of the equilibrium point
by deriving the eigenvalues of the system at the equilibrium
point. The usual procedure is to solve the following equation
for X:

det[A1l - J(X)] =0. (14)

Using the above equation, the following conditions are easily
verified:

(15)
det[—-J(X)] > 0. (16)

Hence, there exists at least one A € (—o00,0) such that
det[A1 — J(X)] = 0, i.e., the system has at least one nega-
tive real eigenvalue. Also, numerical calculations of eigenval-
ues for the practical range of parameters reveal that the other
two eigenvalues are a complex conjugate pair which have ei-
ther a positive or negative real part depending upon values
of ky1 and k,2. In particular, the following observations are
made.

For small values of k1 and &2, the pair of eigenvalues has a
negative real part. As xy1 or/and x,2 increases, the real part
of the complex eigenvalues get less negative, and at a critical
value of K,1 or/and k2, the real part changes from negative to
positive. The loci of the complex eigenvalue pair are plotted
in Fig. 4. The critical value of £,1 or/and k.2 depends on the
values of £1,£2,(,e and k;. As we increase k,1 or/and k.2,

,\liIP det[A1 - J(X)] = —oo,

dz1 _  e—=(1-D+ k(23 —1))z3 the sign of the real part of the complex eigenvalues changes,
dr & the system loses stability via a Hopf bifurcation [5).
d_a:z_ _ e— (1 =D+ ky2(x3 — 1) + ki(z2 — z1))x3
dr £ V LocaL TRAJECTORIES FROM THE AVERAGED
dzs  _ (1-D+kyi(zs— 1))y EQUATIONS
dr ¢
(1 = D + ky2{zs — 1) + ki(z2 — £1))T2 — 3 0 In this section, we re-examine the stability in terms of the lo-
+ ¢ -9 cal trajectories near the equilibrium point. Since the use of an
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Fig. 4: Loci of the complex eigenvalue pair moving from left
to right as K, is increased

averaged model for predicting nonlinear phenomena will be-
come inadequate when stability is lost, our aim in this section
is to observe, by plotting the local trajectories, the behaviour
of the system as it goes from a stable region to an unstable
region. For further investigation beyond the bifurcation point
predicted by the averaged model, we need to resort to the ex-
act piecewise switched model, as will be reported in the next
section.

Fig. 5: View of the stable (spiralling mward) local tra.]ectory
based on the averaged model.

Fig. 6: View of the unstable (spiralling outward) local trajec-
tory based on the averaged model.

The trajectory of the system near the equilibrium point
can be easily derived from the corresponding eigenvalues and
eigenvectors. We will illustrate two typical local trajecto-
ries, corresponding to a stable and an unstable equilibrium
point. We first examine the stable system with k,;=0.48,
Ky2=0.45 and x;=0.40. The trajectory is shown in Fig. 5. We
next examine the unstable system with x,1=0.48, k,2=0.55
and x;=0.40. The system loses stability and the trajectory
is shown in Fig. 6. From the above trajectories, we clearly
observe that the system loses stability via a Hopf bifurcation.

VI

As the averaged continuous model falls short of predicting
the details after the bifurcation, we examine the system again

COMPUTER SIMULATION STUDY

using computer simulation which employs an exact piecewise
switched model. The following circuit parameters are used
in our simulations: switching period T'=40ps, input volt-
age E=24V, output voltage v=24V, inductance L;=0.004H,
rr1=0.05Q, inductance L2=0.004H, r.2=0.282, capacitance
C=10uF, r¢= 0.01€2 and load resistance R= 109.

Fig. 7: View of the stable (spiralling inward) local trajectory
based on the exact piecewise switched model.

Fig. 8: View of the unstable (spiralling outward) local trajec-
tory based on the exact piecewise switched model.

Since we are simulating the actual circuits, the original cir-
cuit parameters will be used instead of the dimensionless ones.
In particular we will focus on the qualitative change of dynam-
ics as Ky or/and K2 is varied. To observe the trend, we keep
K,1 constant and vary K,2 (similar trend is observed when
we keep K2 constant and vary Ku1).

When K, is small, the trajectory spirals into a fixed
period-1 orbit, corresponding to a fixed point in the aver-
aged system. Figure 7 shows the simulated trajectory. When
K, is increased beyond a critical value, the period-1 orbit be-
comes unstable, and the trajectory spirals outward as shown
in Fig. 8. These observations confirm the prediction we made
in Section V based on the averaged equations.

In order to give a better view of the system dynamics after
the Hopf bifurcation, a large number of trajectories and bi-
furcation diagrams have been obtained. In the following, only
representative bifurcation diagrams and sequence of trajecto-
ries are shown, which serve to exemplify the main findings
concerning the bifurcation behaviour of a system of parallel

boost converters under a master-slave current sharing scheme.

We first keep K,1 constant and vary K,2. A bifurcation
diagram is shown in Fig. 9(a). The sequence of simulated tra-
jectories, as shown in Figs. 9(b), (c) and (e), reveals a typical
Hopf bifurcation in which a stable equilibrium state breaks
down to quasi-periodic orbits and limit cycles. The corre-
sponding stroboscopic maps showing a quasi-periodic orbit
and a limit cycle are shown in Figs. 9(d) and (f). Next, we
keep K2 constant and vary K,;. Similar bifurcation diagram
and trajectories are obtained. For brevity, they are not re-
peated here.
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Fig. 9: (a) Bifurcation diagram with K,z as bifurcation parameter (K,; = 0.11 and K; = 1); (b) Stable period-1 orbit
(K1 = 0.11, Ky2 = 0.11 and K; = 1); (c) Quasi-periodic orbit (K,1 = 0.11, K2 = 0.13 and K; = 1); (d) Stroboscopic map
of (c); (e) Limit cycle (Kv1 = 0.11, Ky2 = 0.15 and K; = 1); (f) Stroboscopic map of (e)

(e)

Fig. 10: Sequence of changes observed experimentally when K, is increased. (a) Stable period-1 orbit; (b) Quasi-periodic
orbit; (c¢) Stroboscopic map of (b); (d) Limit cycle; (e) Stroboscopic map of (d). (Horizontal scale: 5V /div, vertical scale:
0.04A/div for (a); Horizontal scale: 10V /div, vertical scale: 0.4A/div for (b)—(e).)

VII EXPERIMENTAL VERIFICATION

We build a circuit to verify our simulation results. As we increase
K2, we get results which are in good agreement with our simula-
tions. The Hopf bifurcation takes place at approximately the same
location (in terms of the value of the dc gain) as it does in our sim-
ulations. Trajectories of stable period-1 orbit, quasi-periodic orbit
and limit cycle are captured, along with stroboscopic maps show-
ing quasi-periodic orbits and limit cycles. Figures 10(a)—(e) show
the sequence of changes when we increase K,2. Figure 10(a) shows
a stable period-1 orbit. Figure 10(b) shows a quasi-periodic orbit
and Fig. 10(c) gives its the stroboscopic map. Figure 10(d) shows
a limit cycle and Fig. 10(e) gives its the stroboscopic map.

VIII CONCLUSION

This paper attempts to use a simple state-space averaged model to
explain some low-frequency nonlinear behaviour in a parallel system
of two boost converters which share current under a master-slave
control scheme. It has been found that Hopf bifurcation is possible

when the voltage feedback gains are varied. These results are useful
for practical design of such systems.
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