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using a modified fixed-points theory
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Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
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A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibra-

tions of heavy structures because the traditional dynamic vibration absorber equipped with a vis-

cous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an

elastic spring and a viscoelastic damper with frequency dependent modulus and damping proper-

ties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of

the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-

points theory is therefore proposed to solve this problem. H1 design optimization of the proposed

VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-

of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping

of the proposed VDVA can be decoupled such that both of these two properties of the absorber can

be tuned independently to their optimal values by following a specified procedure. The proposed

VDVA with optimized design is tested numerically using two real commercial viscoelastic damp-

ing materials. It is found that the proposed viscoelastic absorber can provide much stronger vibra-

tion reduction effect than the conventional VDVA without the elastic spring.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5024506

[JFL] Pages: 1064–1075

I. INTRODUCTION

Low frequency infrasonic vibrations at or below 20 Hz

can come from many sources such as seismic activity, high-

way traffic, airports, HVAC systems of buildings, etc. These

vibrations could travel over long distances from numerous

constant sources through buildings and structures into the envi-

ronment, and they produce problems to sensitive equipment1

while they pass by. Slowly shaking motions of structures and

buildings matching the natural frequency of human internal

organs in the range of 5–8 Hz may cause human discomfort

and health problems.2,3 Since the inherent damping in many

flexible structures is very low, vibration tends to continue for a

long period of time unless steps are taken to absorb its energy.

Mounting a dynamic vibration absorber with proper

design and location onto an oscillating structure can provide

a robust solution to suppress its vibration and noise radiation.

The traditional dynamic vibration absorber as illustrated in

Fig. 1(a) is a passive device for reducing vibration of the pri-

mary system. It uses a viscous damping element to damp

down the vibration of the primary system mostly at the pre-

tuned frequency. This model in Fig. 1(a) is denoted as model

A in this paper. Many research reports can be found in litera-

ture about the derivations of the optimum parameters of the

traditional dynamic vibration absorber (DVA). Ormondroyd

and Den Hartog4 showed that the DVA has an optimum

damping value for the minimization of the resonant ampli-

tude response of single degree-of-freedom (SDOF) system.

The optimum damping and optimum tuning frequency were

derived by Brock5 and Hahnkamn,6 respectively. These for-

mulations can be deduced using the fixed-points theory7

which stated that there are two invariant points in the fre-

quency spectra of the primary mass regardless of the amount

of the viscous damping. The optimal frequency and damping

ratios of the traditional DVA for the undamped SDOF pri-

mary system based on the fixed-points theory were very

good approximation to the exact values derived by Nishihara

and Asami.8 Variant designs of DVA using viscous damper

were considered and optimized using the fixed-points the-

ory9–13 for minimizing resonant vibrations of single and

multiple degree-of-freedom systems. However, the com-

monly used viscous damper is not effective for damping low

frequency infrasonic vibrations because the damping force is

proportional to the vibration frequency and it is relatively

small at low frequency. A very big viscous damper would be

required to generate the damping force required in practice if

the primary vibrating structure is heavy. On the other hand,

the damping force of a viscoelastic damper is proportional to

the vibration displacement instead and therefore it may be a

better alternative of the viscous damper for suppressing low

frequency vibrations.

The simplest way to construct a viscoelastic dynamic

vibration absorber (VDVA) is to use a viscoelastic damper

to provide both the resilient and the energy dissipating func-

tions as illustrated in Fig. 1(b). This model in Fig. 1(b) is

called model B in this paper. However, the complex modulus

of viscoelastic material depends on both the vibration fre-

quency and temperature of the material. These features of

the viscoelastic materials cause the coupling of the stiffness

and damping in the design of the VDVA.a)Electronic mail: mmwowong@polyu.edu.hk

1064 J. Acoust. Soc. Am. 143 (2), February 2018 VC 2018 Acoustical Society of America0001-4966/2018/143(2)/1064/12/$30.00

https://doi.org/10.1121/1.5024506
mailto:mmwowong@polyu.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5024506&domain=pdf&date_stamp=2018-02-01


Analysis of VDVA often requires an analytical feature of

the rheological characteristics of the viscoelastic damper. There

are different approaches to the analytical modeling of rheologi-

cal behavior of linear viscoelastic materials. The classical

approach is the mechanical model comprising a combination of

linear springs and dashpots.14–17 The mathematical model is

expressed in form of Prony series known as the general

Maxwell or Kelvin model. The fractional derivative model18–21

has been applied to model the parametric models of viscoelastic

materials by many researchers. Fractional derivatives can model

the broadband behavior of viscoelastic materials with less

parameters compared to the Prony series. In practice, the com-

plex modulus of the damper material can be employed to the

absorber structure whatever the configuration of the absorber is

and the viscoelastic loss factor of the absorber can be obtained

by direct measurement with a suitable experiment.22

Al-Rumaih23 had designed a VDVA using a commer-

cial viscoelastic damping material and he demonstrated the

effectiveness of his design in suppressing resonant vibra-

tion of heavy structures. Esp�ındola et al.24,25 proposed an

optimal design theory based on the concept of equivalent

generalized mass and damping parameters to optimize the

parameters of one or multiple viscoelastic damping absorb-

ers. Their method requires a numerical search of the anti-

resonance frequency of the absorber in order to minimize

the maximum vibration amplitude of the primary system.

The genetic algorithm was explored by Xu et al.26 to opti-

mize parameters of multi-dimensional earthquake device

composed of viscoelastic dampers. A direct performance-

based design method was developed by Guo and

Christopoulos27 to study the seismic design of structures

equipped with non-linear hysteretic material. However,

there is no analytical method to derive an optimized design

of the VDVA in order to minimize the resonant vibration of

the primary vibrating system.

In view of the coupling problem of the stiffness and

damping of the traditional design of VDVA, a new design of

the absorber which allows independent tuning of its stiffness

and damping is proposed. It is named as model C in the fol-

lowing. The standard fixed-points theory cannot be applied

to the VDVA because both its stiffness and damping are fre-

quency dependent. A modified fixed-points theory is pro-

posed for the derivation of the optimal parameters of the

proposed VDVA for minimizing the resonant vibration

amplitude of SDOF system. To the knowledge of the

authors, this is the first research report on the H1 design

optimization of a VDVA leading to analytical solutions of

the optimum parameters of this type of vibration absorber.

The fixed-points theory used in the optimization of the

traditional DVA (model A in the following) is briefly

reviewed in Sec. II. The optimization method of Esp�ındola

et al.25 for VDVA applied to SDOF primary vibrating sys-

tem (model B) is reviewed briefly in Sec. III. The mathemat-

ical model of the proposed VDVA (model C) is formulated

in Sec. IV. Approximate “fixed points” are found in the fre-

quency response spectra of the primary mass of the proposed

VDVA. A modified fixed-points theory is proposed and

applied to derive the optimal design parameters of the pro-

posed VDVA for minimizing the resonant vibration ampli-

tude of the primary vibrating system. The effectiveness of

the proposed VDVA optimal design method is analyzed with

two examples using real commercial viscoelastic damper

materials.

II. THE TRADITIONAL DYNAMIC VIBRATION
ABSORBER (MODEL A)

Figure 1(a) shows the schematic design of the traditional

dynamic vibration absorber comprising a lumped mass, an

elastic spring and a viscous damper. This vibration absorber

denoted by model A is attached to a single degree-of-free-

dom undamped primary system. Vibration of mass M is

excited by harmonic force f ¼ F sin xt or due to ground

motion y ¼ Y sin xt. The amplitude ratio jHAðkÞj can be

derived as5,7

FIG. 1. A damped dynamic vibration absorber as an auxiliary mass-spring-

damper system attached to a SDOF system (a) model A: traditional design

of the absorber using a viscous damper. (b) Model B: dynamic vibration

absorber using a viscoelastic damper for suppressing the vibration of the

mass M excited by a harmonic force f or due to ground motion y.

J. Acoust. Soc. Am. 143 (2), February 2018 Wong et al. 1065



jHA kð Þj ¼
���� X1

F=K

����
A

¼
����X1

Y

����
A

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � k2
� �2 þ 2ckfð Þ2

1� k2ð Þ c2 � k2
� �

� lc2k2
h i2

þ 2ckf 1� k2 � lk2
� �� �2

vuuut ; (1)

where l ¼ m=M, xa ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, xn ¼

ffiffiffiffiffiffiffiffiffiffi
K=M

p
, c ¼ xa=xn,

k ¼ x=xn, f ¼ c=2
ffiffiffiffiffiffi
mk
p

, and X1 is the vibration amplitude

of the primary mass M.

The objective function of the H1 optimization is to min-

imize the maximum value of jHAðkÞj. It may be expressed

mathematically as

maxðjHAðk; copt A; fopt AÞjÞ ¼ minðmax
c;f
jHAðkÞjÞ: (2)

The procedure to derive the optimum parameters of this

absorber is based on the fixed-points theory by Den Hartog.7

The optimum tuning frequency and damping ratios of this

absorber can be written, respectively, as

copt A ¼
k=m

K=M
¼ 1

1þ l
(3)

and

fopt A ¼
c

2
ffiffiffiffiffiffi
mk
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l

8 1þ lð Þ

s
: (4)

The approximate maximum amplitude ratio of the primary

mass M derived by Den Hartog7 is written as

jHA kð Þjmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ l

l

s
: (5)

III. DYNAMIC VIBRATION ABSORBER EQUIPPED
WITH A VISCOELASTIC DAMPER (MODEL B)

The viscoelastic vibration absorber denoted by model B has

a lumped mass attached to the primary structure through a visco-

elastic damper, as shown in Fig. 1(b). The stiffness of the visco-

elastic damper is modeled by the complex stiffness written as

ksðxÞ ¼ tGcðxÞ ¼ tðGsðxÞ þ iGlðxÞÞ
¼ tGsðxÞð1þ igðxÞÞ: (6)

In the above equation, x is the frequency. t is the geometric

factor related to the shape of the viscoelastic damper. GcðxÞ
is the complex elastic modulus of the viscoelastic material of

the damper. GsðxÞ and GlðxÞ are the storage modulus and

loss modulus, respectively, of the viscoelastic material. gðxÞ
is the loss factor defined as

g xð Þ ¼ Gl xð Þ
Gs xð Þ : (7)

The complex shear modulus depends on the vibration fre-

quency and the temperature of the material. In the following

analysis, steady state vibrations are assumed and the temper-

ature effect to the viscoelastic damper is assumed constant in

time as well. The moduli of the viscoelastic materials in the

following analysis are therefore shown as functions of the

vibration frequency only.

The vibration amplitude ratio jHBðkÞj of model B can be

derived and written as28

jHB kð Þj ¼
���� X1

F=K

����
B

¼
����X1

Y

����
B

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � k2
� �2 þ c2ð Þ2g2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2ð Þ c2 � k2
� �

� lc2k2
� 	2

þ c2 1� k2 � lk2
� �� �2

g2

r ; (8)

where l ¼ m=M, xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tGs=m

p
, xn ¼

ffiffiffiffiffiffiffiffiffiffi
K=M

p
, c ¼ xa=

xn; and k ¼ x=xn.

The purpose of the H1 optimization of the model B

is to optimize the parameters of viscoelastic damper for

minimizing the resonant vibration amplitude of mass M to

the exciting force or ground motion. To apply the fixed-

points theory to the VDVA, we may vary the loss factor g
of the viscoelastic damper by changing the viscoelastic

material used in the VDVA. However, the stiffness tGs

and hence c will also change at any frequency k after we

change the viscoelastic material. Hence the fixed-points

theory cannot be applied like in the case of model A

before.

Esp�ındola et al.25 reported a method to search numeri-

cally the optimum parameters of the viscoelastic damper for

the minimization of maximum vibration amplitude of a

VDVA illustrated as model B in Fig. 1(b). It may be

expressed mathematically as

maxðjHBðk; copt B; topt BÞjÞ ¼ minðmax
c;�
jHBðkÞjÞ: (9)
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A numerical solution of the optimized design of a VDVA

(model B)25 is presented in the following for illustration of

their method. The complex stiffness of the viscoelastic

damper of the VDVA as illustrated by model B in Fig. 1(b)

is given by ksðxÞ ¼ tGcðxÞ, where t is the geometric factor

of the viscoelastic damper of the absorber. The complex

modulus of the viscoelastic damper used in the VDVA was

expressed in terms of the four parameter model below,

Gc xð Þ ¼ 5:32� 106ð Þ þ 1:048� 108ð Þ ibxð Þ0:359

1þ ibxð Þ0:359
;

(10)

where b ¼ 7:75� 10�7 � 10�ð10:1ÞðT�277:7Þ=ð137þT�277:7Þ. x
and T are the vibration frequency and temperature of the vis-

coelastic damper in the absorber, respectively. T is assumed

to be constant equals to 298 K. The modulus Gs and loss fac-

tor g functions of this viscoelastic damper from Ref. 25 are

calculated according to Eq. (10) and plotted in Fig. 2 for ref-

erence. Mass ratio is 0.15 and the primary mass is 100 kg.

Natural frequency xn equals to 30 Hz.

The optimum geometric factor topt B is searched numeri-

cally for the optimum stiffness leading to the optimum fre-

quency ratio copt B such that the maximum vibration response of

the primary mass is minimized. jHBðkÞj is calculated using Eq.

(8) and plotted in Fig. 3 to show the optimization result. Double

peaks of equal height of the vibration amplitude of model B can

be observed in Fig. 3. With the same mass ratio, the frequency

amplitude response of model A is calculated using Eqs. (1), (3),

and (4) and plotted in Fig. 3 for comparison. It shows that model

B with optimal design has a much higher resonant vibration

amplitude response than model A in this case.

IV. THE PROPOSED DYNAMIC VIBRATION
ABSORBER EQUIPPED WITH AN ELASTIC SPRING
AND A VISCOELASTIC DAMPER (MODEL C)

The proposed viscoelastic vibration absorber denoted by

the model C has a lumped mass connected through a visco-

elastic damper and an elastic spring to the primary structure,

as shown in Fig. 4. The purpose of adding an elastic spring

to the VDVA is to adjust the total stiffness of the absorber

without affecting the damping provided by the viscoelastic

damper in the VDVA. Both the stiffness and damping of the

proposed VDVA can be tuned independently by following a

design procedure as described below. This design method

FIG. 2. Variation of the modulus Gs and loss factor g with frequency for the

viscoelastic damper from Ref. 25.

FIG. 3. Frequency response curves jHAðkÞj and jHBðkÞj of the primary mass

M of the traditional DVA (model A, - - - -) optimized using the fixed-points

theory, Ref. 7 and viscoelastic damping absorber (model B, —–) with

l¼ 0.15, M¼ 100 kg, and xn¼ 30 Hz optimized using the method of Ref. 25.

FIG. 4. Model C: the proposed dynamic vibration absorber using a visco-

elastic damper and an elastic spring for suppressing the vibration of the

mass M excited by a harmonic force f or due to ground motion y.
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produces a decoupled design of the VDVA according to the

axiomatic design theory.29

The governing equations of the proposed viscoelastic

vibration absorber (model C) in the frequency domain may

be written as follows.

Case 1: Vibration due to harmonic force excitation

(f ¼ F sin xt, y¼ 0)

�MX1x
2 þ KX1 þ k þ tGsð1þ igÞ½ �ðX1 � X2Þ ¼ FðxÞ;

(11a)

�mX2x
2 þ k þ tGsð1þ igÞ½ �ðX2 � X1Þ ¼ 0: (11b)

Case 2: Vibration due to ground motion (f¼ 0,

y ¼ Y sin xt)

�MX1x
2 þ KðX1 � YÞ

þ k þ tGsð1þ igÞ½ �ðX1 � X2Þ ¼ 0; (12a)

�mX2x
2 þ k þ tGsð1þ igÞ½ �ðX2 � X1Þ ¼ 0; (12b)

where X1 and X2 are the steady state vibration amplitudes

of the masses M and m, respectively. Solving Eqs. (11a)

and (11b) for case 1, and Eqs. (12a) and (12b) for case 2

yield

case 1 : X1 ¼
k þ tGs 1þ igð Þ � mx2
� �

F

tGs 1þ k þ igð Þ K �Mx2ð Þ � K �Mx2 þ tGs 1þ k þ igð Þ
� �

mx2
; (13a)

case 2 : X1 ¼
k þ tGs 1þ igð Þ � mx2
� �

KY

tGs 1þ k þ igð Þ K �Mx2ð Þ � K �Mx2 þ tGs 1þ k þ igð Þ
� �

mx2
; (13b)

cases 1 and 2 : X2 ¼
k þ tGs 1þ igð Þð ÞX1

tGs 1þ k þ igð Þ � mx2
: (13c)

The amplitude ratio of the primary system in both cases 1 and 2 may be written as

jHC xð Þj ¼
���� X1

F=K

����
C

¼
����X1

Y

����
C

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 k þ tGs � mx2ð Þ2 þ K2 tGsgð Þ2

K �Mx2ð Þ k þ tGs � mx2ð Þ � kmx2
� �2 þ tGsg K �Mx2 � mx2ð Þ

� �2
vuut : (14)

Equation (14) may be expressed in the dimensionless form written as

jHC kð Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � k2
� �2 þ co

2ð Þ2g2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2ð Þ c2 � k2
� �

� lc2k2
� 	2

þ co
2 1� k2 � lk2
� �� �2

g2

r ; (15)

where l ¼ m=M, xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ tGsÞ=m

p
, xn ¼

ffiffiffiffiffiffiffiffiffiffi
K=M

p
,

c ¼ xa=xn, xao ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tGs=m

p
, co ¼ xao=xn, and k ¼ x=xn.

It can be observed by comparing Eq. (15) to Eq. (1) that

the frequency response function (FRF) of the primary system

of the VDVA (model C) is similar but not the same as the tradi-

tional DVA (model A). In the standard fixed-points theory, it

states that all frequency response curves of the primary mass

pass through two invariant points regardless of the amount of

the damping. This is valid for viscous damping7 and hysteretic

damping28 because both the stiffness and damping components

of these absorbers are assumed constant with the vibration fre-

quency. However, if a viscoelastic damper is used in the

absorber then both the stiffness and damping of the absorber

varies with the vibration frequency and therefore the standard

procedure of the fixed-points theory cannot be applied.

The idea to make it possible to apply the fixed-points the-

ory to this absorber is to keep the total stiffness, k þ tGs, of the

proposed VDVA to be constant at frequency xn, i.e., c ¼ 1 at

x ¼ xn, while varying the damping of the VDVA by changing

the geometry factor t instead of the loss factor g. A modified

fixed-points theory is proposed and described in the following

for the H1 optimization of model C. The first step is to check

the existence of fixed points in the frequency response spec-

trum of the mass M in model C, a viscoelastic damper in Ref.

22 is chosen for the design of model C. The viscoelastic mate-

rial used in the damper is 3 M-467 viscoelastic tape from the

3 M Ltd. Empirical functions of the stiffness and loss factor are

given in Ref. 22, respectively, as 19838ð4þ f Þ0:7 N/m and

1:4e�0:175j log ðf=100Þj1:5 at 70 F, where f is the vibration frequency

in Hz in the frequency range 0 � f � 104 Hz. Variation of the

1068 J. Acoust. Soc. Am. 143 (2), February 2018 Wong et al.



stiffness toGs and loss factor g with frequency for this visco-

elastic damper made with 3 M-467 are shown in Fig. 5 for ref-

erence. to represents the reference geometric factor of this

viscoelastic damper used in Ref. 22. Assuming the mass ratio

l¼ 0.15, M¼ 100 kg, and xn¼ 10 Hz, the relative geometric

factor t=to of the VDVA can be chosen to be mxn
2=toGs xn

¼ 0.47 such that co ¼ 1 at x ¼ xn. toGs xn
¼ 125 829 N/m is

the stiffness of the viscoelastic damper at xn.

In the first case, assume k¼ 0, the vibration amplitude

response jHCðkÞj of the primary mass M is calculated

according to Eq. (15) and plotted in Fig. 6. The idea to show

the fixed points in the frequency spectrum of mass M is to

maintain the total stiffness, k þ tGs, of the proposed VDVA

to be constant at frequency xn, i.e., c ¼ 1 at x ¼ xn, while

varying the damping of the VDVA by changing the geomet-

ric factor t. In the second case, consider the reduction of t
by 20% leading to 20% reduction of the stiffness. This

reduction of the stiffness tGs xn
at xn is compensated by the

stiffness k of the added elastic spring, i.e., k¼ 0.2 tGs xn
. In

the third case, t is reduced by 40% and the corresponding

reduction of stiffness is compensated by choosing k¼ 0.4

tGs xn
. In the fourth case, t is reduced by 60% and choose

k¼ 0.6 tGs xn
. The respective frequency response curves of

the primary mass M for cases two to four above are calcu-

lated according to Eq. (15) and plotted also in Fig. 6 for

comparison. There appears two intersecting points in the fre-

quency spectra denoted by P and Q in Fig. 6. However,

careful inspection of the intersections of the curves in Fig. 6

reveals that the intersections of the curves are just very close

to the two points P and Q but not truly coincident at points P
and Q. kP � 0.86 and kQ � 1.13 are found in this case. The

two points P and Q are therefore named “pseudo fixed

points” in the following. Points P and Q are not exactly fixed

points like those described by the fixed-points theory. This is

because c of the viscoelastic damper varies with frequency

and therefore c can only be kept approximately constant at

the two fixed points when we varies the geometric factor t.

cP � 0.97 and cQ � 1.02 are found in this case. Although we

can keep the stiffness k þ tGs constant at frequency c ¼ 1,

k þ tGs cannot be kept constant at the frequencies kP and kQ

because the variations of tGs at kP and kQ are not the same

when the geometric factor t is varied. It is found that in this

case, toGs P � 116 883 N/m and toGs Q � 133 898 N/m.

The response amplitude at the pseudo fixed points P and

Q in Fig. 6 are found to be jHCjP � 5:92 and jHCjQ � 2.05,

respectively. The variations of jHCj at the intersecting points

among the four lines in Fig. 6 at those pseudo fixed points P
and Q are found to be about 1%. Noting that cP and cQ are

very close to 1, this illustrated that the principle of the fixed-

points theory may be applied for the H1 optimization of the

proposed VDVA (model C) if we assume c is constant

around the frequency xn.

The purpose of the H1 optimization of model C is to

optimize its parameters including the geometric factor t of

the viscoelastic damper and the additional spring stiffness k
for minimizing the resonant vibration response amplitude of

the primary mass M to the excitation. It may be expressed

mathematically as

maxðjHCðk; kopt C; topt CÞjÞ ¼ minðmax
k;t
jHCðkÞjÞ: (16)

In order to apply the modified fixed-points theory as

described before, we assume c to be constant at the pseudo

fixed points. This can be realized approximately by selecting

FIG. 5. Variation of (a) stiffness toGs, and (b) loss factor g with frequency

for the viscoelastic damper made with 3 M-467 from Ref. 22.

FIG. 6. Frequency response curves jHCðkÞj using the proposed damping

absorber (model C) with l¼ 0.15, M¼ 100 kg, and xn¼ 10 Hz. c¼ 1 at

k¼ 1 with k¼ 0 (—); k¼ 0:2tGs xn
(� � �); k¼ 0:4tGs xn

(–�–), and

k¼ 0:6tGs xn
(- - -). Pseudo fixed points P and Q are marked with •. The vis-

coelastic damper material used in model C has stiffness and loss factor as

shown in Fig. 5.
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k such that k þ tGs xn
is a constant at the frequency xn.

Equation (15) may be rewritten as

jHC kð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ Bt2

Cþ Dt2

r
; (17)

where A ¼ ðc2 � k2Þ2, B ¼ Gs
2g2=ðm2xn

2Þ, C ¼ ½ð1� k2Þ
ðc2 � k2Þ � lc2k2�2, and D ¼ ð1� k2 � lk2Þ2Gs

2g2=
ðm2xn

2Þ.
It is known that the corresponding frequencies kP and

kQ of the pseudo fixed points are quite close to each other if

the mass ratio l is small and this is the case for applications

in suppressing vibrations of heavy structures. If we assume

the difference of the modulus of the VDVA at the two

pseudo fixed points is negligible then we may apply the pro-

posed modified fixed-points theory in the optimal design of

the proposed VDVA. To find these two points analytically,

we consider the frequency response curves of Eq. (17) for

t ¼ 0 and t ¼ 1. The curves for t ¼ 0 and t ¼ 1 and other

real values of t would “pass through” the points P and Q as

shown in Fig. 6. This may be expressed mathematically as

A

C
¼ B

D
¼ Aþ Bt2

Cþ Dt2
: (18)

Substituting t ¼ 0 into Eq. (17), we may write

jHC kð Þjt¼0 ¼
���� c2 � k2

1� k2ð Þ c2 � k2
� �

� lc2k2

���� ¼ A

C


 �1=2

:

(19)

Substituting t ¼ 1 into Eq. (17), we may write

jHC kð Þjt¼1 ¼
���� 1

1� k2 � lk2

���� ¼ B

D


 �1=2

: (20)

Using Eqs. (18), (19), and (20), we may write

c2 � k2

1� k2ð Þ c2 � k2
� �

� lc2k2

 !2

¼ 1

1� k2 � lk2


 �2

:

(21)

Taking square root of Eq. (21) and consider the responses at

t ¼ 0 and t ¼ 1 at opposite phases,28 we may write

c2 � k2

1� k2ð Þ c2 � k2
� �

� lc2k2
¼ �1

1� k2 � lk2
: (22)

Equation (22) may be simplified as

ð2þ lÞk4 � 2k2ð1þ c2 þ lc2Þ þ 2c2 ¼ 0: (23)

The two roots of Eq. (23) expressed as kP and kQ may be

written, respectively, as

kP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ lð ÞcP

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2cP

2 þ 1þ lð Þ2cP
4

q
2þ l

vuut
(24)

and

kQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ lð ÞcQ

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2cQ

2 þ 1þ lð Þ2cQ
4

q
2þ l

vuut
:

(25)

kP and kQ are the non-dimensionless frequencies of the fixed

points. kP and kQ in Eqs. (24) and (25) have real positive val-

ues if l and c are also real positive values. This shows that

Eq. (23) has real solutions of kP and kQ after l and c are cho-

sen for the VDVA. The frequency response amplitudes of

mass M at kP and kQ can be derived by substituting Eqs. (24)

and (25), respectively, into Eq. (17) and written, respec-

tively, as

jHC kPð Þj

¼
���� 1

1� kP
2� lkP

2

����
¼ 2þ l

1� cP
2 1þ lð Þ2þ 1þ lð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2cP

2þ 1þ lð Þ2cP
4

q
(26)

and

jHC kQð Þj

¼
���� 1

1�k2
Q�lk2

Q

����
¼� 2þl

1�cQ
2 1þlð Þ2� 1þlð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2cQ

2þ 1þlð Þ2cQ
4

q :

(27)

Since kP and kQ are closed to 1 when the mass ratio l is

small, cP and cQ may be assumed to be equal. The optimum

tuning frequency can be derived by equating jHCðkPÞj and

jHCðkQÞj using Eqs. (26) and (27) and simplified as

copt C ¼
1

1þ l
: (28)

Equations (3) and (28) shows that the optimum tuning fre-

quencies of the traditional DVA (model A) and the visco-

elastic DVA (model C) are the same. The frequency ratios of

the pseudo fixed points, kP and kQ can be obtained by

substituting Eq. (28) into Eqs. (24) and (25) and written as

k2
P ¼

ffiffiffiffiffiffiffiffiffiffiffi
2þ l
p

� ffiffiffi
l
p

1þ lð Þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ l
p ; (29)

k2
Q ¼

ffiffiffiffiffiffiffiffiffiffiffi
2þ l
p

þ ffiffiffi
l
p

1þ lð Þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ l
p : (30)

The response amplitude of the mass M at the pseudo fixed

points can be derived by substituting Eq. (29) into Eq. (26),

and Eq. (30) into Eq. (27) and written as
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jHCjP;Q ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ l

l

s
: (31)

To determine the optimum geometric factor t of the visco-

elastic damper such that points P and Q become the maxi-

mum points on the response curve of mass M, we consider

zero slopes at the two pseudo fixed points, P and Q. We may

therefore write

@jHC kð Þj2

@k2

����
k¼kP;kQ

¼ 0: (32)

Rewrite Eq. (15) as

jHC kð Þj2 ¼ S

T
; (33)

where

S ¼ ðc2 � k2Þ2 þ ðco
2Þ2g2 (34)

and

T ¼ ðð1� k2Þðc2 � k2Þ � lc2k2Þ2

þ co
2ð1� k2 � lk2Þ

� �2
g2: (35)

If @jHCðkÞj2=@k2 ¼ 0; then we may write

@

@k2

S

T


 �
¼ S0T � ST0

T2


 �
¼ 0; (36)

where S0 ¼ @S=@k2 and T0 ¼ @T=@k2.

Using Eq. (36), we may write

S0T � ST0 ¼ 0: (37)

Differentiating Eqs. (34) and (35) with respect to k2 and then

substitute them back to Eq. (37), we may write

Xco
4 þ Y ¼ 0; (38)

where

X ¼ g2ð1� k2 � lk2Þð1þ lÞ (39)

and

Y ¼ �ðc2 � k2Þð1� k2 � lk2Þ2

þ ð1� 2k2 þ c2 þ lc2Þ ð1� k2Þðc2 � k2Þ � lk2c2
� �

:

(40)

The optimum geometric factor topt C at the pseudo fixed

points P and Q may be derived using Eqs. (28)–(30) and

(38)–(40) and written, respectively, as

co
4gP

2 ¼ �Yg2

X

����
k2¼kP

2; c¼copt C

¼ 1

1þ lð Þ4
3l
2
þ l2

2 2þ lð Þ � 4l
ffiffiffiffiffiffiffiffiffiffiffi

l
2þ l

r" #
(41)

and

co
4gQ

2 ¼ �Yg2

X

����
k2¼kQ

2; c¼copt C

¼ 1

1þ lð Þ4
3l
2
þ l2

2 2þ lð Þ þ 4l
ffiffiffiffiffiffiffiffiffiffiffi

l
2þ l

r" #
:

(42)

Taking the average of gP
2 and gQ

2, and approximating gP

and gQ by gxn
, where gxn

is the damping of the viscoelastic

damper at xn, we may write

co
2gxn

¼ 1

1þ lð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l
2
þ l2

2 2þ lð Þ

s
: (43)

Recalling co
2 ¼ tGs=m xn

2 and approximating Gs P and

Gs Q by Gs xn
, we may write

tGs xn
gxn

m xn
2
¼ 1

1þ lð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l
2
þ l2

2 2þ lð Þ

s
: (44)

Using Eq. (44), the optimal geometric factor may be written

as

topt C ¼
m xn

2

Gs xn
gxn

1þ lð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l
2
þ l2

2 2þ lð Þ

s
: (45)

Having the optimal geometric factor topt C the designer can

determine the shape and size of the viscoelastic spring of the

VDVA leading to stiffness equals to topt C Gs xn at x¼xn.

Using Eq. (28) and the definition of c, we may write

copt C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kopt þ topt C Gs xn

m xn
2

s
¼ 1

1þ l
: (46)

Substituting topt C from Eq. (45) into Eq. (46), the optimum

stiffness kopt for the elastic spring in model C can then be

derived and written as

kopt ¼
m xn

2

1þ lð Þ2
1� 1

gxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l
2
þ l2

2 2þ lð Þ

s2
4

3
5: (47)

If the mass ratio l is small like 0.1 or less, the higher order

term of l in Eqs. (45) and (47) may be neglected and the

optimum geometric factor topt C and stiffness kopt may be

approximately written, respectively, as

topt C ¼
m xn

2

Gs xn
gxn

1þ lð Þ2

ffiffiffiffiffiffi
3l
2

r
(48)

and

kopt ¼
m xn

2

1þ lð Þ2
1� 1

gxn

ffiffiffiffiffiffi
3l
2

r !
: (49)
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The resonant amplitude response of the mass M of model C with

optimum geometric factor topt C of the VDVA and the additional

stiffness kopt may be approximately written using Eqs. (31) as

jHCjmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ l

l

s
: (50)

Comparing Eq. (5) with Eq. (50) shows that the approximate

maximum vibration amplitude ratios of the optimized tradi-

tional DVA (model A) and the optimized VDVA (model C)

are the same.

Equation (49) shows that the additional stiffness kopt is a

positive value if the following condition applies:

kopt > 0) gxn
>

ffiffiffiffiffiffi
3l
2

r
: (51)

To avoid kopt to become negative, we should select a visco-

elastic damper material with relatively high damping. For

the sake of illustration, two examples are given in the fol-

lowing to demonstrate how to apply the proposed optimiza-

tion method in the proposed VDVA design. The optimized

design of model C is tested numerically using two real visco-

elastic dampers. The first one is the viscoelastic damper con-

sidered in the previous example with measurement data

provided in Ref. 22 and its variations of stiffness and loss

factor with frequency are plotted in Fig. 5 for reference.

Mass ratio l is 0.15 and the primary mass M is 100 kg.

Natural frequency of primary system xn is 30 Hz. The opti-

mum relative geometric factor topt C=to is determined

according to Eq. (48) to be 0.735 and the stiffness of the

elastic spring kopt of model C is determined according to

Eq. (49) to be 230 940 N/m. The frequency response function

of the primary mass M is calculated using Eq. (15) and plot-

ted in Fig. 7 for illustration of the proposed optimization

method. Double peaks of the frequency amplitude response

of model C can be observed in Fig. 7 with jHCjmax¼ 3.72.

Using the same mass ratio, the frequency amplitude response

of model A is calculated using Eqs. (1), (3), and (4) and plot-

ted in Fig. 7 for comparison. It is observed that the peak

response of model C is slightly lower than that of model A

and the double peaks of model C are not of the same height.

These deviations are due to the approximations taken in the

derivation of the optimal values of the geometric factor

topt C and the elastic spring constant kopt. This shows that the

proposed optimization method is useful to derive an approxi-

mate optimal design of the proposed VDVA.

Comparing Fig. 7 with Fig. 3 we can see that the mass

M of the optimized model C in this example has a much

smaller resonant amplitude than model B. This shows that

model C may be a better design of VDVA than model B. In

order to check the accuracy of the topt C=to and kopt C using

the proposed method, a numerical search of the minimum of

jHCjmax with k and t=to as variables have been carried out in

MATLAB to determine the exact minimum of jHCjmax in this

example. The contours of jHCjmax are plotted in Fig. 8 and

the minimum of jHCjmax from the numerical search result is

3.57. The “exact” kopt C and topt C=to found in the numerical

search are 238 000 N/m and 0.74, respectively. It shows that

the error of the minimum of jHCjmax using the proposed opti-

mization method is about 4%.

The second viscoelastic material considered for the pro-

posed VDVA is Sorbothane which is commonly used for

damping structural vibrations. Its modulus is given in form

of a Prony series written as23

Gs xð Þ ¼ 4:121� 105 þ 9:1718� 105ð Þ

� 0:6281� 0:022x2

1þ 0:022x2




þ 0:1908� 0:18192x2

1þ 0:18192x2

�
N=m2; (52)

FIG. 8. (Color online) Contours of jHCjmax of model C with different values

of the added stiffness k and geometric factor t. l¼ 0.15, M¼ 100 kg, and

xn¼ 30 Hz. The viscoelastic damper material used in model C has stiffness

and loss factor as shown in Fig. 5. The minimum of jHCjmax is marked with •.

FIG. 7. Frequency response curves of the primary mass M of the proposed opti-

mized VDVA, jHCðkÞj(model C, —), and the traditional DVA, jHAðkÞj(model

A, - - -). l ¼ 0:15, M¼ 100 kg, and xn¼ 30 Hz. The viscoelastic damper used

in model C has stiffness and loss factor as shown in Fig. 5.
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Gl xð Þ ¼ 9:1718� 105ð Þ 0:6281� 0:02x

1þ 0:022x2




þ 0:1908� 0:1819x

1þ 0:18192x2

�
N=m2; (53)

and

gðxÞ ¼ GsðxÞ=GlðxÞ: (54)

Variation of the modulus Gs and loss factor g with frequency

for Sorbothane from Ref. 23 are calculated using Eqs.

(52)–(54) and plotted in Fig. 9 for reference. Mass ratio l is

0.02 and the primary mass M is 100 kg. Natural frequency of

primary system xn is 10 Hz. The optimum geometric factor

topt C is determined according to Eq. (48) to be 0.0045 m

and the stiffness of the elastic spring kopt C of model C is

determined according to Eq. (49) to be 3399 N/m.

The frequency response function of the primary mass M
is calculated using Eq. (15) and plotted in Fig. 10 for illustra-

tion of the proposed optimization method. Double peaks of

same height of the vibration amplitude of model C can be

observed in Fig. 10. With the same mass ratio, the frequency

amplitude response of model A is calculated using Eqs. (1),

(3), and (4) and plotted in Fig. 10 for comparison. The fre-

quency amplitude response of the optimal design of model B

in this case is searched numerically according to Eq. (9) and

also plotted in Fig. 10 for comparison. It can be found that

jHBjmax¼ 15.5 which is much larger than jHAjmax and

jHCjmax. The theoretical dimensionless resonant response

can be determined using Eq. (52) as jHCjmax¼ 10.0 while the

maximum value of the curve for model C in Fig. 10 is found

to be 9.77. In order to check the accuracy of the topt C and

kopt C using the proposed method in this case, a numerical

search of the minimum of jHCjmax with k and t as variables

have been carried out in MATLAB to determine the exact mini-

mum of jHCjmax in this example. The contours of jHCjmax are

ploted in Fig. 11 and the minimum of jHCjmax from the

numerical search result is 9.75. The “exact” kopt C and topt C

found in the numerical search are 3560 N/m and 0.0043,

respectively. It shows that the error of the minimum of

FIG. 10. Frequency response curves of the primary mass M with the opti-

mized traditional DVA, jHAðkÞj(model A, –�–), and the optimized model B,

jHBðkÞj(model B, - - -), and the proposed optimized VDVA, jHCðkÞj(model

C, —). l ¼ 0:02, M¼ 100 kg, and xn¼ 10 Hz. The viscoelastic damper

material used in model B and model C has modulus and loss factor as shown

in Fig. 9.

FIG. 9. Variation of (a) the modulus Gs and (b) loss factor g with frequency

for Sorbothane from Ref. 23.

FIG. 11. (Color online) Contours of jHCjmax of model C with different values

of the added stiffness k and geometric factor t. l¼ 0.02, M¼ 100 kg, and

xn¼ 10 Hz. The viscoelastic damper material used in model C is has modulus

and loss factor as shown in Fig. 9. The minimum of jHCjmax is marked with •.
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jHCjmax using the proposed optimization method is about

0.2%.

Both the theoretical prediction from Eq. (52) and the

numerical tests on the maximum vibration amplitude

response of the primary mass M of model C show that model

C can be used as an alternative design of the traditional

DVA (model A). Model C is especially useful for the sup-

pression of the resonant infrasonic vibration because the vis-

cous damper force in model A is proportional to the

vibration frequency and it is relatively small at low vibration

frequency. Model C is also suitable to be applied on heavy

structures such as tall buildings or bridges because the mass

ratio l in those applications are usually small so it is easier

to satisfy Eq. (51) such that the additional stiffness k
required would not become negative.

If one applies the proposed optimization method to the

numerical example in Sec. III using the viscoelastic damper

from Ref. 25, then k would be found to be a negative value.

To solve this problem, a viscoelastic damper with higher

damping can be used such that Eq. (51) can be satisfied.

Another solution to this problem is to replace the elastic

spring in model C by an actuator to apply a force fa equal to

kðx1 � x2Þ to masses M and m as illustrated in Fig. 12(a) or

by a structure with negative stiffness30 equal to �jkj as illus-

trated in Fig. 12(b). The major advantage of using the design

of model C instead of model B is that the resonant vibration

of the mass M would be reduced significantly. Using the

numerical example in Sec. III considered in Ref. 25 with

modulus and loss factor as shown in Fig. 2, the maximum

dimensionless response amplitude of the primary mass M as

shown in Fig. 3 is jHBjmax � 9. If model C is used in that

example, then following the proposed optimization method

we can derive jHCjmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ lÞ=l

p
¼ 3:8 leading to

about 58% reduction of the resonant vibration amplitude of

the primary system.

V. CONCLUSION

A VDVA is proposed for suppressing infrasonic vibra-

tions of heavy mechanical or civil structures. The stiffness

and damping of the proposed VDVA can be decoupled such

that both of these two properties of the absorber can be tuned

independently to their optimal values by following a speci-

fied procedure. The standard fixed-points theory cannot be

applied to the VDVA with frequency dependent stiffness

and damping. A modified fixed-points theory is therefore

proposed to solve this problem. H1 design optimization of

the proposed VDVA have been derived analytically for the

minimization of resonant vibration of a SDOF system

excited by harmonic forces or due to ground motions.

Simple analytical expressions of the optimal additional stiff-

ness and geometric factor of the proposed VDVA are

derived using the modified fixed-points theory. The proposed

VDVA with optimized design is tested numerically using

two real commercial viscoelastic damping materials. It is

found that the proposed viscoelastic absorber can provide

much stronger vibration reduction effect than the conven-

tional VDVA without the elastic spring. The proposed opti-

mal design methodology of dynamic vibration absorber may

help engineers to suppress infrasonic vibrations of heavy

structures and the proposed VDVA may be considered as an

alternative design of the traditional DVA as well.
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