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Abstract: In textiles processing, wettability of fabric plays a very important role in enhancing
processes such as dyeing and printing. Although well-prepared cotton fabric has very good
wettability, further enhancement of its wettability can effectively improve the subsequent dyeing
and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT),
a continuous process, is now drawing attention of the industry. In this study, we investigated the
effect of APPT under four operational parameters: (1) discharge power; (2) flow rate of oxygen; (3) jet
travelling speed; and (4) jet-to-substrate distance on wettability (in terms of wickability and wetting
area) of cotton fabric. Experimental results revealed that the four parameters interact with each other
in affecting the wettability of the cotton fabric. The results are discussed comprehensively.
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1. Introduction

Plasma modification of textile-based material is based on the interaction between the substrate
and active species in the plasma. Generally speaking, active plasma species react with the material
surface without modifying bulk properties of the materials [1]. The plasma modification mechanism is
significantly affected by treatment conditions such as gas flow rate, nature of gas used and discharge
power [2]. The effect of plasma treatment on the substrate is highly dependent upon the nature
of gas feeding into the plasma process gas [1,3]. Polymerizing and non-polymerizing gases can
be used for plasma treatment depending on the final surface properties required. Polymerizing
gases used in plasma treatment contain carbon and hydrogen atoms such as methane, ethylene and
ethanol [4]. They may be polymerized under the effect of plasma treatment. On the other hand,
non-polymerizing gases like noble gas, nitrogen, oxygen, hydrogen and ammonia can modify polymer
surface through different reactions such as oxidation, ablation, etching, crosslinking and grafting.
It should be mentioned that the nature of gas feeding into the plasma leads to specific chemical
reactions on the substrate surface [1].

For textile applications, atmospheric pressure plasma treatment, which can be used as a
continuous treatment process, has recently drawn much attention from researchers and the industry.
Table 1 shows a comparison between plasma treated and conventional chemically processed textiles.

Plasma-modified textile materials show enhanced wettability and hydrophilicity after insertion
of functional groups such as carbonyl (–C=O), carboxylic acid (–COOH), hydroxyl (–OH) and/or
amine (–NH2) groups [6–10] or increased hydrophobicity on removal of hydrophilic functional
groups or changing hydrophilic groups into non-hydrophilic groups [11,12]. In addition, removal
of hydrophobic layer improves the dyeability [13–16]. Plasma treatment can reduce shrinkage [17]
and improve adhesion of different chemical finishing materials [18–21]. Therefore, in this study,
we investigate systematically the effect of the following atmospheric pressure plasma operational
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parameters: (i) discharge power; (ii) oxygen flow rate; (iii) jet travelling speed; and (iv) jet-to-substrate
distance, on wettability of cotton fabric. This study can help to explore the possible application with
systematic study of operational parameters of atmospheric pressure plasma treatment in textile usage
such as pigment dyeing and coating.

Table 1. Comparison of plasma treated and conventional chemical process (adapted from Ref. [5],
with permission).

Parameter Plasma Treated Conventional Chemical Process

Solvent None (gas phase) Water
Energy Electricity Heat

Type of reaction Complex Simple
Deepness of the treatment Very thin layer Bulk of the fiber
New treatment equipment Totally new Slow evolution

Water and energy consumption Low High
Pollution Very low High

2. Experimental

2.1. Cotton Fabric

In this study, 100% ready-for-dyeing plain weave cotton fabric was used [22]. The fabric was
washed for 5 min. with diluted acetone (Reagent Grade of 99% purity) and subsequently completely
dried in oven at 50 ◦C. Samples were conditioned at 20 ± 2 ◦C temperature and relative humidity of
65 ± 2% for at least 24 h before use.

2.2. Atmospheric Pressure Plasma Treatment

Atmospheric pressure plasma treatment of cotton fabric was conducted by a pressure plasma
jet (APPJ, Atomflo 400, AH-550L, Surfx Technologies LLC, Redondo, CA, USA) mentioned in
previous work [22]. The set-up of plasma treatment is schematically shown in Figure 1. Oxygen gas
(99.7% purity) was used as reactive gas while helium (99.995% purity) was used as the carrier gas for the
atmospheric pressure plasma treatment. The helium flow rate was fixed at 30 L/min. Four operational
parameters were used in this study: (1) discharge power (130 W, 140 W, 150 W, 160 W and 170 W);
(2) oxygen flow rate (0.2 L/min, 0.3 L/min, 0.4 L/min, 0.5 L/min and 0.6 L/min); (3) jet travelling
speed (1 mm/s, 3 mm/s, 5 mm/s, 7 mm/s and 9 mm/s); and (4) jet-to-substrate distance (3 mm, 4 mm,
5 mm, 7 mm and 9 mm). Effects of different combinations of operational parameters of atmospheric
pressure plasma treatment on wettability of cotton fabric were studied; the related combinations are
described in the Results and Discussion Section. After atmospheric pressure plasma treatment, the
treated fabric was conditioned at 20 ± 2 ◦C temperature and relative humidity of 65 ± 2% for at least
24 h before measuring the wettability.
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Figure 1. Schematic diagram of set-up of atmospheric pressure plasma treatment system. 
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The fabric specimen was held vertically and the lower edge (weight of 1 g was attached to maintain 
tension and avoid formation of crease in the fabric specimens during the test) was just immersed in 
a large volume of distilled water. The time when water reached each graduated scale by capillary 
force vertically was recorded. Wicking test was conducted for the six fabric specimens in each 
direction of fabric specimens under standard conditions (temperature: 20 ± 2 °C; relative humidity: 
65 ± 2%). The data obtained from wicking test were converted into wicking coefficient by Equation 
(1). After rearrangement of Equation (1), Equations (2) and (3) show the slope of height (h) versus 
time (t½) graph and the wicking coefficient (Wc). Wc is used to describe the wicking performance, the 
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Figure 1. Schematic diagram of set-up of atmospheric pressure plasma treatment system.

2.3. Wicking Rate Measurement

Fabric specimens of size 1.5 cm (width) × 10 cm (length) were cut in warp and weft directions
(6 specimens in each direction). Scales of 8 cm were marked in the fabric specimen by water-soluble ink.
The fabric specimen was held vertically and the lower edge (weight of 1 g was attached to maintain
tension and avoid formation of crease in the fabric specimens during the test) was just immersed in a
large volume of distilled water. The time when water reached each graduated scale by capillary force
vertically was recorded. Wicking test was conducted for the six fabric specimens in each direction of
fabric specimens under standard conditions (temperature: 20 ± 2 ◦C; relative humidity: 65 ± 2%).
The data obtained from wicking test were converted into wicking coefficient by Equation (1). After
rearrangement of Equation (1), Equations (2) and (3) show the slope of height (h) versus time (t

1
2 ) graph

and the wicking coefficient (Wc). Wc is used to describe the wicking performance, the higher the Wc,
the better is the water absorption ability.
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√
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where h is height reached by liquid at time t; rc is the effective hydraulic radius of the capillaries; γ
is the surface tension of the liquid–vapor interface; θ is the apparent contact angle of the fabric (in
vertical wicking test, θ = 180◦, cos θ = 1); η is the viscosity of the liquid; Wc is the wicking coefficient;
and t is the time [23].

2.4. Drop Test

After 24 h conditioning, 20 µm of Methylene Blue dye solution was dropped on fabric surface
perpendicularly by an autopipette. The area of dispersion of the Methylene Blue dye solution absorbed
in fabric was measured after no further spreading was observed. Six measurements were obtained for
analyzing the wetting area (mm2).
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2.5. Data Analysis

The measured results were averaged with 95% confidence level to have statistically related data
for analysis.

3. Results and Discussion

As a reference point, warp wicking coefficient, weft wicking coefficient and total wicking
coefficient of untreated cotton fabric are 24.7, 20.9 and 45.6 respectively, and the wetting area for
untreated cotton fabric is 229.8 mm2.

3.1. Discharge Power

To investigate the effect of discharge power of atmospheric pressure plasma treatment on
wettability of cotton fabric, different discharge powers (130 W, 140 W, 150 W, 160 W and 170 W)
and oxygen flow rates (0.2 L/min, 0.3 L/min and 0.4 L/min) were used while other parameters such
as jet travelling speed and jet-to-substrate distance were kept at 5 mm/s and 3 mm respectively.

The warp, weft and total wicking coefficient (Wc), as shown in Figures 2–4, respectively, vary with
discharge power. The discharge power of 130 W with oxygen flow rate of 0.4 L/min is absent because
the machine setting did not allow this combination of parameters since this could produce unstable
plasma effect. Compared with the warp Wc, weft Wc and total Wc of untreated cotton fabric, wicking
performance of the plasma-treated cotton samples is greatly improved and is better than untreated
cotton fabric [23,24].
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Figure 2. Effect of discharge power on warp Wc (Discharge power: 130 W, 140 W, 150 W, 160 W and
170 W; Oxygen flow rates: 0.2 L/min, 0.3 L/min and 0.4 L/min; Jet travelling speed: 5 mm/s and
Jet-to-substrate distance: 3 mm).
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Figure 3. Effect of discharge power on weft Wc (Discharge power: 130 W, 140 W, 150 W, 160 W and
170 W; Oxygen flow rate: 0.2 L/min, 0.3 L/min and 0.4 L/min; Jet travelling speed: 5 mm/s and
Jet-to-substrate distance: 3 mm).
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Figure 4. Effect of discharge power on total Wc (Discharge power: 130 W, 140 W, 150 W, 160 W and
170 W; Oxygen flow rate: 0.2 L/min, 0.3 L/min and 0.4 L/min; Jet travelling speed: 5 mm/s and
Jet-to-substrate distance: 3 mm).

As shown in Figure 2, warp wicking behavior of cotton fabric is directly correlated to the discharge
power used in the plasma treatment. A higher value of warp Wc is obtained with a higher discharge
power and it is more significant when oxygen flow rate is 0.3 L/min. However, in the weft direction,
discharge power induces less wicking effect (Figure 3). However, with oxygen flow rate of 0.4 L/min,
better weft Wc values can be obtained compared with oxygen flow rates of 0.2 L/min and 0.3 L/min.

The penetration power of active plasma species depends on discharge energy of plasma treatment
and the duration for which they remain active, which implies a more pronounced effect under high
discharge power. Since the atmospheric pressure plasma treatment in this study is a one side treatment,
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if the active plasma species have a short lifetime, they cannot penetrate deep enough to interact with
weft yarns of a woven fabric because the weft yarns are covered by the warp yarns. The weft yarns
are thus hidden by the warp yarns and plasma effect is less for the weft yarns [9,23]. The increase
of weft Wc in low discharge power is due to oxidation of fiber surface when lifespan of free oxygen
radicals is longer [9,23]. As a result, the effects of discharge power on wicking in warp (Figure 2)
and weft (Figure 3) directions are different. Thus, the total Wc is plotted (Figure 4) which shows
that total Wc is increasing as the discharge power is generally increased with different oxygen flow
rates. The maximum total Wc is at discharge power of 170 W with oxygen flow rate of 0.3 L/min.
A high discharge power generally induces a formation of plasma active species at a higher rate which
increases the etching and oxidation effect on the substrate surface [23]. Moreover, active plasma species
possess a higher energy that can interact with the substrate because high discharge power can supply
more energy to the plasma species to approach the substrate surface. However, warp Wc starts to
decrease when discharge power is higher than 160 W regardless of the oxygen flow rate.

Wetting areas of plasma treated samples are larger than those of untreated samples (229.9 mm2)
and the increasing trend of wetting area is shown in Figure 5, i.e., higher discharge power results in
a larger wetting area. Figures 4 and 5 show that discharge power of 170 W with oxygen flow rate of
0.2 L/min has a negative effect on water absorbency. In such high discharge power and low oxygen
concentration condition, plasma species generated are less active [25] since oxygen molecules may
gain more energy and become more active and then they may collide with each other easily before
interacting with the material surface. Efficiency of reaction between active plasma species and the
material surface is lower in such cases and as a result, there is a negative effect on water absorbency.
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Figure 5. Effect of discharge power on wetting area (Discharge power: 130 W, 140 W, 150 W, 160 W
and 170 W; Oxygen flow rate: 0.2 L/min, 0.3 L/min and 0.4 L/min; Jet travelling speed: 5 mm/s and
Jet-to-substrate distance: 3 mm).

3.2. Oxygen Flow Rate

The effect of different oxygen flow rates (0.2 L/min, 0.3 L/min, 0.4 L/min, 0.5 L/min and
0.6 L/min) and discharge powers (150 W, 160 W and 170 W) on wettability of cotton fabric was
investigated while the jet travelling speed (5 mm/s) and jet-to-substrate distance (3 mm) were kept
constant. According to the instructions of the manufacturer, oxygen flow rate of 0.6 L/min is not
recommended to be used when the discharge power is lower than 170 W because it generates unstable
plasma effect. Therefore, no data of 0.6 L/min with discharge power of 150 W and 160 W are reported.



Polymers 2018, 10, 233 7 of 15

The results of warp Wc, weft Wc, total Wc with different oxygen flow rates are shown in Figures 6–8,
respectively, and the effect of oxygen flow rate on the wetting area is shown in Figure 9. Figure 6
clearly shows that discharge power at 160 W and 170 W shows a better improvement on warp wicking
behavior than discharge power of 150 W under the same flow rate of oxygen. However, the effect of
discharge power of 160 W and 170 W on the warp wicking is not significantly different. Warp wicking
increases when oxygen flow rate increases from 0.2 L/min to 0.3 L/min but the trend is flattened from
0.4 L/min to 0.6 L/min. This indicates that further change of discharge power from 160 W to 170 W
does not further enhance the warp Wc under the same oxygen flow rate.
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Figure 6. Effect of oxygen flow rate on warp Wc (Oxygen flow rate: 0.2 L/min, 0.3 L/min, 0.4 L/min,
0.5 L/min and 0.6 L/min; Discharge power: 150 W, 160 W and 170 W; Jet travelling speed: 5 mm/s
and Jet-to-substrate distance: 3 mm).
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Figure 7. Effect of oxygen flow rate on weft Wc (Oxygen flow rate: 0.2 L/min, 0.3 L/min, 0.4 L/min,
0.5 L/min and 0.6 L/min; Discharge power: 150 W, 160 W and 170 W; Jet travelling speed: 5 mm/s
and Jet-to-substrate distance: 3 mm).
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Figure 8. Effect of oxygen flow rate on total Wc (Oxygen flow rate: 0.2 L/min, 0.3 L/min, 0.4 L/min,
0.5 L/min and 0.6 L/min; Discharge power: 150 W, 160 W and 170 W; Jet travelling speed: 5 mm/s
and Jet-to-substrate distance: 3 mm).
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Figure 9. Effect of oxygen flow rate on wetting area (Oxygen flow rate: 0.2 L/min, 0.3 L/min, 0.4 L/min,
0.5 L/min and 0.6 L/min; Discharge power: 150 W, 160 W and 170 W; Jet travelling speed: 5 mm/s
and Jet-to-substrate distance: 3 mm).

In case of weft wicking (Figure 7), it is suggested that active plasma species can be generated under
high discharge power and oxygen flow rate which may have a better diffusion ability. The improved
diffusion ability can cause a significant improvement of wicking performance in weft direction [10].
Since weft yarns are covered by the warp yarns, the diffusion ability of the energetic active plasma
species may not be sufficient to interact with the weft yarn. Therefore, the warp Wc is higher than weft
Wc under the same plasma treatment conditions.
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The increasing trends of water absorbency are shown in Figure 8 (Total Wc) and Figure 9 (Wetting
area) when oxygen flow rate is generally increasing under three different discharge power levels (150 W,
160 W and 170 W). Discharge power of 170 W with oxygen flow rate of 0.6 L/min and discharge
power of 160 W with oxygen flow rate of 0.5 L/min yield the highest values of water wicking ability
and wetting area [26]. Under high flow rate of oxygen, the oxygen population is high and more
active plasma species are generated. Due to the effective collisions with sufficient energy with the
fiber surface [27,28], better water absorption performance would be achieved by more etching and
oxidization [22–24].

3.3. Jet Travelling Speed

The effect of plasma modification is highly correlated to concentration of active plasma species on
the substrate surface [10]. The interaction of active plasma species on the textile fabric surface is based
on the duration and travel distance of active plasma species that accumulate on surface [10,29]. Thus,
the jet travelling speed is used to control the duration of the active plasma species accumulating on
the cotton fabric surface in this study. To investigate the effect of jet travelling speed on wettability
of cotton fabric, different jet travelling speeds (1 mm/s, 3 mm/s, 5 mm/s, 7 mm/s and 9 mm/s)
and jet-to-substrate distances (3 mm, 5 mm and 7 mm) were used. The discharge power and oxygen
flow rate were held at 150 W (to avoid thermal oxidation effect at high discharge power and unstable
discharging [28]) and 0.4 L/min, respectively.

Based on the results of warp wicking (Warp Wc, Figure 10), weft wicking (Weft Wc, Figure 11),
total wicking (Total Wc, Figure 12) and wetting area (Figure 13), slow jet travelling speed is preferable
since this can provide better plasma modification results on cotton wettability. However, the same
combinations of plasma operational parameters can have different effects on warp and weft wicking
results. In warp direction, no significant improvement on wicking performance is observed under
different combinations of jet-to-substrate distances (3 mm, 5 mm and 7 mm) and jet travelling speed
(1 mm/s, 3 mm/s, 5 mm/s, 7 mm/s and 9 mm/s). On the other hand, weft wicking ability is
influenced significantly by the combination of jet travelling speed and jet-to-substrate distance, as
shown in Figure 11.
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Figure 10. Effect of jet travelling speed on warp Wc (Jet travelling speed: 1 mm/s, 3 mm/s, 5 mm/s,
7 mm/s and 9 mm/s; Jet-to-substrate distances: 3 mm, 5 mm and 7 mm; Discharge power: 150 W and
Oxygen flow rate: 0.4 L/min).
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Figure 11. Effect of jet travelling speed on weft Wc (Jet travelling speed: 1 mm/s, 3 mm/s, 5 mm/s,
7 mm/s and 9 mm/s; Jet-to-substrate distances: 3 mm, 5 mm and 7 mm; Discharge power: 150 W and
Oxygen flow rate: 0.4 L/min).
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Figure 12. Effect of jet travelling speed on total Wc (adapted from Ref. [29], with permission) (Jet
travelling speed: 1 mm/s, 3 mm/s, 5 mm/s, 7 mm/s and 9 mm/s; Jet-to-substrate distances: 3 mm,
5 mm and 7 mm; Discharge power: 150 W and Oxygen flow rate: 0.4 L/min).
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Figure 13. Effect of jet travelling speed on wetting area (Jet travelling speed: 1 mm/s, 3 mm/s, 5 mm/s,
7 mm/s and 9 mm/s; Jet-to-substrate distances: 3 mm, 5 mm and 7 mm; Discharge power: 150 W and
Oxygen flow rate: 0.4 L/min).

A higher total wicking (Total Wc, Figure 12) and larger wetting area (Figure 13) are obtained with
jet travelling speed of 1 mm/s regardless of the jet-to-substrate distance. Jet travelling speed of 1 mm/s
is sufficient for accumulating adequate amount of active plasma species. However, increasing the jet
travelling speed together with the jet-to-substrate distance has a negative effect on wicking behavior
of plasma treated cotton (Figure 12). A similar effect has also been observed in the results of wetting
area (Figure 13). With the increase of jet travelling speed and jet-to-substrate distance, the amount of
active plasma species that interacts with substrate surface declines and hence the reduced wicking and
wettability effect [29].

3.4. Jet-to-Substrate Distance

The effect of jet-to-substrate distance on wettability of cotton fabric was studied under constant
discharge power of 150 W (to avoid thermal oxidation effect at high discharge power and unstable
discharging [28]) and oxygen flow rate of 0.4 L/min. Different jet travelling speeds (1 mm/s, 5 mm/s,
9 mm/s) and jet-to-substrate distances (3 mm, 4 mm, 5 mm, 7 mm and 9 mm) were used.

The results of warp Wc, weft Wc, total Wc and wetting area test with different jet-to-substrate
distances are summarized in Figures 14–17, respectively. Jet-to-substrate distance is defined as the
perpendicular distance between plasma jet and the substrate located directly below it, which is also
the distance active plasma species have to travel to reach the substrate surface. The travel distance
of plasma active species can affect the efficiency of the atmospheric pressure plasma modification in
terms of surface etching and polar functional groups formation [10,28].
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Figure 14. Effect of jet-to-substrate distance on warp Wc (Jet-to-substrate distance: 3 mm, 4 mm, 5 mm,
7 mm and 9 mm; Jet travelling speed: 1 mm/s, 5 mm/s, 9 mm/s; Discharge power: 150 W and Oxygen
flow rate: 0.4 L/min).
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Figure 15. Effect of jet-to-substrate distance weft Wc (Jet-to-substrate distance: 3 mm, 4 mm, 5 mm,
7 mm and 9 mm; Jet travelling speed: 1 mm/s, 5 mm/s, 9 mm/s; Discharge power: 150 W and Oxygen
flow rate: 0.4 L/min).
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Figure 16. Effect of jet-to-substrate distance total Wc (Jet-to-substrate distance: 3 mm, 4 mm, 5 mm,
7 mm and 9 mm; Jet travelling speed: 1 mm/s, 5 mm/s, 9 mm/s; Discharge power: 150 W and Oxygen
flow rate: 0.4 L/min).
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Figure 17. Effect of jet-to-substrate distance wetting area Wc (Jet-to-substrate distance: 3 mm, 4 mm,
5 mm, 7 mm and 9 mm; Jet travelling speed: 1 mm/s, 5 mm/s, 9 mm/s; Discharge power: 150 W and
Oxygen flow rate: 0.4 L/min).

The influence of jet-to-substrate distance on warp (Figure 14) and weft (Figure 15) direction cotton
fibers depends on the relative jet travelling speed. With the use of jet travelling speed of 5 mm/s and
9 mm/s, variations of weft Wc correlate more to jet-to-substrate distance. When comparing the three
jet travelling speeds, a more significant improvement of total Wc is obtained, as shown in Figure 16,
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with jet-to-substrate distance of 4 mm when the jet travelling speed is 1 mm/s or 5 mm/s. A small
jet-to-substrate distance allows effective energy transfer from plasma active species to cotton surface
with fewer collisions with air molecules or formation of ozone with oxygen [28–32]. In addition, a
short travel distance (jet-to-substrate distance) favors active oxygen plasma species accumulation on
cotton fabric when the treatment time is extremely short. As observed in drop test (Figure 17) wetting
area is higher when jet-to-substrate distance is 4 mm in the case of jet travelling speed of 1 mm/s and
5 mm/s but the wetting area varies in the case of 9 mm/s.

4. Conclusions

In this study, ready-to-dye cotton fabric was subjected to atmospheric pressure plasma treatment
under different combinations of operations parameters: (1) discharge power; (2) flow rate of oxygen;
(3) jet travelling speed; and (4) jet-to-substrate distance. Generally speaking, the atmospheric pressure
plasma treatment can further enhance cotton fabric wettability in terms of wickability and wetting
area. Experimental results reveal that the operational parameters interact with each other in terms of
their effects on wettability of the cotton fabric. Therefore, this study provides significant technical data
and information for developing atmospheric pressure plasma treatment in textile production.
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