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Abstract 

A quantitative phase-field model is developed for the investigation of crevice corrosion of 

iron in salt water. Six types of ionic species and some associated chemical reactions have 

been considered. In addition to the transient distributions of ion concentrations and electric 

potential in the electrolyte, some physical and chemical properties related to corrosion, 

such as overpotential, pH value and corrosion rate, under different metal potentials are 

studied. Benchmarking of the phase-field model against a sharp interface model is 

conducted. The corrosion rates predicted by the models are in the same order of magnitudes 

with experimental results.  
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Electrochemical simulation 

 

Nomenclature 
 

 

Ac      a constant related to the interface 

ci       composition of species i 

cib      composition of species i close to the    

         metal surface in the electrolyte 

c1s     composition of Fe2+ at standard state  

         in the electrolyte 

Ci     concentration of species i (mol/m3) 

Cib     concentration of species i close to 

the  

         metal surface in the electrolyte  

         (mol/m3) 

C1s    concentration of Fe2+ at standard 

state  

         in the electrolyte (mol/m3) 

Di     diffusion coefficient of species i in 

the     

         electrolyte (m2/s) 

Dm    self-diffusion coefficient of iron  

         atom (m2/s) 

D1r    diffusion coefficient of Fe2+ at a  

          reference state when M=-0.4V  

          (m2/s) 

Dml    diffusion coefficient of Fe2+ within  

          the interface (m2/s) 

E       free energy functional (J) 

Eb     bulk free energy (J) 

Ei      interfacial energy (J) 

fb      bulk free energy density (J /m3) 

fi       gradient free energy (J /m3) 

F      Faraday’s constant (96,485 C/mol) 

j1      flux of Fe2+ from metal into  

         electrolyte (A/m2) 

j10     exchange current density of Fe2+    

         (A/m2) 

j5       reduction rate of hydrogen ion at the  

         anodic electrode (A/m2) 

j50      pre-exponential factor of j5  

         (A·m3/mol/m2) 

j6       reduction rate of water ion on the  

         anodic electrode (A/m2) 

k1B    backward reaction rate constant of 

the  

         hydrolysis of Fe2+ (m3/mol/s) 

k2F    forward reaction rate constant of  

         self-ionization of water (mol/m3/s) 

k2B    backward reaction rate constant of  

         self-ionization of water (m3/mol/s) 

K1     equilibrium constant of hydrolysis 

         reaction of Fe2+ (mol/m3) 

K2     self-ionization constant of water  
         (mol2/m6) 

M(c1)  mobility of Fe2+ (mol·m2/J/s) 

nx      number of grids used in SIM 

nxl      number of grids in electrolyte used 

in  

          PFM 

r        coordinate in whole system domain 

          (m) 

R      gas constant (8.314 J/mol/K) 

T       absolute temperature (K) 

Vm     molar volume of pure water 

(m3/mol) 

VFe    molar volume of iron (m3/mol)  

x        a dimensionless variable from 0 to 1 

zi       charge of species i 

 

Greek 

α       gradient energy coefficient 

(J·m2/mol) 

α1      charge transfer coefficient of Fe2+ 

α5      charge transfer coefficient of H+ 

α6      charge transfer coefficient of  

          reduction of water 

∆G    the energy barrier between the     

         electrolyte phase and metal phase 

∆l      grid size (m) 

∆t      time step (s) 

ηa      total overpotenital (V) 

ηc      concentration polarization  

         overpotential close to  



j60      pre-exponential factor of j6 (A/m2) 

jml      flux of Fe2+ under any electrode  

          potential any given M with l+ ηc  

               setting to be 0 (A/m2) 

j1r      flux of Fe2+ at a reference state 

when  

         M=-0.4V (A/m2) 

k1F    forward reaction rate constant of the  

         hydrolysis of Fe2+ (s-1) 

         metal-electrolyte interface (V) 

σs      surface tension (J/m2) 

       electrostatic potential in electrolyte 

M     electric potential in the metal (V) 

l      electric potential in the electrolyte  

         close to metal-electrolyte interface  

           (V) 

eq,M   standard electrode potential of iron  

           (V) 

 

 

1. Introduction 

Crevice and pitting corrosion are localized corrosion in which there is intensive corrosion 

attack at localized sites on the metal surface inside crevices or pits. Those metals that resist 

corrosion by forming passive films, such as stainless steel, are vulnerable to crevice and 

pitting corrosion because of the breakdown of protective oxide film. In crevice corrosion 

for example, the anodic reactions mainly occur within the crevice and cathodic reactions 

mainly occur outside the crevice, and the cathodic region surface area is far larger than that 

of anodic region, which usually leads to pitting of the metal without large loss of metal 

mass by faster corrosion reaction inside the crevice. The propagation of pitting results in 

the degradation of the mechanical properties of the metallic material. Due to the extremely 

secluded geometry of crevice and pitting which is often hidden from view, crevice and 

pitting corrosion are very difficult to be detected. 

There has been extensive investigation on crevice corrosion in the past decades. Two 

theories, i.e., critical crevice solution theory and IR drop theory have been proposed to 

describe crevice corrosion [1, 2]. In the critical crevice solution theory, it is assumed that 

the reaction of oxidants, such as oxygen, depletes the oxidant in the crevice. Due to the 

restrictive geometry of the crevice, the replenishing of oxidant from outside of the crevice 



is too slow to maintain the cathodic reaction in the crevice. The anions, such as Cl-, are 

transported into the crevice in order to neutralize the metal cation due to the dissolution of 

metal ions into the electrolyte. The hydrolysis of metal ions with water molecules generates 

H+ ions that result in acidity in the crevice. When the concentrations of Cl- and H+ reach 

critical values, the passive film that protects the metal from the environment breaks down, 

and the accelerated corrosion in crevice starts. In the IR drop theory, it is assumed that 

there is an IR voltage drop in the solution produced by the separation of anodic and cathodic 

reactions. The IR voltage drop is proportional to the ionic current (I) flowing through a 

solution with a resistance (R) determined by the length of the current path, the cross-section 

area of crevice and the conductivity of solution in the crevice. If the voltage IR drop is 

large enough, the electrode potential in the crevice will shift from the passive region into 

the active region in the polarization curve, corresponding to the occurrence of crevice 

corrosion. A number of mathematical and numerical models based on the critical crevice 

solution theory [3-9], IR drop theory [10] and both theories [11, 12], have been developed 

for crevice corrosion.  

Crevice corrosion of an active metal is a very complex phenomenon and involves 

multiscale physical and chemical processes. The metal ions get into electrolyte in the 

dissolution process of metal under the gradient of electrochemical potential via an electrical 

double layer (DL) which separates the metal phase from the electrolyte phase. There is net 

electric charge which forms a dipole in the DL (a layer with a thickness in the order of 

nanometers), in which the electrochemical reactions mainly occur. The metal ion and other 

ions may chemically react with each other and are transported in the crevice solution over 

a typical length scale of millimeters. The solution part extent is much larger than the 



thickness of DL. The electrical potential gradients and composition gradients of metal ions 

are very large in DL and relatively small in the crevice solution. Due to the presence of net 

electrical charge, thin DL, and huge drop of electrical potential and concentration of metal 

ion across the DL, the numerical simulation of physical and chemical processes within the 

vicinity of DL is difficult. Thus, the electrochemical reactions inside the DL have not been 

taken into account in the reported mathematical and numerical models for crevice corrosion. 

And, for simplicity, the electrolyte was usually treated as electrically neutral in those 

studies. 

During crevice corrosion, the interface between metal and solution moves due to the 

dissolution of metal, and new phases, such as hydrogen gas and/or corrosion products 

might form if the crevice solution is supersaturated [1]. Both the interface migration and 

new phase formation modify the crevice geometry and physical environment, which, in 

turn, influence the local chemical potential and the crevice corrosion kinetics. Thus, the 

interface should be treated as a moving boundary for a quantitative model of crevice 

corrosion. A moving boundary is difficult to deal with, especially for crevices with 

complex topological geometries. The traditional way to deal with the moving boundary 

problem was to use sharp interface model (SIM) in which the position of interface was 

tracked explicitly in the simulations. To model crevice corrosion or pitting corrosion, some 

complex algorithms of moving mesh were developed to track the moving interface using 

some numerical techniques, such as finite element method [8, 13-18], finite volume method 

[19], boundary element method [20-22] and arbitrary Lagrangian–Eulerian model [23]. It 

is difficult to successfully cope with both the multiphysics calculation and the smooth 

moving interface of arbitrary crevice shapes while maintaining conservation of mass and 



electroneutrality. Special methods are needed to guarantee the conservation of mass and 

electroneutrality when the interface moves [19].  

In the past two decades, phase-field methods (PFM) based on a diffusive interface concept 

without the need of tracking the interface position explicitly [24, 25], have advanced very 

rapidly. Significant phase-field modeling work has been done on electrochemical systems. 

PFM offers an alternative method to model crevice or pitting corrosion. Guyer et al. 

developed a one-dimensional PFM of an electrochemical system that can handle both the 

electro-dissolution and electro-deposition, including the net charges present in the interface 

by incorporating the Poisson equation into the model [26, 27]. Basing on Guyer’s model, 

Gathright et al. built phase-field model to simulate solid-electrolyte gas sensor [28] and 

electrochemical impedance spectroscopy experiments [29]. However, due to the restriction 

of electric double layer size, the model can only handle systems with a size about tens of 

nanometers. Later on, PFM was implemented on the studies of thermal oxidation [30-33], 

electrochemical processes[34], especially the reverse process of corrosion, such as metal 

refining [35], electro-deoxidation [36] and electro-deposition [37-40]. 

One recent attempt has been made to use PFM to study corrosion [41, 42]. W. Mai et al. 

studied activation-controlled and diffusion controlled pitting corrosion processes, 

electropolishing processes and stress corrosion cracking. The chemical reaction between 

different types of ions and the distribution of electric potential in electrolytes, hence the 

electromigration of charged particles, were not taken into account in their model, which 

are very important factors in the corrosion process. In their recent work [43], W. Mai et al. 

proposed a 2D model to study the influence of oxygen concentration and electric potential 

distribution in electrolyte to the pitting corrosion process, and a 1D model considering the 



distribution of several ion species concentration and electric potential in electrolytes to 

study a 1D pencil electrode corrosion. However the effect of metal ion concentration in the 

electrolyte on polarizing the total overpotential was not considered in their model, which 

is very important for the corrosion process, especially for modeling the diffusion controlled 

corrosion process. 

In this work, we propose a quantitative PFM for the study of crevice (or pitting) corrosion, 

which not only considers the overpotential via the Butler-Volmer equation, but also 

incorporates the electric potential distribution and chemical reactions between different 

types of ions in the electrolyte. The model system is one with iron immersed in 3% NaCl 

solution, the same system studied by Sharland et al. [6, 7] and Turnbull et al. [4]. It should 

be noted that both Sharland and Turnbull’s work assumed steady-state corrosion kinetics, 

while our model is fully time-dependent. The work described below ignores the formation 

of passive films, and the effect of passive film on localized corrosion will be studied in the 

future. For the convenience of verifying our PFM against the SIM and simplification of 

calculation, one-dimensional simulation is carried out. 

2. Model description 

Similar to Sharland’s work [6], our model assumes that the corrosion only happens at the 

tip of a crevice, meaning that the side wall of a crevice is passivated. For the system of iron 

in salt water, we consider six types of ions and the following ion-containing chemical 

reactions taking place in the electrolyte.  

 
2

2Fe H O FeOH H      (1) 

 

 
  HOHOH2  (2) 



Here, we assume that there is no passive film formed during corrosion. The six ions are 

Fe2+, FeOH+, Cl-, Na+, H+, OH-. The concentrations of these ions are denoted as follows. 
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1Fe C    , 
2FeOH C    , 

3Cl C    , 
4Na C    , 

5H C    , and 
6OH C    . 

The composition ci of the ith ion type is related to the corresponding concentration Ci by

i i mc CV , where Vm is the molar volume of pure water. Fluid convection is not considered 

in this model due to the occluded crevice geometry. The electrode potentials are measured 

on the standard hydrogen electrode (SHE) scale in this work. 

 

2.1. Phase-field model 

The governing equation of Fe2+ is the Cahn-Hilliard equation augmented with electro-

migration term and chemical reaction terms. The governing equations of the other five ion 

species are the Nernst-Planck equations with chemical reaction terms. They are written as 

follows: 
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and the net charge in the electrolyte is assumed to be zero, which means that the 

electroneutrality condition is applied, and 
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where Di (i=1,2,…,6) is the diffusion coefficient of species i; zi (i=1,2,…,6) the charge of 

species i (z1 = +2, z2 = +1, z3 = -1, z4 = +1, z5 = +1, z6 = -1); F the Faraday constant;  the 

electrostatic potential in electrolyte; R the gas constant; and T the absolute temperature. k1F 

and k2F are the forward reaction rate constants of the chemical reactions (1) and (2), 

respectively, while k1B and k2B are backward reaction rate constants of reactions (1) and 

(2), respectively. The reaction rates are related to the equilibrium constants as 
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At equilibrium, there are following relations for the state of reactions (1) and (2) 
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It should be noted that the Cahn-Hilliard equation (3) apply to the whole system, including 

the metal and electrolyte. The other equations from (4) to (9) apply only to the electrolyte.  

The Cahn-Hilliard equation (3) should be able to be reduced to the Nernst-Planck equation 

in the electrolyte as used in the sharp interface model as 
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where E in the Cahn-Hilliard equation (3) is the free energy functional, which includes the 

bulk free energy Eb, interfacial energy Ei and electrostatic energy Ee as,  

  1= + + =b i e b i eE E E E f c f f dV     (15) 

where fb(c1) is the bulk free energy density. For a regular solution  

        1 1 1 1 1 1 1= ln 1 ln 1 1b

G
f c RT c c c c c c

RT

 
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 (16) 

which is a double well function with two local minima at c1s and 1-c1s representing the 

electrolyte phase and metal phase, respectively. c1s is the composition of Fe2+ at the 

standard state in the electrolyte with a value of 1.8×10-2, corresponding to 1M. ∆G is the 

energy barrier between the electrolyte phase and the metal phase. Since the value of ∆G is 

not available from the literature, it was chosen to make sure that the two local minima are 

at c1s and 1-c1s 1, respectively.  

fi is the gradient free energy at the metal-electrolyte interface written as 

  
2

1=if c   (17) 

where α is the gradient energy coefficient related to the surface tension σs. It is written as  
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where Ac is a constant related to the interfacial width and the bulk free energy density.  

fe is the electrostatic energy density, which only applies in the electrolyte portion. It is 

written as 

 1 1=ef z Fc  (19) 

 



In this PFM, the Cahn-Hilliard equation (3) is used to automatically track the interface 

between the metal and electrolyte, while Neumann boundary conditions are assigned for 

the Nernst -Planck equations of other five species.  

The mobility M(c1) is a piecewise function. In the electrolyte, the mobility is 

  
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where D1 is the diffusion coefficient of metal ion in the electrolyte, same as in the SIM. 

This expression of mobility M(c1), when combined with the expression of bulk free energy 

density (16) and the electrostatic energy density (19), guarantees that the Cahn-Hilliard 

equation (3) will reduce to Eq. (14) in the electrolyte. 

In the metal, the mobility is 

  
RT

D
cM m1  (21) 

where Dm is the diffusion coefficient of metal atom in the metal. 

Within the metal-electrolyte interface, the mobility is 

  
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where Dml is the diffusion coefficient of the metal ion within the interface, which controls 

the interface velocity in the metal dissolution process. It is related to the metal ion flux 

from the metal into the electrolyte j1 as determined by total polarization overpotential ηa 

via the Butler-Volmer equation 

    1 10 1 1 1 1exp (1 ) expa aj j z F RT z F RT          (23) 



where  j10 is the exchange current density. Its value typically ranges from 10-4 to 10-2 Am-

2 around pH 7 [44, 45]. Here, we choose 3 2

10 2.7 10 Amj   
 
[44, 45]. α1 is the charge 

transfer coefficient. The total overpotential, ηa, is determined by 

 ,a M l eq M c         (24) 

where M is the electric potential in the metal; l is the electric potential in the electrolyte 

close to the metal-electrolyte interface; eq,M the equilibrium potential at standard condition 

which is -0.44V (SHE) for iron. We define the concentration polarization at crevice tip, ηc, 

with respect to the concentration at standard state instead of the concentration at bulk 

solution as 

 
1 1

1 1 1 1

ln lnb b
c

s s

C cRT RT

z F C z F c
    (25) 

At standard condition, C1s= 1M and c1s = C1sVm, which is the first local minimum 

representing the electrolyte phase in the bulk free energy fb. C1b (c1b) is the concentration 

(composition) of Fe2+ close to metal surface in the electrolyte. eq,M + l + ηc, instead of 

eq,M + ηc, is the equilibrium potential because there is electric potential distribution in the 

electrolyte.  

l and ηc change with time during the corrosion process. For convenience, we start the 

simulation with the initial condition l = -ηc. Corrosion takes place when ηa> 0. The system 

reaches equilibrium when the overpotential ηa tends to be zero. Since Tafel equation is not 

valid in low overpotential region, the Butler-Volmer equation is used to define the flux. 

In order to determine the value of Dml, we assume, 
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j
  (26) 

where D1r and j1r are diffusion coefficient and flux of Fe2+, respectively, at a reference state 

when M=-0.4V, corresponding to a total overpotential ηa of  0.136V obtained by 

calibration simulation.  j1r can be obtained by substituting ηa into Eq. (23). D1r is set to a 

value of 5×10-15 m2/s by calibrating the PFM against the SIM, see section 3.1. jml is the 

metal ion flux under any electrode potential M, which can be obtained by substituting 

corresponding ηa into Eq. (23). Since D1r and j1r are constants, the value of Dml will change 

with the total overpotential ηa in the simulation process. 

In order to verify our PFM against the SIM, same as in Sharland’s work [6, 7], we assume 

that the geometrical structure of the crevice is a parallel-sided slot in the metal and that the 

two crevice walls are passivated. Thus, the problem is reduced to a simplified one-

dimensional problem with the corrosion only occurring at the crevice tip as shown in Fig. 

1. 

 

 

Fig. 1. The one dimension geometry of crevice. L is the length of the whole system, which 

includes the metal and the electrolyte with a length Lm and Ll, respectively.
 

In one dimension, the Cahn-Hilliard equation is rewritten as 
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where r is given as 0≤ r ≤ L. Electro-migration and chemical reaction only apply in the 

electrolyte portion, which means that there is no distribution of electrostatic potential or of 

the other five ion species in the metal portion.  

In order to solve the one-dimensional Eqs. (4)-(9) with a moving boundary at the metal-

electrolyte interface, the following coordinate transformation is applied (Appendix I).  

 ( ) ( )lX t L t x , 0<x<1 (28) 

where x is a dimensionless variable, Ll is the length of electrolyte portion which varies with 

time as the corrosion process proceeds. It is possible to avoid such transformation in 2D or 

3D if one considers one domain for all ionic species in the modeling, that is, the domain 

includes both metal and electrolyte. In this work, the main objective is to verify and validate 

the framework of PFM for corrosion modeling as compared to SIM. The coordinate 

transformation is for the convenience of comparison of the results obtained by PFM and 

SIM in 1D. 

Eqs. (4)-(9) in the new coordinate after substituting Eq. (9) into Eq. (5) to cancel c3 are 

rewritten as 
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The boundary conditions for the Cahn-Hilliard equation (27) are 
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where the first condition is the requirement that there are no metal ions entering into the 

system from the left boundary (r = 0) to influence the motion of the metal-electrolyte 

interface. For the second condition, the composition of metal ion at the crevice mouth is 

set to be a very small value of 1.8×10-9, instead of zero, due to the logarithm term used in 



the bulk free energy. The third and fourth conditions are the requirement for the Cahn-

Hilliard equation (27) to reduce to the Nernst-Planck equation at the boundary r = L. 

The Neumann boundary conditions are applied at the crevice tip where x = 0 for the 

governing equations of other species and electrostatic potential, 
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where j5 is the reduction rate of hydrogen ion at the anodic electrode due to the reaction 

 2

1

2
H e H    (40) 

and j5 is given by 

  5 50 5 5exp aj j C F RT   (41) 

where 3 3 2

50 2 10 A m / mol mj      , α5 = -0.5, C5 is the concentration of H+ in the 

electrolyte close to anodic electrode [4]. 

j6 is the reduction rate of water on the anodic electrode due to the reaction 



 2H O e H OH     (42) 

And it is given by 

  6 60 6exp aj j F RT   (43) 

where
10 2

60 8 10 A / mj   , α6 = -0.5 [4].
 

Dirichlet boundary conditions are applied at the crevice mouth where x = 1 as follows: 
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Which corresponds to a 3% NaCl solution, and 
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where the values in the brackets are concentrations.  

The initial composition of Fe2+ is set to 1 uniformly in the metal and which drops to 
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 in the electrolyte via a Heaviside function. 
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is selected to be far 

smaller than c1s. Within the electrolyte, the Fe2+composition is assumed to be 
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is the boundary condition of the metal ion at crevice mouth. The initial values of 

other species and electric potential are  
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where 
0, 0

( , )
x t

x t
 

= - RTln(c1b/c1s)/F/z1, which makes the initial value of l + ηc equal to 0. 

The value of c3 can be obtained at any time and any position in the electrolyte according to 

Eq. (9). 

 

2.2. Sharp interface model 

In this model all six species are governed by the Nernst-Planck equations. The Nernst-

Planck equation (14) for metal ions in the transformed coordinate is written as, 
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Ll is determined by the following equation, 
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where VFe is molar volume of iron,  j1 the flux of Fe2+ from metal into the electrolyte. The 

governing equations for the other species and electric potential are the same Eqs. (29)-(33). 



The boundary conditions for the Nernst-Planck equations (55) at crevice tip and mouth are 

written as 
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The boundary conditions for the other species and electric potential are the same as those 

given in the previous section.  

Since there is only one electrolyte region to be considered in the sharp interface model, the 

initial condition for Fe2+ is set only in the electrolyte, which is the same as Eq. (49). The 

initial conditions for other species are the same as those given in the previous section. 

 

2.3 Material parameters and model parameters 

Parameters are given in Table 1. Values for k1F and k1B were not available. The value of K1 

is taken from Ref. [46, 47]. Tests on k1F and k1B showed that their values will not strongly 

affect the final results. Thus, we simply set k1F = 1.0 s-1. Then, according to Eq. (10), we 

can get k1B = 3.162×109 1/(M·s) = 3.162×106 m3/(mol·s). 

Table 1 

Values of parameters. 

Parameter Value 
T 

σs 

Vm 

VFe 
Ac 
c1s 

∆G 

eq,M 
K1 a 
K2 b 

298 K 

0.2 J/m2 

1.8×10-5m3/mol 

7.0923×10-6 m3/mol 
0.5×108 
1.8×10-2 

1.027×104 J/mol 

-0.44V (SHE) 
3.162×10-7mol/m3 
1×10-8 (mol/m3)2 



k1F  
k1B 

k2F b 
k2B b 

j10
 c 

j50
 d 

j60
 d 

α1
 d 

α5
 d 

α6
 d 

D1 d 

D2 d 
D3 d 
D4 d 
D5 d 

D6 d 

Dm 

D1r 

L 

Ll 

Lm 

nx 

nxl 

∆l 

∆t 

1.0 s-1 
3.162×106 m3/(mol·s) 

1.4 mol/(m3·s) 

1.4×108 m3/(mol·s) 

2.7×10-3 Am-2 
-2×10-3 Am3/mol/m2 

8×10-10 Am-2 
0.5 

-0.5 

-0.5 
1×10-9m2/s 

1×10-9m2/s 

1×10-9m2/s 

1×10-9m2/s 

9.3×10-9m2/s 

5. 3×10-9m2/s 

3×10-13m2/s 

1.5×10-15 m2/s 

2.5×10-3m 

2×10-3m 

0.5×10-3m 

200 

200 

10-5m 

2×10-4s 
a
 Ref. [46, 47] 

b
 Ref. [48, 49] 

c
 Ref. [44, 45] 

d
 Ref. [4] 

Since Ll and Lm change with time, their values in the table are initial values. In the SIM, 

the whole domain x is from 0 to 1, which is divided into a fixed number of grids nx. While 

in the PFM, the grids number nxl in electrolyte part increases with Ll. Thus, a mapping of 

the values of compositions and electric potential between the two types of grids is needed, 

see Appendix II for details. The value of nxl in the table is an initial value. The grid size in 

PFM is ∆l. The time step ∆t used in both models is the same.  

The Crank-Nicolson numerical method is used to solve the Nernst-Planck equations. For 

the numerical solutions of the Cahn-Hilliard equation, the forward Euler method is used 



for the time derivatives, while the centered finite difference method is used to approximate 

the Laplacican. 

3. Results and discussion 

In order to compare the results obtained using the two models, we studied several cases 

under the same initial and boundary conditions. For corrosion to occur, ηa> 0 is required 

according to Eq. (23). In all the simulations of this work, the initial value of l is set to -ηc. 

Thus, M>eq,M is required for corrosion to proceed. 

3.1. The comparison study at M = -0.4V 

Since we do not know the parameter, Dml, for the interface velocity in the PFM, a 

calibration study between PFM and SIM was carried out to evaluate the value of diffusion 

coefficient, Dml, according to the expression (26). Fig. 2 shows the simulation results 

obtained from SIM and PFM by setting D1r = 5×10-15 m2/s under M = -0.4V, which 

corresponds to an initial overpotential, ηa, 0.04V. Then, we use this D1r to find Dml under 

other electrode potentials according to Eq. (26). The overpotential, ηa, changes with time, 

see Eq. (24), because the electric potential, l, and metal ion concentration, C1b, close to 

the metal surface in the electrolyte change with time. Comparing the results obtained by 

SIM and PFM indicates that the value of 5×10-15 m2/s for D1r is a good choice for PFM.  
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Fig. 2. The comparison of simulation results between SIM and PFM at M = -0.4 V. (a), (c) 

and (e) are the results obtained by SIM. (b), (d) and (f) are obtained by the current PFM. 

(a) and (b) are the profiles of Fe2+concentration, C1 in the electrolyte at five different times. 

(c) and (d) are the distributions of six ion concentrations in the electrolyte at t=2×105s 

(55.56 hours). (e) and (f) are the evolution of six ion concentrations close to metal surface, 

Cib, in the electrolyte. (g) shows the distributions of electric potential in the electrolyte at 

t=2×105s (55.56 hours) obtained by SIM and PFM. (h) is the evolution of electric potential 



l obtained by the two methods. And (i) is the corroded depth versus time from the two 

models. 

Fig. 2(a) and (b) show the concentration profiles of Fe2+, C1, in the electrolyte obtained by 

SIM and PFM at five different times, respectively, which indicates that a steady state 

distribution of Fe2+ is reached at t = 104s. Fig. 2(c) and (d) show the concentration 

distributions of six ion species in logarithmic scale in the electrolyte at the time of 2×105 

seconds (55.56 hours) obtained by SIM and PFM, respectively. The concentration of H+, 

C5, is higher at crevice tip than at the mouth, and the profiles of C5 and C6 are symmetric 

with respect to the value of 10-7M. The higher C5 at the crevice tip is mainly the 

consequence of higher tip C1 via the hydrolysis of metal ion Fe2+ [see Eq. (1)] or the 

reaction terms in the Eqs. (3) and (4), which produces a strong coupling among C1, C2 and 

C5. Comparing to the H+ produced by the hydrolysis of Fe2+, the depletion of H+ from 

electrolyte via the reduction of H+ at the electrode [see Eq. (40)] and its recombination with 

OH- [see Eq. (2)] is very small. Thus, the higher overpotential causes a higher corrosion 

rate and higher C1 and C5 in the electrolyte. This relation between overpotential and 

concentration of H+, C5, will be discussed in a later section. The mirror symmetry of H+, 

C5, and OH-, C6, concentration profiles with respect to the value of 10-7M is associated 

with the dissociation of water or the reaction terms in Eqs. (7) and (8). The pH values close 

to the metal surface obtained by SIM and PFM are 6.49 and 6.63, respectively. The 

concentrations of Cl-, C3, and Na+, C4, are very high and are similar. The reason is that the 

system we studied is iron immersed into a 3% NaCl solution, which corresponds to a 

concentration of 0.513 M. Compared to the concentration of the salt water, the 

concentrations of other species are very low. For example, the concentration of Fe2+ close 



to metal surface in the electrolyte, C1b, is on the order of 10-3M, due to the slow release 

speed from metal surface and the fast transportation of Fe2+ to the crevice mouth under the 

driving force of the concentration gradient and the electric field.  

Fig. 2(e) and (f) show the concentration evolution of six species close to the metal surface 

in the electrolyte with time. The initial concentrations are from the equilibrium values 

determined by Eqs. (12), (13) and the charge neutrality condition. After a short period of 

time, they all reach the steady state values. It is found that the Eqs. (12), (13) and the charge 

neutrality condition are satisfied. For instance, the values of C2bC5b/C1b  obtained by SIM 

and PFM at time 55.55 hours are 3.13×10-10M and 3.11×10-10M, respectively, which are 

very close to the value of K1, 3.16×10-10M. And C5bC6b obtained by both models is 10-14 

(M)2, same as K2.  

Fig. 2(g) shows the electric potential distribution in the electrolyte obtained by SIM and 

PFM, which correspond to electric field strength of 0.065V/m and 0.09V/m, respectively. 

The electric potential close to metal surface is higher than that in the other regions in the 

electrolyte. This is because that the metal ion, Fe2+ dissolving into the solution leads to a 

temporary slight increase of positive charges from zero at the vicinity of the metal surface 

in the electrolyte, which further leads to a higher electric potential at the vicinity of metal 

surface, l. This temporary slight charge increase will be neutralized very quickly by the 

Cl- migrating from crevice mouth due to the strong electric force, which maintains 

electroneutrality. The evolution of l with time is shown in Fig. 2(h), which decreases at 

initial period and reaches a steady value later. 



Based on Fig. 2(i), the average corrosion rates obtained by SIM and PFM are 2.91×10-

4m/year and 3.7×10-4m/year, respectively. The concentration polarization overpotential, ηc, 

and the total overpotential, ηa, change with time due to the variation of C1b and l during 

the corrosion process. After 55.56 hours of corrosion, the concentration polarization 

overpotentials (ηc) calculated from SIM and PFM are -7.65×10-2V and -8.64×10-2V and 

the total overpotentials (ηa) are 0.116V and 0.126V, respectively. We can find that there 

are some discrepancies between the results obtained by SIM and PFM. The main reason is 

that the movement of metal-electrolyte interface in PFM is determined by the mobility 

which is influenced by the total overpotential. Some parameters such as C1b and l have to 

be determined in PFM by selecting a point near the interface, which can influence the 

concentration overpotential and the total overpotential through Eqs. (24) and (25), and 

further influence the mobility of metal-electrolyte interface via Eqs. (23) and (26). In 

principle, one can minimize the differences through fine tuning these parameters in PFM. 

3.2  Corrosion behavior under different metal potentials 

This section discusses the corrosion behavior under different metal potentials. Fig. 3 shows 

the composition profile of metal ions under four different metal potentials at t=0 and t = 

55.56 hours obtained by PFM. 
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                                        (c)                                                                   (d) 

Fig. 3. Profiles of c1 in log scale under four metal potentials M obtained by PFM. 

The interface recedes into the metal portion with different lengths that correspond to the 

corroded lengths under different metal potentials for the same time interval 55.56 hours. It 

shows that an increased metal potential results in higher corrosion rate. The composition 

of Fe2+, c1, close to interface in the electrolyte increases with the metal potential. The 

electrochemical quantities at crevice tip versus metal potentials obtained by SIM and PFM 

are shown in Fig. 4.  
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Fig. 4. The corrosion rate, C1b, l, pH, ηa and ηc close to metal surface versus electric 

potential in the metal, M, obtained by SIM and PFM at t=2×105s (55.56 hour). 

Fig. 4 shows the values of C1b, l, pH, ηa and ηc near the metal surface and corrosion rate 

versus M, obtained by SIM and PFM, respectively. The results obtained by SIM and PFM 

show the same trend. According to Eq. (25), the value of ηc is smaller than zero because 

the concentration of Fe2+, C1, near the metal surface is smaller than 1M. It is observed that 

C1b, l, ηa and corrosion rate increase with M, but pH and the absolute value of ηc decreases 

with M, resulting from the increase of dissolution rate of the metal due to larger 

overpotential by increasing M. The larger dissolution rate of metal leads to relatively larger 

flow of Fe2+ into the solution through the metal surface, which leads to larger C1b, l and 

ηa. The pH decreases linearly with the increase of M, meaning that a faster corrosion rate 

will lead to stronger acidity at the crevice tip. The relations for C1b, l and corrosion rate 

versus M are nonlinear, while the relation between logarithm of them and M is linear. 

According to the Butler-Volmer equation (23), the relation between the flux of Fe2+ from 

metal into electrolyte, j1, and the total overpotential, ηa, is j1exp(ηa), because the opposite 

process (deposition of metal ion onto the electrode) is very small and can be ignored. The 

above simulations were done using the same value of D1r determined in section 3.1. It 

shows that the effective interfacial diffusivity determined by the expressions (22) and (26) 

can well describe the interface velocity in the whole range of simulation conditions. The 

predicted corrosion rates under M from -0.4V to -0.25V are the same order of magnitude 

as the experimental results on mild steel in deaerated 3% NaCl solution at 298K [50] as 

shown in Fig. 5. The increases of C1b, l and corrosion rate are about 4 times in SIM and 



PFM for every increase of 0.05 V in M, which is also consistent with the results observed 

in the experiment [50] as shown in Fig. 5.  

 

Fig. 5. The corrosion rate versus electric potential in the metal, M, obtained by SIM, PFM 

at t=2×105s (55.56 hour), and experiment [50]. The experiment data are extracted from Fig. 

47.1 in Ref. [50]. 

The difference between the corrosion rates under different metal potentials obtained by 

SIM and PFM is very small. And slopes by the three methods are almost the same. There 

still are some discrepancies between the results obtained by the experiment and theoretical 

modeling (PFM and SIM). The reason is that the crevice length and the ions concentrations 

at the crevice mouth in the experiment are unknown. They will influence the ions 

concentrations Cib (i = 1, 2, , 6) and the electric potential, l, close to interface in the 

electrolyte, and further influence crevice corrosion rates.  In addition, in SIM and PFM, it 

is assumed that only the crevice tip is under corrosion and crevice wall is protected by 

passive films. However, in the experiment, the geometry of crevice is more complex and 

part of crevice wall may be under corrosion due to incomplete passivation.  



The corrosion rate, concentration of ion species and electric potential in the electrolyte are 

several orders smaller than those results obtained by Sharland [6]. Sharland has mentioned 

that his results “are unrealistically high which would suggest that some of the 

approximations made in the construction of the model may not be valid” [6]. 

 

4. Conclusions 

A quantitative PFM for crevice corrosion of steels in a sodium chloride solution is 

developed. The model accounts for the transport of six types of ions in the electrolyte and 

the evolution of electrochemical potential. The simulation results from this model are 

compared to those from a SIM. Both PFM and SIM models are used to study the 

distributions of the six types of ions, pH value, electrostatic potential, and corrosion rate as 

a function of time in one dimension. The results from the developed PFM show the same 

trend and are within the same magnitude as those from SIM. The corrosion rates predicted 

by both models are in good agreement with experimental results. The PFM does not need 

to track the interface position and apply interface conditions explicitly, and does not require 

complicated numerical scheme for dealing with the moving interface that normally 

required in SIM. In order to take full advantage of PFM, it is suggested that for 2D and 3D 

corrosion modeling the modeling domain should be the same for all ionic species, that is, 

the domain should include the corroding metal and the electrolyte. For those ionic species 

that exist only in the electrolyte, one can assign small mobility for these ions in metal. 

Therefore, PFM has great potential to study many corrosion related phenomena. This work 

provides a good foundation for further study on 2D and 3D localized corrosion with or 

without insoluble corrosion products using phase-field methods. When the concentrations 



of some species in the electrolyte exceed the saturation limits, some insoluble products 

may precipitate on the wall of crevice. The formation of precipitates can be treated as new 

phases, which will require the introduction of new order parameters and their governing 

equations into the model. 
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Appendix A 

Let 

 ( ) ( )X t L t x  (A.1) 

where, 0≤x≤1, L(t) changes with time. Then, ( ) ( ) ( )dX t L t dx xdL t   and 
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Then, 
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 (A.4) 

and substituting above Eqs. (A.2) - (A.4) into Eq. (3)
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The coordinate transformations for equations of other ion species are similar. 

 

Appendix B 

The n-degree interpolation polynomial in the Lagrange form is 
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where, 
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
 ,   j= 0, 1, ···, k.  f(xj) is the value of function f at grid xj. 

Here, for the simplicity. We only use one-degree Lagrange polynomial to do piecewise 

interpolation. The Lagrange polynomial basis is 
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There is a fixed number of grids in electrolyte in SIM, nx = 200. The number of grids in 

electrolyte in PFM (nxl) varies with the corrosion process, and nxl ≥ nx. The values of c1 in 

PFM grids should be mapped onto SIM grids. 

 1 1 0 1 1( ) ( ) ( ) ( 1) ( )i ic i c j l x c j l x    (B.3) 

where i= 1, ···, nx,  1
0

0 1

( )= i
i

x x
l x

x x




, 0

1

1 0

( )= i
i

x x
l x

x x
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
, xl xx n n  , ix i x  , int( )ij x  

which is the integer part of xi with j ≤ xi , 0x j  and 1 +1x j . A reverse process is needed 

when mapping from SIM to PFM.  
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