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Abstract

In this paper, we consider the adequacy check of the varying-coefficient model when
covariates are measured with error and some auxiliary variable is available. With the help
of auxiliary variable, we calibrate the measurement error and obtain an estimator of the
unobservable true variable. The empirical-process-based test is built by applying the cal-
ibrated estimator of the model error. The asymptotic properties of the proposed test are
rigorously investigated under the null hypothesis, local and global alternatives. It is shown
that the proposed test is consistent and has good properties of power. We illustrate that the
naive method cannot control Type I error and loses effect completely. But the proposed
calibrated method performs well in terms of the empirical sizes close to the test level and
high empirical powers. Simulation studies and two real data analyses are conducted to
demonstrate the performance of the proposed approach.
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1. INTRODUCTION

The varying-coefficient model is a popular semiparametric model, which takes the form:

Y = α⊤(U)ξ + ε, (1.1)

where Y is a scalar response variable, ξ is a p−dimensional predictor and U is scalar. The

functional coefficient α(·) = (α1(·), · · · , αp(·))⊤ is unknown and the model error ε satisfies

E(ε2|ξ, U) < ∞. Model (1.1) was introduced by Hastie & Tibshirani (1993) and further studied

extensively. See Fan & Zhang (2000), Fan & Zhang (2007), Wang et al. (2008), Park et al.

(2015) and the references within.

In this paper, we consider the adequacy check of the varying-coefficient model with errors

in covariates. That is, we aim to test

H0 : ∃ α(U) s.t. E[Y |ξ, U ] = α⊤(U)ξ, a.s. (1.2)

against the alternative hypothesis that H0 is not true when the variable ξ is not observed for

some reasons, such as measurement error. Instead of ξ, its surrogate ξ̃ is observed. We assume

that a d-dimensional auxiliary variable V is available to remit ξ. And the unobservable true

variable ξ, the observed surrogate variable ξ̃ and the auxiliary variable V are of the following

relationship:

ξ = E(ξ̃|V ) =: ξ(V ). (1.3)

Actually, the error structure (1.3) is a special case of the additive error model because (1.3) is

equivalent to the model that ξ̃ = ξ+ e with E(e|V ) = 0. We further assume that E(e|ξ, U) = 0

but allow for an unknown covariance of the error variable e. So we aim to investigate the

adequacy of the following model{
Y = α⊤(U)ξ + ε

ξ̃ = ξ(V ) + e.
(1.4)

This type of measurement error was also discussed in Zhou & Liang (2009), Zhao & Xue

(2010), Sun et al. (2015) and Zhang et al. (2017). We present two examples, which are similar

to Examples 1-2 in Zhou & Liang (2009), to illustrate the rationality of Model (1.4).

1



Example 1: (Errors-in-variables model with validation data) Consider Model Y = α⊤(U)X+

η, where E(η|X,U) = 0 with predictors X and U . The variable X̃ is an observed vector asso-

ciated with vector X . We have a primary data set: {Yi, X̃i, Ui, i = 1, · · · , n} and a validation

data set: {Xj, X̃j, Uj, j = n+1, · · · , n+n0}. Let V = (X̃⊤, U)⊤. Then the errors-in-variables

varying-coefficient model with validation data can be written as{
Y = α⊤(U)E(X|V ) + ε
ε = η + α⊤(U){X − E(X|V )}. (1.5)

Let ξ(V ) = E(X|V ) and ξ̃ = X . Then Model (1.5) is a sub-model of Model (1.4).

Example 2: (De-noise varying-coefficient model) The relation between the response vari-

able Y and covariates (ξ, U) is described by Y = α⊤(U)ξ + ε with E(ε|ξ, U) = 0, where

ξ = ξ(t) is subject to measurement error at time t. The variable ξ̃ is observed and serves as a

surrogate of the variable ξ. Then the following model is considered{
Y = α⊤(U)ξ + ε

ξ̃ = ξ(t) + e.
(1.6)

Similar De-noise linear model was employed by Cai et al. (2000) to analyze the relationship

between awareness and television rating points of TV commercials for certain products.

Let {(Yi, ξ̃i, Ui, Vi), i = 1, 2, · · · , n} be an i.i.d. sample from the population (Y, ξ̃, U, V ).

For Model (1.3), if the measurement error is ignored, it can be validated that the naive estimator

of the coefficient function, denoted by α̂naive(u), will be biased. Let ε̂naive(Yi, ξ̃i, Ui) be the

naive estimator of the model error ε for the i−th subject. It can be decomposed into three parts:

ε̂naive(Yi, ξ̃i, Ui) = Yi − α̂⊤
naive(Ui)ξ̃i

= {Yi − α⊤(Ui)ξi}+ {α(Ui)− α̂naive(Ui)}⊤ξi + α̂⊤
naive(Ui)(ξi − ξ̃i), (1.7)

for i = 1, 2, · · · , n. We can validate that the first and third terms, Yi−α⊤(Ui)ξi and α̂⊤
naive(Ui)(ξi−

ξ̃i), have zero expectations. However, the expectation of {α(Ui)− α̂naive(Ui)}⊤ξi doesn’t con-

verge to zero in that the expectation of ε̂naive(Yi, ξ̃i, Ui) is not equal to zero. Actually, the term

{α(Ui) − α̂naive(Ui)}⊤ξi acts just as a deviation function. This causes the naive test to tend to
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reject the null hypothesis even if it is true. We conduct some simulation studies in Section 4,

which show that the naive method yields empirical sizes larger than 0.5 in many scenarios. A

reasonable test should be able to control Type I error. This motivates us to develop a model

checking method for (1.2) based on the calibration of the measurement error.

The estimation of the regression models with errors in covariates has been studied exten-

sively. See Carroll et al. (2006); Li & Greene (2008); Liang et al. (1999); Ma et al. (2006),

among others. However, the lack-of-fit test of regression models with measurement error has

not received enough attention that it deserves. Sporadic researches can be found in the litera-

ture: Hall et al. (2007); Koul & Song (2009); Ma et al. (2011); Sun et al. (2015). For the model

checking problem (1.2), we first calibrate the model error and then build an empirical process

(EP) test with simple indicator (SI) weighting function, which has many merits. First, it is con-

sistent; second, it is free from the nonparametric smoothing of the estimated model error; third,

it can detect the alternative hypothetical model converging to the null hypothetical model at the

parametric rate. More details of the EP test with SI weighting function can refer to Ma et al.

(2014); Sun et al. (2009); Xu & Zhu (2015); Zhu & Ng (2003), among others.

The rest of paper is organized as follows. In Section 2, we calibrate the model error and

develop an empirical process test. The asymptotic properties of the test statistic are rigorously

studied in Section 3. In Section 4, simulation studies and real data analyses are conducted to

validate the performance of the proposed test. The proofs of the main results are presented in

the Appendix.

2. THE TESTING METHOD

2.1. The estimation of the null hypothetical model

From the error structure (1.3), recalling that we have a random sample {(ξ̃j, Vj), j =

1, · · · , n} from (ξ̃, V ). we can define an estimator of the true variable ξi by the local smoothing

method (Härdle et al. (2012)):

ξ̂n(Vi) =

∑n
j=1 ξ̃jKv(Vi − Vj)∑n
j=1Kv(Vi − Vj)

, i = 1, 2, · · · , n, (2.1)
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where Kv(·) = 1/hd
n

∏
k(·/hn) with a univariate kernel function k(·) and a bandwidth hn.

Clearly, ξ̂n(Vi) is a p × 1 vector with components ξ̂nl(Vi), l = 1, · · · , p for i = 1, · · · , n. Then

an estimator of the coefficient function α(u) = (α1(u), · · · , αp(u))
⊤ and their derivatives can

be defined by solving

argmin{(al,bl),l=1,··· ,p)}

n∑
j=1

[Yj −
p∑

l=1

{al + bl(Uj − u)}ξ̂nl(Vj)]
2λu(Uj − u), (2.2)

where λ(u) is a kernel function and λu(Uj − u) = 1/lnλ{(Uj − u)/ln} with the bandwidth

ln. Let θ̂n(u) = (â1(u), · · · , âp(u), b̂1(u), · · · , b̂p(u))⊤ be the solution to (2.2). Then α̂n(u) =

(â1(u), · · · , âp(u))⊤ is the estimator of α(u). Thus estimators of the model error are available:

ε̂n(Yi, ξ̃i, Ui, Vi) = Yi − α̂⊤
n (Ui)ξ̂n(Vi), i = 1, 2, · · · , n.

Notice that, after calibration of the measurement error based on the auxiliary information,

we estimate the coefficient functions by the local linear regression technique, which is different

from locally corrected score equations presented by Li & Greene (2008) in the same model.

Our modeling allows that variance-covariance matrix of the error term e in equation (1.4) can

be unknown whereas Li and Greene’s method assumed that such matrix structure is known and

needs no auxiliary data.

For α̂n(u), we have the following result.

Proposition 1. Under the regular conditions in the Appendix, we have

√
nln{α̂(u)− α(u)− µ2

2
α(2)(u)l2n} =

Q−1(u)√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
εi

+
Q−1(u)√

nln

n∑
i=1

ξiE[λ

(
Ui − u

ln

)
|V = Vi]α

⊤(u)(ξ̃i − ξi) + op(1),

where α(2)(u) is the second order derivative of α(u), µ2 =
∫
u2λ(u)du and Q(u) = E(ξξ⊤|U =

u).

By letting D(ξ, U) = 0, the result of Proposition 1 can be validated from Lemma 1 in the

Appendix. We omit the details of the proofs.
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2.2. Construct the test statistic

Note that the null hypothesis (1.2) can be transformed into infinite unconditional expecta-

tions: E[(Y − α⊤(U)ξ)I(ξ ≤ z, U ≤ u)] = 0 for all z ∈ RP , u ∈ R. We can construct an

estimated empirical process marked by the estimated residuals:

ĈRn(z, u) =
1√
n

n∑
i=1

{Yi − α̂⊤
n (Ui)ξ̂n(Vi)}I(ξ̂n(Vi) ≤ z, Ui ≤ u).

Here the representation of ĈRn(z, u) is actually, up to a constant, an accumulative calibrated

residuals with an indicator function being the weight. Then a Crámer-von Mises type test

statistic can be defined as

Tn =

∫
[ĈRn(z, u)]

2dFn(z, u), (2.3)

where Fn(·, ·) is the empirical distribution function based on data {(ξ̂n(Vi), Ui), i = 1, · · · , n}.

For the sake of simplicity, denote I(ξ(V ) ≤ z, U ≤ u) by I(W ≤ w) with W =

(ξ⊤(V ), U)⊤ and w = (z⊤, u)⊤. Let fu(u), fv(v) and fu,v(u, v) be the densities of U , V

and (U, V ), respectively. Further denote Q(u) = E(ξξ⊤|U = u), Γ1(V ) = E{α(U)I(ξ(V ) ≤

z, U ≤ u)|V }, Γ2(U) = E{ξ(V ) I(ξ(V ) ≤ z)|U} and Γ3 = E{ξ⊤(V )I(W ≤ w)}. Denote

H(z,u)(Y, ξ, U, V ; z, u) = εI(W ≤ w)−Γ1(V )e+ξ⊤Q−1(u)εI(U ≤ u)Γ2(U)+Γ3ξ
fu,v(u,V )

fu(u)fv(V )
e⊤a(u).

By combining the theories of the local kernel method and the empirical process, we have the

following results for the test statistic Tn.

Theorem 1. Under the regular conditions in the Appendix, when the null hypothesis (1.2) holds,

the estimated empirical process ĈRn(z, u) converges in distribution to R(z, u) in the Skorohod

space D[−∞,∞]p+1, where R(z, u) is a centered Gaussian process with the covariance func-

tion:

Cov{R(z1, u1), R(z2, u2)} = E(H(z,u)(Y, ξ, U, V ; z1, u1)H(z,u)(Y, ξ, U, V ; z2, u2)).

Furthermore, we have Tn
L−→

∫
[R(z, u)]2dF (z, u), where F (z, u) is the distribution function

of (ξ, U).
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When Tn is large enough, the null hypothesis should be rejected. The estimated empirical

process ĈRn(z, u) takes the form of an accumulative summation of the estimated model errors

ε̂n(Yi, ξ̃i, Ui, Vi), i = 1, · · · , n. Similarly to (1.7), we decompose ε̂n(Yi, ξ̃i, Ui, Vi) into three

parts:

{Yi − α⊤(Ui)ξi}+ {α(Ui)− α̂n(Ui)}⊤ξi + α̂⊤
n (Ui)(ξi − ξ̃i).

Proposition 1 shows that α̂n(u) is an asymptotically consistent estimator of α(u) under the

null hypothesis. However, under the Pitman alternative models, this fact is not true. There-

fore ε̂n(Yi, ξ̃i, Ui, Vi) and ĈRn(z, u) have asymptotically zero expectations under H0 in (1.2)

and asymptotically nonzero expectation under the Pitman local alternative models. However,

the naive estimation of the model error ε̂naive(Yi, ξ̃i, Ui) and the estimated empirical process

n−1/2
∑n

i=1{Yi − α̂⊤
naive(Ui)ξ̃i}I(ξ̃i ≤ z, Ui ≤ u) have asymptotically nonzero expectations

under both null and alternative hypotheses. Hence the naive test cannot distinguish the null

hypothesis from the alternative hypothesis.

2.3. Realization of the test

In this section, following Wu (1986), Stute et al. (1998) and Sun et al. (2018), we resort

to a wild bootstrap method to determine the critical value of the test. Let {ηi, i = 1, 2, · · · , n}

be i.i.d. random variables with mean 0 and variance 1. The scheme of the bootstrap method is

listed in the following.

First calculate the test statistic Tn =
∫
[ĈRn(z, u)]

2dFn(z, u) from the sample {(Yi, ξ̃i, Ui, Vi),

i = 1, 2, · · · , n}. Then generate random variables {ηi, i = 1, 2, · · · , n} and compute the boot-

strap response variables: Y ∗
i = α̂⊤

n (Ui)ξ̂n(Vi)+ {Yi− α̂⊤
n (Ui)ξ̂n(Vi)}ηi, i = 1, · · · , n. Replac-

ing the sample {(Yi, ξ̃i, Ui, Vi), i = 1, 2, · · · , n} by the bootstrap sample {(Y ∗
i , ξ̃i, Ui, Vi), i =

1, 2, · · · , n}, we obtain the bootstrap value of Tn, denoted by T ∗
n . Repeat the above steps B

times and obtain B values of T ∗
n : T ∗

n1, · · · , T ∗
nB. Calculate the 1 − α empirical quantile of

T ∗
n1, · · · , T ∗

nB, which is taken as the α−level critical value. Theoretically, a large value of B is
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preferable. For computational expedience, B can be chosen to be 300 or 500.

The aforementioned bootstrap procedure is robust. It doesn’t depend on the variance or

distribution of the model error. Further, the proposed method is data-driven. When the sample

data is available, we can drive a conclusion whether the varying-coefficient model is adequate

or not for the data from the proposed test procedure.

3. ANALYSES OF THE POWER

In the following, we investigate the performance of the proposed test under the local and

global alternatives. First, we consider the Pitman local alternative hypothetical models:

H1n : Yi = α⊤(Ui)ξi + n−1/2D(ξi, Ui) + εi, i = 1, 2, · · · , n (3.1)

with some bounded measurable nonzero function D(ξ, U), which cannot take the form of

α⊤(U)ξ for any measurable function vector α(U). Let ∆ = E{D(ξ, U)I(W ≤ w)} +E[E{ξ

D(ξ, U)|U}⊤ξ(V )I(W ≤ w)].

Theorem 2. Under the regular conditions in the Appendix, when the alternative hypothesis

(3.1) holds, we have

Tn
L−→

∫
[R(z, u) + ∆]2dF (z, u)

with R(z, u) defined in Theorem 1.

Theorem 2 shows that, under the alternative hypothesis (3.1), the proposed test statistic Tn

is asymptotically equivalent in distribution to a random variable which contains an additional

nonzero drift quantity ∆, compared to its asymptotic equivalent random variable under the null

hypothesis (1.2). This implied that the proposed test statistic is powerful enough to detect the

Pitman alternative hypothesis (3.1). To the best of our knowledge, other types of test statistics

do not possess this power in detection of such Pitman local alternative hypothesis. For example,

the test based on U-statistic can only detect the local alternative model converging to the null hy-

pothetical model at the rate n−p/2l
−p/4
n (Li & Wang, 1998; Niu et al., 2016). And the rate that the
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weighted integrated squared distance (WISD) test can detect is slower than n−1/2l
−p/4
n (Härdle

& Mammen, 1993). Here ln is the bandwidth and p is the dimension of all the predictors.

Next we consider the alternative hypothetical models:

H2n : Yi = α⊤(Ui)ξi + LnD(ξi, Ui) + εi, i = 1, 2, · · · , n (3.2)

with 0 < Ln < n−1/2. When Ln = 1, H2n in (3.2) is the global alternative hypothesis.

Theorem 3. Under the regular conditions in the Appendix and the alternatives (3.2) with 0 <

Ln < n−1/2, Tn converges to ∞ as n → ∞.

From the result with Ln = 1, we conclude that the proposed test is consistent against

the global alternative hypothesis. Also, from Theorems 2 and 3, it can be concluded that the

proposed test has satisfying power properties theoretically.

4. SIMULATION STUDIES AND REAL DATA ANALYSES

4.1. Simulation studies

In this section, we conduct simulation studies to demonstrate the performance of the pro-

posed test. We consider two different examples.

Example 1. A two-dimensional varying-coefficient model is investigated:

Y = sin(2U)ξ1 + {1− exp (U/2)}ξ2 + d|ξ1/3− ξ2|+ ε, (4.1)

where ξ1 = 4|V − 1|, ξ2 = V 2 + 3V − 1, denoted as Case 1 and ξ1 = 3 sin(V ) + 2, ξ2 =

V 2 − 2V + cos (V ), denoted as Case 2. Here ξ̃l = ξl + el, l = 1, 2, V ∼ N (0, 0.25) and

U ∼ U(0, 1).

Example 2. A three-dimensional varying-coefficient model is considered:

Y = ln(U + 1)ξ1 + (U/2− 1)ξ2 +
√
Uξ3 + d|ξ1ξ2/2− 2ξ2ξ3 + ξ23 |+ ε. (4.2)

Two generating processes of the true variable are considered: Case 1: ξ1 = 4 sin (2πV ), ξ2 =

2V+1, ξ3 = 4 cos(2πV )−V/3; Case 2: ξ1 = 4 cos (V 2 + V ), ξ2 = exp{3 sin (2πV )+1/2}, ξ3 =

V 2 + 3V − 2. Let ξ̃l = ξl + el, l = 1, 2, 3, V ∼ β(2, 1) and U ∼ exp(1).
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For both examples, the model error ε and the measurement error e are assumed normal

random variables with mean 0 and variance 0.36. The constant d is chosen to be 0, 1, 2, 3, 4

and 0, 0.1, 0.2, 0.3, 0.4 for Examples 1 and 2 respectively. When d = 0, the null hypothesis

holds. And different values of d ̸= 0 mean that different alternative hypothetical models are

considered. We choose Epanechnikov kernel function K(t) = λu(t) =
3
4
(1− t2)I(|t|≤1). Let the

smoothing parameters hn = 2.34min{σ̂2
v , 3/4q̂v}n−1/3 and ln = 2.34min{σ̂2

u, 3/4q̂u}n−1/3,

where σ̂2 and q̂ denote the sample standard deviation and sample inter-quartile range, respec-

tively. The nominal level is set to be 0.05 and 0.1.

We calculate the empirical sizes and powers of the proposed test based on 1000 replication-

s. For each replication, the bootstrap process is repeated 300 times. The results are presented

in Figures 1-4. In addition, we compute the empirical sizes and powers of the naive method.

The results are also shown in Figures 1-4. The naive method ignores the measurement error and

applies the data with measurement error directly.

Here insert Figures 1-4.

From the results in Figures 1-4, we can observe that the proposed test performs well in

term of its empirical sizes close to the test levels and the empirical powers increasing with the

values of d and sample sizes. For both examples, when the sample sizes and the values of d

are large enough, the empirical powers of the proposed test tend to be one, which is consistent

with the conclusion that the proposed test is consistent. It can be found that the empirical sizes

of the naive method are very high, which are larger than 0.9 in some scenarios. Moreover, as

shown in Figure 3, the empirical sizes of the naive test are larger than the empirical powers with

d = 1. We can further find that in all situations, the empirical sizes of the naive method increase

with the sample sizes. Therefore, the naive method can hardly control Type I error though its

empirical powers are high. Comparatively, the proposed test method can control Type I error

and is more reliable.
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4.2. Real data analyses

In this section, we conduct two real data analyses: one is a diabetes data set and the other

is a Duchenne Muscular Dystrophy (DMD) data set.

Example 3. We consider a diabetes data set (http://www.stanford.edu/ hastie/Papers /LARS /di-

abetes.data), which contains 442 observations. Let the response variable Y be a quantitative

measurement of disease progression one year after baseline. There are other observed vari-

ables: age, body mass index (BMI), blood pressure (BP), high-density lipoprotein (HDL) and

glucose concentration (GLU ). We are interested in checking the following relationship between

the response variable Y and the predictors (ξ1, ξ2, ξ3, U):

E{Y |ξ1, · · · , ξ3, U} = α1(U)ξ1 + α2(U)ξ2 + α3(U)ξ3, (4.3)

where ξ1, ξ2, ξ3 are age, BMI and BP respectively and the variable U is chosen to be HDL.

We take GLU to be the auxiliary variable V . The kernel function and smoothing parameters

are chosen by the same methods as those in the simulation studies. The bootstrap procedure

is repeated 10000 times. The p-values of the proposed and naive methods are calculated to be

0.0108 and 0.0087, respectively. Hence the candidate varying-coefficient model is not adequate

for this diabetes data set.

Here inserts Figure 5.

We plot the scatter plots of the estimated residuals against α̂n
⊤(U)ξ̂n(V ) and α̂⊤

naive(U)ξ̃ in

Figure 5. Two subplots of Figure 5 show that the estimated residuals of both the calibrated and

naive methods are asymmetric and both residual plots look like an asymmetric parallelogram.

We also plot the nonparametric fitted curves and pointwise confidence curves of the calibrated

and naive estimated residuals in Figure 5. The fitted curves reveal apparent deviations from the

abscissa axis. Therefore, it is reasonable to conclude that the varying coefficient model is not

appropriate for this diabetes data set.
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Example 4. We consider a data set of Duchenne Muscular Dystrophy (DMD), which contains

209 observations. This data set can be found in Ziegel (1987). DMD is a devastating, pro-

gressive muscular disease, which can be transmitted from the mother to the children. Though

the affected mother has no apparent symptom, fortunately, it is found that the carriers of DMD

tend to exhibit high levels of some serum enzymes or proteins. For this data set, we want to

validate whether the varying-coefficient model is adequate or not. That is, we aim for checking

the regression model:

E[Y |ξ1, ξ2, U ] = α1(U)ξ1 + α2(U)ξ2. (4.4)

Here we choose the response Y to be the level of lactate dehydrogenase (LD) and the covariates

ξ1, ξ2, U to be the level of creatine kinase (CK ), hemopexin (H) and age of patient respectively.

We employ the variable age to calibrate the measurement error in the variables ξ̃1, ξ̃2. The

settings are similar to those of Zhou & Liang (2009). The p-values of the proposed and naive

test methods are computed, which are 0.4103 and 0.0139 respectively. So the result of the

proposed method shows that the varying-coefficient model is adequate for this data set. But the

naive method rejects the null hypothetical varying-coefficient model. This result is consistent

with the theoretical analysis that the naive method tends to reject the null hypothesis.

Here inserts Figure 6.

We plot the scatter plots of the estimated residuals against α̂⊤
n (U)ξ̂n(V ) and α̂⊤

naive(U)ξ̃

in Figure 6. Figure 6 suggests that the estimated model errors of the calibrated method are

distributed approximately uniformly with regard to the abscissa axis. However, the estimated

model errors of the naive method have an obvious negative center. In Figure 6, we also plot

the fitted residual and confidence curves for both the calibrated and naive methods. The fitted

residual curve of the calibrated method and the abscissa axis coincide almost. However, the

fitted residual curve of the naive method deviates from the abscissa axis apparently. From the

example, it reveals that by calibrating the measurement errors, the varying-coefficient model is

adequate for this data set.
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5. DISCUSSION

In this work, we propose a test method for the errors-in-variables varying-coefficient model

in the presence of an auxiliary variable by calibrating the measurement error. The theoretical

and numerical studies illustrate that the proposed test performs well. The naive method breaks

down in this setting.

The calibration skill in the paper can be extended to the model adequacy check of oth-

er errors-in-variables semiparametric model. Another extension is to consider the empirical

process test with other weighting function, instead of the simple indicator weighting function.

Some weighting functions can result in test methods with dimension reduction effect (Escan-

ciano, 2006; Stute & Zhu, 2002; Sun et al., 2017). It should be interesting to develop test

methods suitable for moderate or high dimensional data with measurement error by applying

some special weighting functions.

Furthermore, in reality and in literature, another attention lies in the so-called Berkson

measurement error in regression models(Wang (2003), Koul & Song (2009); among others).

Take the varying coefficient model for instance, rather than the second equation in the model

(1.4), one observes that the true variable ξ is related to an observed controlled variable ξ̃ via

ξ = ξ̃ + e. Consequently, the random measurement error e depends on the true variable ξ but

is independent of the observed variable ξ̃. In linear regression models with Berkson measure-

ment error, the least squares method can yield unbiased estimator of the regression parameters

without calibration. However, this is not true for nonlinear regression. See Koul & Song (2008)

for more details. A common tool to handle Berkson measurement error is the minimum dis-

tance moment estimating method. For varying-coefficient models in the presence of Berkson

measurement error, the statistical inference is nontrivial. This no doubt deserves our future

investigation separately.
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APPENDIX

We begin this section by listing the conditions needed in the proofs of the theorems.

(C.1) The functions α(u) and ξ(v) satisfy Lipschitz condition of order 2.

(C.2) The matrix Q(u) = E(ξξ⊤|U = u) is positive definite; E|ε|2+δ < ∞ and E|e|2+δ <

∞ with δ > 0.

(C.3) The densities of U and V , say fu(u) and fv(v), exist and satisfy 0 < infu fu(u) ≤

supu fu(u) < ∞ and 0 < infv fv(v) ≤ supv fv(v) < ∞.

(C.4) The univariate kernel functions k(·) and λ(·) are bounded kernel functions of order

j(≥ 2) with bounded support.

(C.5) (i) nhp
n → ∞ and hn → 0; (ii) ln(n)/(nln) → 0 and nl2n → 0. (iii) lnh

−p/2
n (ln(n))−1

→ 0 and h2p
n l

−1/2
n (ln(n))−1 → 0.
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Remark Conditions (C.1)-(C.2) are necessary for proving the asymptotic normality of

the estimator of the coefficient function. Condition (C.3) aims at simplifying the proofs of the

theorems. Otherwise, a truncation technique should be applied since some denominators are

zeros. Conditions (C.4) and(C.5) are common to obtain the convergence rates of the nonpara-

metric estimates.

Lemma 1. Under Conditions (C.1)-(C.5) and the alternative model (3.1), we have

√
nln{α̂(u)− α(u)− µ2

2
α(2)(u)l2n} =

Q−1(u)√
nlnfu(u)

n∑
i=1

ξiλ

(
Ui − u

ln

)
εi

+
Q−1(u)√
nlnfu(u)

n∑
i=1

ξiE[λ

(
Ui − u

ln

)
|V = Vi]a

⊤(u)(ξ̃i − ξi)

+l1/2n Q−1(u)E{ξD(ξ, U)|U = u}+ op(1),

where µ2 =
∫
u2λ(u)du.

Proof Denote θ(u) = (α1(u), . . . , αp(u), lnb1(u), . . . , lnbp(u))
⊤, where bi(u) is the derivative

of αi(u) for i = 1, · · · , p. From (2.2), by some simple calculations, we can obtain that

(nln)
1/2{θ̂n(u)− θ(u)} =: Â−1

n Bn

with

Ân =
1

nln

n∑
i=1

(
ξ̂n(Vi)ξ̂

⊤
n (Vi) ξ̂n(Vi)ξ̂

⊤
n (Vi)(Ui − u)/ln

ξ̂n(Vi)ξ̂
⊤
n (Vi)(Ui − u)/ln ξ̂n(Vi)ξ̂

⊤
n (Vi)((Ui − u)/ln)

2

)
λ(

Ui − u

ln
)

and

Bn =:

{
(nln)

−1/2
∑n

i=1 ξ̂n(Vi)λ
(

Ui−u
ln

)
[Yi −

∑p
j=1{αj(u) + bj(u)(Ui − u)}ξ̂nj(Vi)]

(nln)
−1/2

∑n
i=1 ξ̂n(Vi)(Ui − u)/lnλ(

Ui−u
ln

)[Yi −
∑p

j=1{αj(u) + bj(u)(Ui − u)} ξ̂nj(Vi)].
.

Step 1. Consider An. By the fact that supv |ξ̂n(v) −ξ(v)| = OP ((ln(n) /nh
d
v)

1/2) +h2d
n (

Theorem 6 in Masry (1996)), the law of large numbers and Conditions (C.4) and(C.5), we can

prove that

Ân =

(
E(ξξ⊤|U = u) 0
0 E(ξξ⊤|U = u)µ2

)
fu(u) + op(1).
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Thus it yields

(nln)
1/2{α̂n(u)− α(u)} = E−1(ξξ⊤|U = u)f−1

u (u)Bn1 + op(1) (A.1)

with Bn1 = (nln)
−1/2

∑n
i=1 ξ̂n(Vi)λ

(
Ui−u
ln

)
[Yi −

∑p
j=1{aj(u) + bj(u)(Ui − u)}ξ̂nj(Vi)].

Step 2. In the following, we focus on Bn1. We can split Bn1 into two parts:

Bn1 =
1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
[Yi −

p∑
j=1

{αj(u) + bj(u)(Ui − u)}ξ̂nj(Vi)]

+
1√
nln

n∑
i=1

(ξ̂n(Vi)− ξi)λ

(
Ui − u

ln

)
[Yi −

p∑
j=1

{αj(u) + bj(u)(Ui − u)}ξ̂nj(Vi)]

=: B
[1]
n1 +B

[2]
n1. (A.2)

Step 2.1 Consider B[1]
n1. We have

B
[1]
n1 =

1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
[Yi −

p∑
j=1

{αj(u) + bj(u)(Ui − u)}ξij]

+
1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

) p∑
j=1

{αj(u) + bj(u)(Ui − u)}(ξ̂nj(Vi)− ξij)

= B
[1]
n1,1 +B

[1]
n1,2. (A.3)

Step 2.1.1 We deal with the first term B
[1]
n1,1:

B
[1]
n1,1 =

1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
(Yi −

p∑
j=1

αj(Ui)ξij)

+
1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

) p∑
j=1

{αj(Ui)− αj(u)− bj(u)(Ui − u)}ξij

=
1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
εi + (nln)

−1l1/2n

n∑
i=1

ξiλ

(
Ui − u

ln

)
D(ξi, Ui)

+
1

2
√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

) p∑
j=1

α
(2)
j (u)(Ui − u)2ξij + op((nln)

1/2l2n).

Note that (nln)−1/2
∑n

i=1 ξiλ
(

Ui−u
ln

)∑p
j=1 α

(2)
j (u)(Ui − u)2ξij = (nln)

−1/2
∑n

i=1 ξiξ
⊤
i α

(2)(u)

(Ui−u)2λ(Ui−u
ln

) = (nln)
1/2E(ξξ⊤|U = u)α(2)(u)µ2l

2
nfu(u)+op((nln)

1/2)l2n. Furthermore, we

can prove that (nln)−1
∑n

i=1 ξiλ
(

Ui−u
ln

)
D(ξi, Ui) = E{ξD(ξ, U)|U = u}fu(u) + op(1). Then
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it yields

B
[1]
n1,1 =

1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
εi + l1/2n E{ξD(ξ, U)|U = u}fu(u)

+
√

nlnl
2
nE(ξξ⊤|U = u)α(2)(u)µ2fu(u) + op(1). (A.4)

Step 2.1.2. We deal with B
[1]
n1,2. Recalling the definition of ξ̂nj(Vi), we have

B
[1]
n1,2 =

1√
n3lnh2d

n

n∑
i=1

ξiλ

(
Ui − u

ln

) p∑
j=1

aj(u)/fv(Vi)
n∑

l=1

(ξ̃lj − ξij)K

(
Vi − Vl

hn

)
+

1√
n3lnh2d

n

n∑
i=1

ξiλ

(
Ui − u

ln

) p∑
j=1

bj(u)(Ui − u)/fv(Vi)
n∑

l=1

(ξ̃lj − ξij)K

(
Vi − Vl

hn

)
+op(1)

=: B
[1]
n1,21 +B

[1]
n1,22 + op(1).

Note the fact that (nhd
n)

−1
∑n

i=1{ξiλ
(

Ui−u
ln

)
/fv(Vi)}K

(
Vi−Vl

hn

)
= E[ξλ

(
Ul−u
ln

)
|V = Vl] +

op(1), we have

B
[1]
n1,21 =

1√
nln

n∑
l=1

p∑
j=1

aj(u){1/(nhd
n)

n∑
i=1

ξiλ
(

Ui−u
ln

)
fv(Vi)

K

(
Vi − Vl

hn

)
}(ξ̃jl − ξjl)

+op(1).

=
1√
nln

n∑
l=1

p∑
j=1

aj(u)E[ξλ(
Ul − u

ln
)|V = Vl](ξ̃jl − ξjl) + op(1)

=
1√
nln

n∑
l=1

ξlE[λ

(
U − u

ln

)
|V = Vl]α

⊤(u)(ξ̃l − ξl) + op(1).

We can further prove that E[B
[1]
n1,22]

2 = O(l2n). By Condition (4)，it yields B
[1]
n1,22 = op(1).

Therefore

B
[1]
n1,2 =

1√
nln

n∑
l=1

ξlE[λ

(
U − u

ln

)
|V = Vl]a

⊤(u)(ξ̃l − ξl) + op(1).

This, together with (A.3) and (A.4)，we can get

B
[1]
n1 =

1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
εi + (nln)

1/2E(ξξ⊤|U = u)α(2)(u)µ2l
2
n

+l1/2n E{ξD(ξ, U)|U = u}+ 1√
nln

n∑
l=1

ξlE[λ(
Ul − u

ln
)|V = Vl]a

⊤(u)(ξ̃l − ξl)
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+op(1). (A.5)

Step 2.2. We consider B[2]
n1：

B
[2]
n1 =

1√
nln

n∑
i=1

(ξ̂n(Vi)− ξi)λ

(
Ui − u

ln

)
(Yi − α⊤(Ui)ξi)

+
1√
nln

n∑
i=1

(ξ̂n(Vi)− ξi)λ

(
Ui − u

ln

) p∑
j=1

{aj(Ui)− {aj(u) + bj(u)(Ui − u)})ξji

+
1√
nln

n∑
i=1

(ξ̂n(Vi)− ξi)λ

(
Ui − u

ln

) p∑
j=1

{aj(u) + bj(u)(Ui − u)}(ξji − ξ̂nj(Vi))

= B
[2]
n1,1 +B

[2]
n1,2 +B

[2]
n1,3.

For B[2]
n1,1, we can obtain that

B
[2]
n1,1 =

1√
nln

n∑
i=1

λ(
Ui − u

ln
)(Yi − α⊤(Ui)ξi)/(nh

d
nfv(Vi))

n∑
l=1

(ξ̃l − ξl)K

(
Vi − Vl

hn

)
+

1√
nln

n∑
i=1

λ(
Ui − u

ln
)(Yi − α⊤(Ui)ξi)/(nh

d
nfv(Vi))

n∑
l=1

(ξl − ξi)K

(
Vi − Vl

hn

)
=: B

[2]
n1,11 +B

[2]
n1,12.

We further can prove that E[B
[2]
n1,11] = O(1/(nhd

n)) → 0. Thus we can get B[2]
n1,11 = op(1). Note

that ξ = ξ(V ) which satisfies Lipschitz condition. The we can prove E[B
[2]
n1,12] = O(h2d

n ) → 0.

So we can obtain B
[2]
n1,12 = op(1) and then B

[2]
n1,1 = op(1). Similarly, we can prove that B[2]

n1,2 =

op(1) and B
[2]
n1,3 = op(1). Thus it follows that

B
[2]
n1 = op(1). (A.6)

By (A.2), (A.5) and (A.6), we can obtain that

Bn1 =
1√
nln

n∑
i=1

ξiλ

(
Ui − u

ln

)
εi + (nln)

1/2l2nE(ξξ⊤|U = u)α(2)(u)µ2fu(u)

+l1/2n E{ξD(ξ, U)|U = u}fu(u) +
1√
nln

n∑
i=1

ξiE[λ(
Ui − u

ln
)|V = Vi]α

⊤(u)(ξ̃i − ξi)

+op(1).

This, together with (A.1), can prove the lemma.
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Proof of Theorem 1 The results of Theorem 1 can be obtained from Theorem 2 by setting

D(ξ, U) = 0. We omit the details. 2

Proof of Theorem 2 We first consider ĈRn(z, u):

ĈRn(z, u) =
1√
n

n∑
i=1

{Yi − α⊤(Ui)ξ(Vi)}I(ξ̂n(Vi) ≤ z, Ui ≤ u)

− 1√
n

n∑
i=1

α⊤(Ui){ξ̂n(Vi)− ξ(Vi)}I(ξ̂n(Vi) ≤ z, Ui ≤ u)

+
1√
n

n∑
i=1

{α̂(Ui)− α(Ui)}⊤ξ(Vi)I(ξ̂n(Vi) ≤ z, Ui ≤ u)

+
1√
n

n∑
i=1

{α̂(Ui)− α(Ui)}⊤{ξ̂n(Vi)− ξ(Vi)}I(ξ̂n(Vi) ≤ z, Ui ≤ u)

=:
4∑

j=1

ĈRnj(z, u). (A.7)

Step 1. Consider ĈRn1(z, u). We have the following decomposition:

ĈRn1(z, u) =
1√
n

n∑
i=1

εiI(Ui ≤ u)I(ξ̂n(Vi) ≤ z) +
1

n

n∑
i=1

D(ξi, Ui)I(Ui ≤ u)I(ξ̂n(Vi) ≤ z).

Note that I(ξ̂n(Vi) ≤ z) = I(ξ(Vi) ≤ z) − I(ξ(Vi) ≤ z ≤ ξ̂n(Vi)) + I(ξ̂n(Vi) ≤ z ≤ ξ(Vi)).

Then for the first term of ĈRn1(z, u), we have

1√
n

n∑
i=1

εiI(Ui ≤ u)I(ξ̂n(Vi) ≤ z) =
1√
n

n∑
i=1

εiI(Ui ≤ u)I(ξ(Vi) ≤ z)

− 1√
n

n∑
i=1

εiI(ξ(Vi) ≤ z ≤ ξ̂n(Vi)) +
1√
n

n∑
i=1

εiI(ξ̂n(Vi) ≤ z ≤ ξ(Vi))

We consider the term 1√
n

∑n
i=1 εiI(ξ(Vi) ≤ z ≤ ξ̂n(Vi)). It is easy to prove that E[εiεjI(ξ(Vi) ≤

z ≤ ξ̂n(Vi))I(ξ(Vj) ≤ z ≤ ξ̂n(Vj)) = 0, i ̸= j by the condition that E(ε|X, X̃, V ) = 0 and

the independence of the sample. Then we have E[n−1/2
∑n

i=1 εiI(ξ(Vi) ≤ z ≤ ξ̂n(Vi))]
2 ≤

n−1
∑n

i=1E[ε2i ]E[I(ξ(Vi) ≤ z ≤ ξ̂n(Vi))]. By the fact that supv |ξ̂n(v) − ξ(v)| → 0, we have

∀v,∀η > 0,∃M s.t. |ξ̂n(v)−ξ(v)| < η when n > M . Thus for large n, n−1
∑n

i=1 E[ε2i ]E[I(ξ(Vi)

≤ z ≤ ξ̂n(Vi))] = n−1
∑M

l=1E[ε2i ]E[I(ξ(Vi) ≤ z ≤ ξ̂n(Vi))] + n−1
∑n

l=M E[ε2i ]E[I(ξ(Vi) ≤

z ≤ ξ̂n(Vi))]. We can observe that n−1
∑n

l=M E[ε2i ]E[I(z + ξ(Vi) − ξ̂n(Vi) ≤ ξ(Vi) ≤ z] ≤
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n−1
∑n

l=M E[ε2i ] E[I(z − η ≤ ξ(Vi) ≤ z)] ≤ Cη where C is some constant related to

the variance of ε and the upper bound of the density function of X . Therefore we have

E[n−1/2
∑n

i=1 εiI(ξ(Vi) ≤ z ≤ ξ̂n(Vi))]
2 converges to zero as n → ∞. Thus we can get

n−1/2
∑n

i=1 εiI(ξ(Vi) ≤ z ≤ ξ̂n(Vi)) = op(1). Similarly, we can prove that n−1/2
∑n

i=1 εi

I(ξ̂n(Vi) ≤ z ≤ ξ(Vi)) = op(1). To avoid tedious proofs, we replace I(ξ̂n(v) ≤ z) by

I(ξ(Vi) ≤ z) in the following proofs. For ĈRn1(z, u), we have

ĈRn1(z, u) =
1√
n

n∑
i=1

εiI(Wi ≤ w) + E{D(ξ, U)I(W ≤ w)}+ op(1). (A.8)

Step 2. We consider ĈRn2(z, u). It can be split into two parts:

ĈRn2(z, u) = − 1√
n

n∑
i=1

α⊤(Ui){ξ̂n(Vi)− ξ(Vi)}I(Wi ≤ w) + op(1)

= − 1

n3/2

n∑
i=1

α⊤(Ui)
n∑

j=1

{ξ̃j − ξ(Vj)}Kv(Vi − Vj)/fv(Vi)I(Wi ≤ w)

− 1

n3/2

n∑
i=1

α⊤(Ui)
n∑

j=1

{ξ(Vj)− ξ(Vi)}Kv(Vi − Vj)/fv(Vi)I(Wi ≤ w) + op(1)

=: ĈR
[1]

n2(z, u) + ĈR
[2]

n2(z, u).

For the first term ĈR
[1]

n2(z, u), we have

ĈR
[1]

n2(z, u) = − 1√
n

n∑
j=1

{
n∑

i=1

α(Ui)Kv(Vi − Vj)/fv(Vi)I(Wi ≤ w)}⊤{ξ̃j − ξ(Vj)}

= − 1√
n

n∑
j=1

E{α(U)I(W ≤ w)|V = Vj}⊤{ξ̃j − ξ(Vj)}+ op(1).

Furthermore, we can prove that ĈR
[2]

n2(z, u) = Op(n
1/2h2d

n ) = op(1) by Condition (C4). Thus

ĈRn2(z, u) = − 1√
n

n∑
j=1

E{α(U)I(W ≤ w)|V = Vj}⊤{ξ̃j − ξ(Vj)}+ op(1). (A.9)

Step 3. We consider ĈRn3(z, u) and ĈRn4(z, u). For ĈRn3(z, u), we have

ĈRn3(z, u) =
1√
n

n∑
i=1

1

nlnfu(u)

n∑
j=1

ξ⊤j Q
−1(u)λ(

Uj − Ui

ln
)εjξ(Vi)I(Wi ≤ w)

+
1√
n

n∑
i=1

µ2

2
α(2)(u)⊤l2nξ(Vi)I(Wi ≤ w) +

1

n

n∑
i=1

E{ξD(ξ, U)|U = Ui}⊤ξ(Vi)I(Wi ≤ w)
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+
1√
n

n∑
i=1

1

nlnfu(u)

n∑
l=1

ξ⊤l Q
−1(u)E[λ(

Ul − u

ln
)|V = Vl]α(u)(ξ̃l − ξl)

⊤ξ(Vi)I(Wi ≤ w) + op(1)

=
4∑

l=1

ĈRn3,l(z, u) + op(1).

For ĈRn3,1(z, u), we have

ĈRn3,1(z, u) =
1√
n

n∑
j=1

ξ⊤j Q
−1(u)εj

1

nlnfu(u)

n∑
i=1

λ(
Uj − Ui

ln
)ξ(Vi)I(Wi ≤ w)}

=
1√
n

n∑
j=1

ξ⊤j εjQ
−1(u)I(Uj ≤ u)E{ξ(V )I(ξ(V ) ≤ z)|U = Uj}+ op(1).

It can further be proved that

ĈRn3,2(z, u) = Op(
√
nl2n) = op(1)

and

ĈRn3,3(z, u) = E[E{ξD(ξ, U)|U}⊤ξ(V )I(W ≤ w)] + op(1).

For the fourth term, 1/lnE{λ(Ul−u
ln

)|V = Vl} = 1/lnE{λ(Ul−u
ln

)} = fu,v(u,Vl)

fv(Vl)
+ op(1). Thus we

can obtain that

ĈRn3,4(z, u) = n−3/2

n∑
i=1

n∑
l=1

ξ⊤(Vi)ξla
⊤(u)

fu,v(u, Vl)

fu(u)fv(Vl)
(ξ̃l − ξl)I(Wi ≤ w) + op(1)

=
E{ξ⊤(V )I(W ≤ w)}√

n

n∑
l=1

ξl(ξ̃l − ξl)
⊤fu,v(u, Vl)α(u)

fu(u)fv(Vl)
+ op(1).

Thus

ĈRn3(z, u) =
1√
n

n∑
j=1

ξ⊤j Q
−1(u)εjI(Uj ≤ u)E{ξ(V )I(ξ(V ) ≤ z)|U = Uj}

+
E{ξ⊤(V )I(W ≤ w)}√

n

n∑
l=1

ξl
fu,v(u, Vl)

fu(u)fv(Vl)
(ξ̃l − ξl)

⊤a(u)

+E[E{ξD(ξ, U)|U}⊤ξ(V )I(W ≤ w)] + op(1). (A.10)

We can further prove that

ĈRn4(z, u) = op(1). (A.11)
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From (A.7)-(A.11), we have

ĈRn(z, u) =
1√
n

n∑
i=1

H(z,u)(Yi, ξi, Ui; z, u) + ∆ + op(1) (A.12)

with H(z,u)(Y, ξ, U ; z, u) and ∆ defined in Sections 2 and 3. Because the indicator function is

monotone, it is easy to prove that Gu = {H(z,u)(Y, ξ, U ; z, u) : z ∈ Rp, u ∈ R} is a V-C class of

functions. See Nolan & Pollard (1988). By Theorem 3.1 of Arcones & Yu (1994), we can show

that ĈRn(z, u) converges to a Gaussian process. Further by the continuous mapping theorem,

we can prove the result for Tn. 2

Proof of Theorem 3 If we denote Dnew(ξ, U) = n1/2LnD(ξ, U), then (3.2) can be transformed

into

H1n : Yi = α⊤(Ui)ξi + n−1/2Dnew(ξi, Ui) + εi, i = 1, 2, · · · , n. (A.13)

By the similar method to prove Theorem 2, we can prove that

ĈRn(z, u) =
1√
n

n∑
i=1

H(z,u)(Yi, ξi, Ui; z, u) + ∆new + op(1) (A.14)

with H(z,u)(Y, ξ, U ; z, u) defined in Section 2 and ∆new = E{Dnew(ξ, U)I(W ≤ w) +E[E{ξ

Dnew(ξ, U)|U}⊤ ξ(V )I(W ≤ w)] → ∞ as n → ∞. So Tn converges to ∞ as n → ∞. 2
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Figure 1: Plots of rejection frequency for Case 1 in Example 1 under different sample sizes and
test levels 0.05 and 0.1. Tproposed: the proposed test; Tnaive: the naive method.
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Figure 2: Plots of rejection frequency for Case 2 in Example 1 under different sample sizes and
test levels 0.05 and 0.1. Tproposed: the proposed test; Tnaive: the naive method.
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Figure 3: Plots of rejection frequency for Case 1 in Example 2 under different sample sizes and
test levels 0.05 and 0.1. Tproposed: the proposed test; Tnaive: the naive method.
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Figure 4: Plots of rejection frequency for Case 2 in Example 2 under different sample sizes and
test levels 0.05 and 0.1. Tproposed: the proposed test; Tnaive: the naive method.
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Figure 5: (a) Scatter plot of the calibrated model error estimator ε̂n versus α̂⊤(U)ξ̂n(V ) in Ex-
ample 3; (b) Scatter plot of the naive model error estimator ε̂naive versus α̂⊤

naive(U)ξ̃ in Example
3.
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Figure 6: (a) Scatter plot of the calibrated model error estimator ε̂n versus α̂⊤(U)ξ̂n(V ) in Ex-
ample 4; (b) Scatter plot of the naive model error estimator ε̂naive versus α̂⊤

naive(U)ξ̃ in Example
4.
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