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Abstract

Background: While constraint-induced movement therapy (CIMT) is one of the most promising techniques for
upper limb rehabilitation after stroke, it requires high residual function to start with. Robotic device, on the other
hand, can provide intention-driven assistance and is proven capable to complement conventional therapy. However,
with many robotic devices focus on more proximal joints like shoulder and elbow, recovery of hand and fingers
functions have become a challenge. Here we propose the use of robotic device to assist hand and fingers functions
training and we aim to evaluate the potential efficacy of intention-driven robot-assisted fingers training.

Methods: Participants (6 to 24 months post-stroke) were randomly assigned into two groups: robot-assisted (robot)
and non-assisted (control) fingers training groups. Each participant underwent 20-session training. Action Research
Arm Test (ARAT) was used as the primary outcome measure, while, Wolf Motor Function Test (WMFT) score, its
functional tasks (WMFT-FT) sub-score, Fugl-Meyer Assessment (FMA), its shoulder and elbow (FMA-SE) sub-score,
and finger individuation index (FII) served as secondary outcome measures.

Results: Nineteen patients completed the 20-session training (Trial Registration: HKClinicalTrials.com HKCTR-1554);
eighteen of them came back for a 6-month follow-up. Significant improvements (p < 0.05) were found in the clinical
scores for both robot and control group after training. However, only robot group maintained the significant difference
in the ARAT and FMA-SE six months after the training. The WMFT-FT score and time post-training improvements of
robot group were significantly better than those of the control group.

Conclusions: This study showed the potential efficacy of robot-assisted fingers training for hand and fingers
rehabilitation and its feasibility to facilitate early rehabilitation for a wider population of stroke survivors; and
hence, can be used to complement CIMT.
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Background
Stroke remains the leading cause of severe long-term
disabilities worldwide, with hemiplegia associated with
abnormal muscle activation and coordination, muscle
weaknesses, spasticity, and loss of dexterity and precision
being the major contributors to the disabilities [1-7].
While almost 70% of stroke survivors are able to regain
walking ability within the first six months, recovery of
the paretic upper-extremity is still challenging [8-11].
Approximately only 38% of stroke patients regained some
dexterity in their paretic arm six months post-stroke
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[12,13]. Even more demanding is the recovery of hand
and fingers functions, which is proven very limited with
no consistent pattern of improvement [14,15].
A recent review has suggested the use of constraint-

induced movement therapy (CIMT) and robot-assisted
therapy for hand rehabilitation [14,15]. CIMT is a rehabili-
tation therapy during which the participant was asked to
complete different tasks with his/her non-paretic limb be-
ing constrained; hence forcing the use of the paretic limb
itself. By doing so, it is expected that the learned non-use
process can be prevented [16-18]. Currently, CIMT is ar-
guably one of the most promising methods for upper limb
rehabilitation post-stroke with studies showing impressive
improvements after training [15,16,18-21]. However, there
have been debates that the high efficacy shown in CIMT
l. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:kytong@cuhk.edu.hk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Susanto et al. Journal of NeuroEngineering and Rehabilitation  (2015) 12:42 Page 2 of 9
studies is mainly attributed to the very selected population
of stroke survivors who are less impaired and/or able to
tolerate prolonged constraint [14]. The very intense and
strenuous nature of CIMT seems to limit its applicability
to general stroke survivors.
Robotic devices, on the other hand, have been adept

complements to conventional therapy due to their ability
to facilitate repetitive movement training with high in-
tensity and precision [14,15] as well as their applicability
to wider audience of the stroke population. Many of
them can be customized to meet patient’s needs, making
them more suitable for stroke survivors with wide range
of impairment level.
Researchers have developed different robotic rehabili-

tation devices to reduce the neurological impairment of
the upper limb after stroke; IntelliArm, MIT MANUS,
and ARMin are just three examples of the growing col-
lections of rehabilitation robots with various features
[22-24]. Nevertheless, many of these devices still focus
on functional rehabilitation of the more proximal joints,
such as shoulder and elbow. In 2007, we developed a
hand exoskeleton robot system that facilitates movements
of each individual finger in both flexion and extension di-
rections [25-28]. A recent review indicates this as one of
the only few devices with such feature [29]. Similar result
was observed by Heo et al. in their review on hand exo-
skeleton technologies [30].
This study explores the possibility of implementing the

robot-assisted rehabilitation for finger dexterity recovery
after stroke and evaluates the effects of its instructed
assistance control algorithm. We investigate the possible ef-
ficacy of this robot-assisted fingers training over a 20-session
rehabilitation program and the long-term effect of this train-
ing on the paretic upper limb over a six-month follow-up.
Strain gauges

Figure 1 The modified hand exoskeleton robot. This is a picture of the han
are the strain gauges mounted to the device for joint moments measurem
Methods
Device and control algorithm
The hand exoskeleton robot used in this study was ori-
ginally designed by our group [27], with some modifica-
tions to suit the purpose of the study by enabling active
individual finger control via joint moment sensing [28].
This device, having 5 individual digits powered by 5 lin-
ear actuators (Firgelli L12, Firgelli Technologies, Inc.), al-
lows simultaneous flexion of 55 and 65 degrees around
the metacarpophalangeal (MCP) and proximal interpha-
langeal (PIP) joints, respectively. The device was attached
to user’s paretic hand using Velcro straps.
Nine full-bridge strain-gauges ZF1000-2 EB-T (Shenzhen

Nanhua Electronic Technology Co., Ltd., China) were
mounted to measure MCP and PIP joint moments of
every finger; five sliding potentiometers RS6011Y1401A
(Alps Electric Co., Ltd., USA) were installed to provide
each finger’s position feedback (see Figure 1) [28].
The joint moment signals were amplified 1000 times

and, together with the position feedback signals, were then
inputted into NI-USB 6218 DAQ (National Instruments,
Corp., USA) to be sampled at 1000 Hz sampling rate and
16-bit resolution. All data were processed using LabVIEW
(National Instruments, Corp., USA).
The device provided assistance to the user’s paretic hand

to accomplish three gestures: hand grasping and opening,
three-finger (thumb, index, and middle finger) pinching
and opening, and two-finger (thumb and index finger)
pinching and opening. For the pinching gestures, non-
instructed fingers were kept in flexed position.
The control algorithm was designed such that, the de-

vice would initiate its assistance when the MCP joint
moments of all the instructed fingers were above the
threshold level, and those of the non-instructed fingers
Potentiometers

d exoskeleton robot after modification. Highlighted in black squares
ent, while highlighted in white squares are the linear potentiometers.
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were below the threshold level. With average enslaving
force, which is the force produced by a non-instructed
finger while another finger is exerting maximum force,
in individuals with stroke being around 25% of its re-
spective maximum force [31], we set the threshold for
each finger at 20% of its own MCP joint flexion and
extension isometric maximum voluntary torque (MVT)
measured prior to each training session.
The direction of the assistance (i.e. flexion or extension)

was pre-determined and instructed to the subjects; the
system automatically reversed the direction after the
digit reached the target position, as indicated by the
potentiometers.
Depending on the purpose of the use, the linear actua-

tors of the device are detachable from the exoskeleton
digits, allowing those digits to move freely with only mini-
mum friction from the mechanical parts. This would be
useful for: (1) performing non-assistive hand training, and
(2) measuring the user’s active range-of-motion (ROM).

Subjects
Stroke survivors are eligible to participate if they satisfy
the following: (1) primary stroke 6 to 24 months prior to
the beginning of the intervention, (2) moderate stroke con-
dition (50 > FMA score > 20) [32,33], (3) ability to under-
stand simple commands (Mini Mental State Examination
score > 21), and (4) ability to differentiate sensation on
one finger from the other fingers. They are excluded if
they have: (1) recurrent stroke, (2) other neurological,
neuromuscular, orthopedic disease, or (3) shoulder or
arm contracture/pain.

Randomization
Participants were randomized into 2 groups: (1) the robot-
assisted (robot) group and (2) the non-assisted (control)
group, with 1:1 ratio, by random number generator.

Protocol
Participants underwent a total of 20 one-hour sessions
of robot-assisted fingers training. The training intensity
was set at 3 to 5 times a week with all 20 sessions to be
completed within 5 consecutive weeks. The human sub-
jects ethics review for this study had been approved by
the Departmental Research Committee of the Hong Kong
Polytechnic University.
In every session, the participant was seated comfortably

and stretching on his/her upper-limb was done passively
by a physical therapist for 10 minutes. The hand exoskel-
eton robot was then put on the subject’s paretic hand with
his elbow positioned at 90° flexion and his forearm on an
arm-rest. The subject was subsequently asked to perform
maximum flexion and extension of each digit individually
for 3 seconds in a randomized order to measure their
MVTs.
The training was performed without the arm-rest, and
comprised three modes: hand grasp, three-finger pinch,
and two-finger pinch. In all three modes, the subjects
were instructed to move a kitchen sponge on a horizon-
tal plane of the table in front of them. Four points were
marked on the table, in the shape of a rhombus with hori-
zontal and vertical diagonals of 500 mm and 300 mm.
The movement started from the paretic side, to the non-
paretic side, forward, backward, then back to the paretic
side. This movement was performed for about 4 minutes
with full hand grasp, 8 minutes with three-finger pinch,
and another 8 minutes with two-finger pinch. A short
break (1–2 minutes) was allowed after each part of the
training. The robot group completed this section with
the device’s assistance. The control group, on the other
hand, completed the exact same task within the same
time frame without any assistance from the device as the
linear actuators of the instructed fingers were disconnected
from the exoskeleton digits as described earlier. Assistance
from the therapist, however, was provided for the control
group whenever deemed necessary throughout the training
session.
Continuous verbal instructions and postural control by

the therapist were used to minimize compensation by
the non-paretic arm throughout the session.

Outcome measures
Action Research Arm Test (ARAT) was adopted as the
primary efficacy outcome measure because of its high reli-
ability (r > 0.9) and due to its ability to assess not only
proximal control of the arm, but also its dexterity [34-36].
This assessment has an overall maximum score of 57 and
can be divided into 4 subsets: grasp, grip, pinch, and gross
movement. However, it was suggested that these subset
scores should never be used independently due to the uni-
dimensional nature of the test [37].
As the secondary outcome measures, Wolf Motor Func-

tion Test (WMFT) and Fugl-Meyer Assessment (FMA),
which are as reliable as the ARAT (r > 0.9) [33-36,38-41],
as well as session-to-session finger independency index
(FII) were used. WMFT was intended to quantify UE
functional ability in stroke patients based on the perform-
ance and the time required to complete joint motions and
functional tasks [38]. The WMFT consists of: 15 tasks
(6 joint segment tasks, 9 functional tasks; maximum
score = 75), each of which should be performed within
120 seconds, and 2 strength measurements [38,41]. As
the training focused on dexterity, the sub-score of WMFT
consisting the 9 functional tasks only (WMFT-FT) was
also analyzed as a separate measure to evaluate the sub-
jects’ improvement in terms of functional tasks ability.
FMA was designed as performance-based impairment
index to assess the motor function, balance, sensations,
and joint functions in hemiplegic stroke survivors [33].
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In this study, FMA refers only to the upper extremity
motor function part with a total score of 66. Addition-
ally, in order to specifically evaluate functional changes
in the proximal and distal joints, the shoulder and elbow
subset score of the FMA (FMA-SE; maximum score = 36),
and the wrist and hand subset score of the FMA (FMA-WH;
intraclass correlation coefficient = 0.97 [42]; maximum
score = 24) were also analyzed separately.
Four measurements of WMFT, ARAT, and FMA were

taken: within 2 weeks from the first training session (Pre1),
within 1 week from the first session(Pre2), within 3 days
after the last session (Post), and 6-months follow-up
(6Mo). The study was single-blinded so the assessors
were of no knowledge of the grouping.
Meanwhile, FII is measured on every 5 sessions and

defined as follows:

FII ¼
X4

i¼1

FIi
4

FIi ¼ Fl;l
——

X4

j¼1
Fi;j
——

Fi;j
——

indicates the maximum flexion force of finger j

while finger i is doing an isometric flexion MVT and Fl;l
——
Figure 2 CONSORT patient flow throughout the study.
indicates the maximum flexion force of finger i during
MVT. i and j indicate the index of the four fingers
other than thumb, from the index finger (1) to the little
finger (4).
Both FI and FII range from 0 to 1. An FI value of 0 in-

dicates a complete inability of the instructed finger to
exert flexion force, while FI value of 1 indicates the abil-
ity of the instructed finger to perform flexion MVT with
the other 3 fingers exerting no flexion force at all. As
the average value of the four fingers’ FIs, FII represents,
in general, the individuality of the four fingers.

Data analysis
Statistical analysis of all the outcome measures data was
conducted using the non-parametric tests. Wilcoxon’s
Signed-Rank tests were done to evaluate functional changes
within each group at different time points, and Mann–
Whitney U-test was performed to compare the two groups
in terms of functional improvement right after the inter-
vention (Pre2-Post) and 6 months after the intervention
(Pre2-6Mo), with Pre2 data as the baseline. Change in out-
come measures is considered significant if the p-value is
less than 0.05. Intention-to-treat principle was used.
Mean change of FMA and ARAT scores were compared

against their estimated minimal clinically important differ-
ence (MCID) values; and WMFT mean change against



Table 1 Patients’ demographic data

Characteristic Robot (n = 9) Control (n = 10)

Mean age [SD] 50.7 [9.0] 55.1 [10.6]

Sex, male (%) 7(78) 7(70)

Handedness, right (%) 9(100) 10(100)

Affected side, right (%) 3(33) 4(40)

Stroke type, hemorrhagic (%) 3(33) 5(50)

Mean months from onset to first
training session [SD]

16.4 [5.8] 16.1 [5.1]
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its estimated minimal detectable change (MDC) value
[36,39,40]. Proportions of participants exceeding these
MCID/MDC values were also calculated.
Results
The clinical trial was registered to HKClinicalTrials
(http://www.hkclinicaltrials.com) with a unique identifier
of HKCTR-1554. From January until September 2013, 37
stroke survivors responded to our recruitment; eighteen
of them did not meet our recruitment criteria (see Figure 2
for more details). The nineteen stroke survivors (14 males
and 5 females, aged 53.2 ± 9.9 years old) who met the
requirements were recruited, gave informed consent,
and were randomly distributed into 2 groups (9 to the
robot group and 10 to the control group). All of them
Table 2 Intra-group comparisons of clinical assessment score

Outcome
Measures

Mean ± SD

Pre-1 Pre-2 Post

Robot

ARAT 16.56 ± 10.86 17.33 ± 10.62 31.33 ±

WMFT Score 34.56 ± 8.37 35.33 ± 8.54 44.89 ±

WMFT Time 53.78 ± 18.00 51.44 ± 20.67 36.54 ±

WMFT-FT Score 10.22 ± 6.27 11.22 ± 7.44 20.11 ±

WMFT-FT Time 89.51 ± 24.46 86.16 ± 31.14 55.78 ±

FMA 31.67 ± 12.19 31.89 ± 11.98 37.00 ±

FMA-SE 18.44 ± 7.40 17.89 ± 7.43 21.33 ±

FMA-WH 10.56 ± 5.12 11.11 ± 5.30 12.56 ±

Control

ARAT 18.60 ± 9.88 20.80 ± 8.30 28.50 ±

WMFT Score 35.10 ± 5.43 35.40 ± 4.00 40.40 ±

WMFT Time 49.60 ± 15.83 47.15 ± 18.42 43.52 ±

WMFT-FT Score 12.70 ± 4.00 14.40 ± 3.47 16.80 ±

WMFT-FT Time 76.54 ± 29.21 71.44 ± 26.90 67.22 ±

FMA 33.30 ± 6.78 34.60 ± 8.16 40.30 ±

FMA-SE 20.50 ± 4.22 20.50 ± 5.37 23.80 ±

FMA-WH 10.30 ± 3.20 11.30 ± 3.29 13.30 ±

Abbreviations: ARAT, Action Research Arm Test; WMFT, Wolf Motor Function Test; W
Fugl-Meyer Assessment; FMA-SE, the shoulder and elbow parts of FMA; FMA-WH, th
*indicates significant difference.
completed the intervention, and only one from the con-
trol group did not take the follow-up assessment due to
relocation. The demographic data of the participants is
shown in Table 1. No significant bias was found between
the two groups with respect to age, gender, handedness,
affected side, stroke type, and mean months from the on-
set to the first training session.
Summary of the statistical analysis is shown in Table 2.

Baseline values were quite stable with no significant dif-
ference found between Pre-1 and Pre-2. After interven-
tion, significant improvements of ARAT, WMFT score,
WMFT time, WMFT-FT score, WMFT-FT time, and
FMA-SE were present in the robot group; and significant
improvements of ARAT, WMFT score, FMA, FMA-SE
and FMA-WH were found in the control group. However,
only the robot group was able to maintain significant dif-
ferences in ARAT and FMA-SE scores, six months after
training.
Inter-group comparisons showed significantly better

WMFT-FT score and time improvements post-training
(both with p = 0.017) in the robot group (see Table 3).
No significant difference between the two groups was
present in any of the clinical scores 6 months after
training.
As shown in Table 4, the average change in WMFT,

ARAT, and FMA scores of the robot group were higher
than the MCID/MDC values both post-training and at
s

p-value

6-Mo Pre-2 vs. Post Pre-2 vs. 6-Mo

8.01 28.33 ± 11.97 0.008* 0.044*

10.77 42.56 ± 9.03 0.007* 0.109

18.61 34.04 ± 15.76 0.011* 0.066

7.99 17.67 ± 7.89 0.007* 0.123

27.47 56.58 ± 28.23 0.008* 0.066

12.48 38.00 ± 13.53 0.065 0.123

6.82 21.56 ± 7.95 0.012* 0.020*

4.52 13.78 ± 5.16 0.438 0.210

5.95 27.40 ± 8.78 0.014* 0.083

6.50 38.30 ± 6.86 0.027* 0.107

12.55 44.47 ± 13.91 0.333 0.445

4.77 15.60 ± 5.28 0.085 0.550

20.58 70.00 ± 26.53 0.333 0.959

7.54 37.30 ± 9.72 0.008* 0.083

5.33 21.90 ± 6.02 0.012* 0.230

2.49 12.10 ± 3.70 0.018* 0.255

MFT-FT, the functional movement tasks of Wolf Motor Function Test; FMA,
e wrist and hand parts of FMA.

http://www.hkclinicaltrials.com


Table 3 Inter-group comparisons of post-intervention
effects

Outcome Measures Mean Change ± SD p-value

Improvement Robot Control

Pre2-Post

ARAT 14.00 ± 5.75 7.70 ± 6.91 0.053

WMFT Score 9.56 ± 7.54 5.00 ± 6.46 0.113

WMFT Time −14.91 ± 12.06 −3.63 ± 10.96 0.079

WMFT-FT Score 8.89 ± 8.67 2.40 ± 4.12 0.017*

WMFT-FT Time −30.38 ± 23.74 −4.22 ± 21.01 0.017*

FMA 5.11 ± 6.55 5.70 ± 4.35 0.968

FMA-SE 3.44 ± 2.01 3.30 ± 2.65 0.905

FMA-WH 1.44 ± 4.14 2.00 ± 1.67 0.484

Pre2-6Mo

ARAT 11.00 ± 13.91 6.60 ± 11.09 0.497

WMFT Score 7.22 ± 12.50 2.90 ± 5.07 0.720

WMFT Time −17.40 ± 24.10 −2.68 ± 8.80 0.156

WMFT-FT Score 6.44 ± 11.26 1.20 ± 3.71 0.356

WMFT-FT Time −29.58 ± 39.92 −1.44 ± 12.42 0.095

FMA 6.11 ± 10.90 2.70 ± 4.42 0.604

FMA-SE 3.67 ± 5.35 1.40 ± 2.87 0.356

FMA-WH 2.67 ± 4.97 0.80 ± 1.99 0.565

Abbreviations: ARAT, Action Research Arm Test; WMFT, Wolf Motor Function
Test; WMFT-FT, the functional movement tasks of Wolf Motor Function Test;
FMA, Fugl-Meyer Assessment; FMA-SE, the shoulder and elbow parts of FMA;
FMA-WH, the wrist and hand parts of FMA.
*indicates significant difference.
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Table 4 Comparison of intervention effects against MCID/
MDC

Outcome
Measures

MCID/
MDC

Pre2-Post Pre2-6Mo

Robot Control Robot Control

Mean Change

ARAT 5.70 14.00* 7.70* 11.00* 6.60*

WMFT Score 5.55 9.56* 5.00 7.22* 2.90

WMFT Time −4.36 −14.91* −3.63 −17.40* −2.68

FMA 4.25 5.11* 5.70* 6.11* 2.70

Proportion Exceeding MCID/MDC

ARAT 5.70 9/9(100%) 6/10(60%) 6/9(67%) 5/10(50%)

WMFT Score 5.55 8/9(89%) 4/10(40%) 4/9(44%) 2/10(20%)

WMFT Time −4.36 8/9(89%) 6/10(60%) 6/9(67%) 5/10(50%)

FMA 4.25 5/9(56%) 5/10(50%) 5/9(56%) 4/10(40%)

Abbreviations: ARAT, Action Research Arm Test; WMFT, Wolf Motor Function
Test; FMA, Fugl-Meyer Assessment; MCID, Minimal Clinically Important Difference;
MDC, Minimal Detectable Change.
*indicates average improvement higher than MCID/MDC.
6-month follow-up, while only ARAT is higher than
MCID/MDC in the control group. Similarly, proportions
of stroke survivors exceeding the MCID/MDC values
were higher in the robot group in all clinical scores.
Figure 3 shows an increasing trend of FII improvement

in the robot group all the way to the last session, while
FII improvement in the control group seemed to be
reaching a plateau after the 10th session. In spite of such
difference, non-parametric test showed no significant
difference between FII in the first session and that in the
last session in both groups (p = 0.096 for the robot group
and p = 0.527 for the control group), nor did it show sig-
nificant difference on FII improvement in the inter-
group comparison (p = 0.400).
Additionally, in terms of repetitions made (accumulated

from all three modes: grasping, three-finger pinching, and
two-finger pinching) by the subjects during the specified
training period, the robot group significantly increased
their total repetitions from 80.56 ± 23.23 repetitions
during the first training session to 109.11 ± 9.41 repeti-
tions in the last session (p = 0.004). Similarly, the con-
trol group also gained significant increase from 62.13 ±
17.96 repetitions initially to 83.63 ± 22.12 repetitions by
the last training session (p = 0.002). The robot group,
however, performed significantly more repetitions by the
last training session (p = 0.006) despite the insignificant
difference between the two groups in the first session
(p = 0.090).

Discussion
Applying robot-assisted therapy to fingers dexterity re-
habilitation, the results showed better improvement of
fingers dexterity in the robot group when compared to
the control. Significant improvements in the robot group
were observed in most of the outcome measures post
training and 44% to 67% of the participants in that
group experienced improvements exceeding the respective
MCID/MDC of each clinical score after 6 months. Com-
pared to the control group, which represents conventional
therapy with comparable intensity but without any assist-
ance from the device, the robot group has a significantly
better recovery after 20 sessions of training.
Nevertheless, we attributed the better improvements

of the robot group to two factors. First, the encouraged
use of the hand and selected fingers in the training early
in the chronic stroke phase (6 to 24 months after stroke
onset) seems to promote reversal of the behaviorally re-
inforced learned non-use due to repetitive movements of
the affected hand and fingers, just like how this mechan-
ism happened to the paretic upper limb in general after
the forced use of it in CIMT studies [19,21]. We believe
this is also accompanied by expansion of the paretic arm
representation area in the primary motor cortex, despite
direct evidence unavailable. This factor, also shared by



Figure 3 The change in FII throughout the 20-session training. The black solid line indicates the more obvious FII improvement of the robot
group as compared to that of the control group indicated by the green dashed line.
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the control group, also explains the slight improvement
in the control group. This is supported by the fact that
in the last training sessions, the subjects in both groups
performed significantly more repetitions of the tasks
than they did during the first session.
Second is the control algorithm, which is unique to the

robot group and appears to be the difference maker. The
control algorithm that requires instructed fingers to be ac-
tive and uninstructed fingers to relax might have provided
the robot group with feedbacks that promote motor learn-
ing and muscle coordination. The control group, who is
not provided with such feedbacks, does not seem to share
similar benefit.
The significant differences found in FMA-SE in both

groups may suggest improvements on shoulder and elbow
joints as well despite the device mainly focused on hand
and fingers. The involvement of other joints in the tasks
might be beneficial for the whole upper limb, albeit at dif-
ferent levels. With proximal to distal gradient of motor
deficit being absent [43], this result further suggests that
holistic approach of rehabilitation, as opposed to joint per
joint rehabilitation, is the way to go. This suggestion is in
line with the findings of Oujamaa et al., who suggests that
exercising the more distal joints of the paretic arm is es-
sential and efficient [44].
Furthermore, due to robot assistance, we anticipated a

possible intensity decrease, and thus reduced efficacy in
the robot group, compared to the non-assisted control
group. This case, however, was not evident; on the contrary,
the incorporation of the device seemed to give positive
effect to the training as subjects in robot group may have
compensated the reduced intensity due to the robot assist-
ance with more repetitions and less use of non-paretic arm
support throughout the training; resulting in increased ac-
tual use of their paretic arm and subsequently promoting
improvement-induced increased use outside the sessions.
The results showed significantly higher number of repeti-
tions performed in the last session with robotic training.
While significant improvements were found in ARAT

and FMA-SE in the robot group at the 6-month follow-
up time point, the inter-group difference, however, was
insignificant. This is most likely due to the large variations
among the subjects. Larger sample size may be necessary
to show the significant difference after 6 months.
Moving forward, we are of the belief that robot-assisted

rehabilitation should be applied in combination with CIMT.
While CIMT would be very beneficial for those who
can handle it, it requires relatively high baseline to start
with; effectively limiting its target group. This robot-
assisted fingers training, on the other hand, appears to
be beneficial for a wider group of patients with moder-
ate to severe impairment level after stroke when com-
pared to CIMT. Hence, a rehabilitation protocol started
as early as possible with robot-assisted training and
later followed by CIMT, we believe, would better bene-
fit individuals with stroke.
Having mentioned that, we also consider the need of

establishing a clinical score boundary, above which indi-
viduals with stroke shall be recommended to enroll in
CIMT and below which robot-assisted intervention shall
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be given to them, in the future studies. In this study, we
have shown that the robot-assisted training were able to
facilitate stroke survivors with minimum WMFT score
of 24. Meanwhile for CIMT, with the pooled WMFT
prescore means of 44.85, and considering the stringent
nature of CIMT, we estimate a bottom line of around 35
to 40 is necessary for a stroke survivor to be able to
undergo CIMT. Once this boundary is established, a se-
quential robot-assisted therapy and CIMT, like the one
studied by Hsieh et al. [45], can be systematically applied
in clinical settings.
Limitations of this study also deserve to be addressed.

The main limitation of this study is that this is just a
pilot study with limited sample size; nevertheless, this
study should suffice to estimate the necessary sample size
for a full-scale study. Secondly, as the non-paretic arm of
the participants is not being constrained, its use might
vary across subjects and result in a high variability of the
improvement. Lastly, with a literature which reviewing 66
studies on upper limb functional rehabilitation after stroke
[44], authors were recommending 30 hours functional re-
habilitation training for upper limb for chronic stroke re-
habilitation. The intensity applied in this study might have
room for further improving the efficacy of the training,
since the finger individuation index (FII) showed continu-
ous improvement between the 15 and 20 training sessions.
More training sessions/hours should be considered in
future studies.
Conclusions
While full-scale study is still needed for confirmation,
this study has shown the potential of robot-assisted fin-
gers training to enhance upper limb function in general,
and hand and fingers functions in particular. Our findings
also suggest that upper-limb rehabilitation shall be done
holistically by using tasks that involve multiple joints as
one functional unit instead of focusing on just one or two
joints only.
Additionally, to prevent loss of hand and expansion of

non-hand representation areas in the primary motor cor-
tex and to prevent learned non-use from setting in, CIMT,
and rehabilitation training in general, must be started as
early as possible. With CIMT requiring high baseline, this
robot-assisted therapy, which can facilitate earlier re-
habilitation for individual with stroke, proved to be a viable
option to bridge the gap and be a good complement for
CIMT.
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