
Research Article

International Journal of Distributed
Sensor Networks
2018, Vol. 14(1)
� The Author(s) 2018
DOI: 10.1177/1550147718756872
journals.sagepub.com/home/dsn

(Q, S)-distance model and counting
algorithms in dynamic distributed
systems

Zhiwei Yang1, Weigang Wu1, Yishun Chen1, Xiaola Lin1 and Jiannong Cao2

Abstract
With the advance in mobile network-based systems, dynamic system has become one of the hotspots in fundamental
study of distributed systems. In this article, we consider the dynamic system with frequent topology changes arising from
node mobility or other reasons, which is also referred to as ‘‘dynamic network.’’ With the model of dynamic network,
fundamental distributed computing problems, such as information dissemination and election, can be formally studied
with rigorous correctness. Our work focuses on the node counting problem in dynamic environments. We first define
two new dynamicity models, named (Q, S)-distance and (Q, S)*-distance, which describe dynamic changes of information
propagation time against topology changes. Based on these two models, we design three different counting algorithms
which basically adopt the approach of diffusing computation. These algorithms mainly differ in communication cost due
to different information collection procedures. The correctness of all the algorithms is formally proved and their perfor-
mance is evaluated via both theoretical analysis and experimental simulations.

Keywords
Node counting, dynamic systems, dynamic networks, distributed algorithms, system model

Date received: 4 July 2017; accepted: 22 November 2017

Handling Editor: Amiya Nayak

Introduction

In recent years, many efforts have been devoted to the
study of dynamic distributed systems. Dynamic system
is an abstraction of an adversary that controls the
topology of the network, including peer-2-peer and
mobile ad hoc systems. The dynamicity of dynamic sys-
tems lies in frequent topology changes due to node
mobility1,2 and/or changes of node set due to node join-
ing/leaving.3 A dynamic system focusing on topology
changes is also referred to as ‘‘dynamic network.’’4,5

Quite a lot of work has been done for dynamic net-
works. Researchers have proposed formal system mod-
els6,7 to describe the change of network topology and
distributed algorithms8–10 with formal correctness proof
to solve fundamental computing problems in dynamic
environments.

Counting is one of fundamental problems in distrib-
uted computing, which concerns how to calculate the

network size, that is, the number of nodes in the net-
work.1,11 Counting is the building block of many dis-
tributed computing problems. For example, in all-to-all
information dissemination, knowing the number of
nodes may be necessary.12

However, due to node mobility and limited connec-
tion, counting in dynamic networks becomes more
challenging than in static networks. Quite a number of
counting algorithms have been designed for dynamic

1School of Data and Computer Science, Sun Yat-sen University,

Guangzhou, China
2Department of Computing, The Hong Kong Polytechnic University,

Hong Kong

Corresponding author:

Weigang Wu, School of Data and Computer Science, Sun Yat-sen

University, Guangzhou 510006, China.

Email: wuweig@mail.sysu.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/

openaccess.htm).

https://doi.dox.org/10.1177/1550147718756872
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147718756872&domain=pdf&date_stamp=2018-01-31

networks.1,2,11–13 Most of the existing algorithms are
estimation-based, which may be efficient in terms of
the cost of operations, especially in large networks.
However, the counting results are not accurate. For
example, the network size is estimated based on node
degree and hop distance.2 These algorithms can be used
in scenarios that do not require accurate count values.
Several accurate counting algorithms have been pro-
posed.7,14,15 Roughly, a non-deterministic algorithm is
an algorithm that, even for the same input, can exhibit
different behaviors on different runs, as opposed to a
deterministic algorithm. The randomized estimation
methods can always terminate, but in a non-
deterministic way.

To achieve accurate counting results deterministi-
cally, we propose our new design for counting in
dynamic networks. Basically, we adopt the diffusing
computation,16,17 a fundamental and classical approach
in distributed computing to aggregate information of a
distributed system. However, the basic/original diffus-
ing computation algorithm is designed for static envir-
onments. In dynamic networks, due to topology
dynamicity, the growing phase cannot terminate cor-
rectly and messages from children to parent cannot be
successfully delivered.

After analyzing the effect of topology changes on
diffusing computation, we first propose two new dyna-
micity models, called (Q, S)-distance and (Q, S)*-dis-
tance, which are defined to describe the change of
distance between a pair of nodes. The first model is
defined for any pair of nodes, while the second model is
for neighboring nodes. Compare with existing dynamic
models, different perspective is considered in these two
models, that is, the change of dynamic distance.

Existing counting algorithms are not suitable for
(Q, S)-distance model. Thus, based on the (Q, S)-dis-
tance model and (Q, S)*-distance model, we design
three counting algorithms for dynamic networks. The
first algorithm focuses on extending typical diffusing
computation approach with mechanisms handling new
challenges in dynamic environments. The major exten-
sion lies in a new phase to terminate the growing phase
and invoke the shrinking phase.

The second algorithm improves the first algorithm
by removing the messages to notify initiator node about
the round that the last node joins the diffusing tree.
Compared with the first algorithm, the second one can
terminate Phase I earlier and cost fewer messages.

The third algorithm considers cluster-based hierar-
chy in counting operations. Clustering has been widely
used to reduce communication cost in technical study
of wireless networks18–20 and also was recently consid-
ered in theoretical work, including consensus proto-
cols21 and information dissemination algorithms.22

However, cluster hierarchy has not been considered for
counting in dynamic networks. With the cluster

hierarchy, diffusing computation may be conducted
among only clusterhead nodes, and communication
cost will be significantly reduced. The major challenge
of hierarchical counting lies in the dynamic changes of
cluster membership. By addressing such issues, we
extend our flat counting algorithms to hierarchical
ones.

The correctness of all the algorithms is rigorously
proved, in terms of termination and correctness. To
evaluate the performance of our algorithms, we conduct
both theoretical analysis and experimental simulations.
Both time cost in terms of communication rounds and
message cost in terms of total size of messages sent by
all nodes are measured and discussed.

The rest of the article is organized as follows.
Section ‘‘Related work’’ briefly reviews existing works
for dynamic networks, including system models and
counting algorithms. We also introduce in this section
the typical diffusing computation approach and discuss
the major problems and challenges in applying it into
dynamic networks. Section ‘‘System model and prob-
lem definition’’ presents system models and assump-
tions. The (Q, S)-distance model and (Q, S)*-distance
model are defined in section ‘‘The (Q, S)-distance
model and (Q, S)*-distance model.’’ Our three pro-
posed algorithms are presented in sections ‘‘Algorithm
1—the basic algorithm for counting in a flat network,’’
‘‘Algorithm 2—the improved algorithm for counting in
a flat network,’’ and ‘‘Algorithm 3—the algorithm for
counting in a hierarchical network,’’ respectively,
together with correctness proof and communication
cost analysis. Simulation results are reported in section
‘‘Simulation results.’’ Finally, section ‘‘Conclusion and
future work’’ concludes the article with future
directions.

Related work

In this section, we first introduce existing dynamic net-
work models and then review existing counting algo-
rithms for dynamic networks. Since our design is based
on diffusing computation, which is not used before in
counting for dynamic networks, we briefly introduce
the typical diffusing computation algorithm in the end
of this section and discuss challenges brought by topol-
ogy dynamicity.

Dynamic network models

Network model is the basis of dynamic network
research. Most existing dynamic network models focus
on how to represent a dynamic network and they are
usually extensions of the classical graph model G(V, E)
by adding reflection of topology dynamicity.5,6,23 The
temporal network model (G, l) is proposed in Kempe
et al.6 and Berman,24 where l is the time label

2 International Journal of Distributed Sensor Networks

specifying at which time an edge e is available. The
temporal network model is viewed as a sequence of
graphs in Erlebach et al.,25 and the edge-time pair (e, i)
is used to denote the existence of e at time i. Akrida
et al.26 studied the temporal diameter of the directed
random temporal graph model for the case of r = n.
Grindrod and Higham27 introduce a class of evolving
range-dependent random graphs that gives a tractable
framework for modeling and simulation. The notion of
edge-Markovian dynamic graph is proposed by
Clementi et al.,5 which refers to stochastic edge time-
dependency in evolving graphs. Time-varying graph
(TVG), proposed by Casteigts et al.,23 integrates previ-
ous dynamic graph models with a unified framework.
With TVG, a dynamic network is modeled as G = (V,
E, T, r, z), where V and E are the vertex and edges in
the topology graph, respectively; T is the lifetime of the
network; r indicates whether a given edge is available;
and z represents the time taken to cross an edge. A new
unifying model for representing finite discrete TVGs is
proposed in Wehmuth et al.,28 which can capture the
needs of distinct dynamic networks. Ducourthial and
Wade29 propose dynamic p-graphs model, which con-
stituting a finite set of dynamic graphs and each of
them being a sequence of observed graphs, with the
particularity that their edges allow transferring p
messages.

Besides network representation, researchers also
consider the connectivity of dynamic networks and
proposed different models. Kuhn and Oshman30 pro-
pose the notion of ‘‘dynamic distance’’ between two
nodes, which is the time required for one node to be
causally influenced by the other node. Accordingly, the
minimum upper bound on the distance between any
pair of nodes is the ‘‘dynamic diameter.’’ The dynamic
diameter extends the notion of normal diameter of a
graph with consideration of dynamic changes. Kuhn
et al.12 propose the T-interval connected model, which
requires that, for every T rounds, there exists a con-
nected subgraph which keeps unchanged.

Our dynamicity models (Q, S)-distance model and
(Q, S)*-distance model are defined on top of the notion
of dynamic diameter and T-interval connectivity.

Dynamic counting algorithms

The counting problem has been widely studied under
various environments. However, most counting algo-
rithms for dynamic networks are based on estimation
and the results are not accurate. Moreover, randomized
design is usually adopted to cope with dynamicity, and
the algorithms cannot terminate deterministically.

The algorithms in Psaltoulis et al.2 and Kostoulas
et al.13 adopt a random report approach. An initiator
spreads messages to others and the receiver send replies
randomly with some probability. The networks size,

that is, the number of nodes, is estimated based on the
number of replies and their corresponding hop
distance.

Matias and Miele31 study statistical clustering. They
explore statistical properties and deterministic inference
in a model that combines a stochastic block model for
its static part with independent Markov chains for the
evolution of the nodes groups through time.

Massoulie et al.32 propose a random tour method
where a node sends a node sample uniformly at ran-
dom. They propose sample and collide method which
relies on a sampling sub-routine that returns randomly
chosen nodes.

The Degree_Counting algorithm in Michail et al.1

calculates the degree of a node via broadcasting, and
the network size is estimated by an upper bound on the
maximum degree. Kuhn et al.12 propose to do counting
through k-committee election, where each committee
invites no more than k nodes to join in, and the network
size n is estimated to be k once k � n.

All the algorithms above are estimation-based and
cannot get accurate results.

Accurate algorithms can be found in De Bovenkamp
et al.7 and Jelasity and colleagues.14,15 These algorithms
realize counting via token collection. Each node is
assigned one token (or some information with unique
copy) in the beginning and then periodically exchanges
information with one of its neighbors to collect tokens
from others. With delicately designed rules for token
transferring, all the tokens will be eventually collected
by one node, and the number of tokens collected is just
the number of nodes in the network. These algorithms
differ mainly in the mechanisms to direct and control
the token aggregation procedure. Obviously, these
algorithms are also randomized and cannot terminate
deterministically. Moreover, the assumption of token
information may not be acceptable in all application
scenarios.

Michail et al.1 also propose four accurate algorithms.
The Fair algorithm and the Delegate algorithm are ran-
domized. They count the number of nodes by naming
the nodes with unique ID. In the Fair algorithm, the
leader node assigns names to nodes it encounters and at
the same time counting them. In the Delegate algo-
rithm, the leader delegates the role of assigning names
to all the nodes that it encounters.

The other two accurate algorithms proposed in
Michail et al.1 are Dynamic_Naming and
Individual_Conversations, which are, to the best of our
knowledge, the only algorithms that can achieve accu-
rate counting results deterministically in dynamic net-
works. Dynamic_Naming extends the Delegate
algorithm by adding mechanisms to determine the ter-
mination. However, all the four accurate algorithms in
Michail et al.1 rely on the one-to-each communication
mechanism.

Yang et al. 3

Diffusing computation and its problems in dynamic
networks

The diffusing computation approach was originally
proposed by Dijkstra and Scholten.16 Diffusing compu-
tation usually starts with only one initially active node,
and a distributed dynamic tree is constructed and used
during the computation. The tree includes all active
nodes and is rooted at the initial active node. Typically,
a diffusing computation algorithm contains two phases.

In the tree growing phase, initiation message is dif-
fused in the network following neighborhood. More
precisely, the initial node invokes the algorithm by send-
ing the initiation message to all its neighbors. Then,
when a node receives the initiation message for the first
time, it becomes a child of the sender and further propa-
gates the initiation message by sending the message to
all its neighbors, including its parent. Sending message
to the parent is necessary for the parent to recognize its
children. In such a way, the tree will grow step by step
until the initiation message reaches all nodes, and the
nodes without any children become leaf nodes.

A leaf node will recognize itself as a leaf when it
receives initiation message from each its neighbor and
none of them accept it as parent. Then, the leaf node
will switch to the shrink phase by sending a return mes-
sage to its parent. Gradually, once a node collects return
from each of its children, it also sends return to its own
parent. Finally, the root node will receive return from
all its children and diffusing computation terminates.

State information or other information wanted from
individual nodes can be collected via the return mes-
sage, and finally, the initial node can obtain global view
of the whole network. Diffusing computation has been
widely used in distributed computation problems,
including termination detection,16 snapshot,33 and
deadlock detect.34,35

Diffusing computation can be applied in either wired
networks or wireless ad hoc networks.

However, due to topology dynamicity, diffusing com-
putation cannot be directly used in dynamic networks,
because dynamic neighborhood makes the tree structure
not stable. More precisely, topology dynamicity causes
two challenging issues in diffusing computation:

1. How to determine the leaf nodes and terminate
growing? In typical diffusing computation, the
growing phase is terminated by leaf nodes.
Once a node u finds that all its neighbors have
sent initiation message and none of them
chooses u as parent, u can recognize that it is a
leaf node and switch from growing to shrinking.
However, this does not work in dynamic net-
works. Due to topology changes and conse-
quently neighborhood changes, a node v that is
moving may miss the initiation message from
both its old neighbors and new neighbors
because these neighbors may broadcast initia-
tion message in different rounds. Then, node v
may not be included in the tree and the count-
ing result becomes inaccurate. However, if a
node keeps waiting for possible new neighbors,
it cannot terminate deterministically, and conse-
quently the growing phase cannot be completed
successfully (as the case of Node b in Figure 1).

2. When to stop sending a message between chil-
dren and parent when the neighborhood is
destroyed? In static networks, the connection
between children and their parent is a direct
one-hop channel. In dynamic networks, how-
ever, the connection between children and their
parent may change after the relationship among
them established. More precisely, a child must
receive initiation message from its parent via
direct connection, but the connection may be
broken and changed due to topology changes.
Then, the later message between children and
parent must be transferred via some path with
multiple hops. Please notice that, in dynamic
networks, no underlying multi-hop communica-
tion mechanism is available and multi-hop com-
munication is in fact conducted by broadcasting
round by round.1,12 The problem is when the
sender and intermediate nodes can stop sending
and forwarding a message (as the case of Node
c in Figure 1).

System model and problem definition

We consider a dynamic network with a set of nodes,
each of which has a unique ID. The network runs in
synchronized rounds. The time can be denoted by
{t0, t1, .., ti, ...}, where [ti, ti+1) is one round. In every
round, each node u generates a message to be delivered
to all its current neighbors, and its neighbors can
receive the message at current round. The node set is
assumed to be static, that is, no node will join or leave
the network. None of the nodes has the knowledge
about the global node set and even the network size,
that is, the number of nodes in the network. The

Figure 1. An illustration of the dynamic problem in diffusing
computation.

4 International Journal of Distributed Sensor Networks

topology of the network may change from time to time
due to node mobility or other reasons.

The network is modeled as a dynamic graph
G = (V, E), where V is the set of nodes, and E is a
function mapping a round number r to the set E(r). We
consider the case, where the edges E(r) can be chosen
arbitrarily in each round r, with the only constraint
that each graph must be connected, that is, the network
is at least 1-interval connected. That is, the nodes can
move at any time and the topology of network may
change from time to time. A more stable model is
T-interval connectivity, which stipulates that, for every
T consecutive rounds, there exists a stable connected
spanning subgraph.

The nodes communicate with each other by broad-
casting and receiving messages and the transmission is
bidirectional. In every round, each node u generates a
message to be delivered to all its current neighbors, and
its neighbors can receive the message at current round.

As in Michail et al.,1 the counting problem can be
formally defined as below:

Definition 1 (distributed counting). When an algorithm is
executed on a network comprising n nodes, each node
eventually terminates and at least one node outputs a
value k which is equal to n.

According to the definition, a correct counting algo-
rithm should have two properties:

Termination. Each node in the network should even-
tually terminate.
Accuracy. At least one node outputs the network
size, that is, the number of nodes in the network.

The (Q, S)-distance model and
(Q, S)*-distance model

To describe the dynamicity in distance between two net-
work nodes, we propose two models, which will be used
to design counting algorithms. The first model, (Q, S)-
distance, describes the change of distance between any
pair of nodes, while the second model, (Q, S)*-distance,
focuses on the distance change between neighboring
nodes. In the following, we will first present the defini-
tions of two models and then discuss the relationship
between them.

The (Q, S)-distance model

The (Q, S)-distance model is proposed to define the
change in distance between a pair of nodes. The two
nodes may be or may not be neighboring nodes, that is,
the communication path between them may be multi-
hop.

To describe the change in distance, first we need to
define the distance itself in a dynamic network. Such a

definition is already proposed in Casteigts et al.,23

which is further based on the notion of ‘‘journey.’’
Here, we copy these two notions from Casteigts et al.23

Definition 2 (journey). A sequence of pairs J = (e1, t1),
(e2, t2)..., (ek, tk), where \e1, e2, ..., ek. is a walk in G,
is called a journey in G if and only if r(ei, ti) = 1 and
ti+1 � ti+ z(ei, ti) for all i \ k.23 The starting time
and ending time of a journey J are noted by departure
(J) and arrival (J), respectively.

Definition 3 (dynamic distance). The topological distance
from a node u to a node v at time t, is defined as du,t
(v) = Min{|J|:J 2 J*(u,v) ^ departure(J) � t}, where
J*(u,v) is the set of all possible journeys from a node u
to a node v in a time-varying graph.23

The definition of dynamic distance describes the
minimum number of edges traversed to deliver a mes-
sage in a dynamic network. In our system model, we
assume that each node u generates a message to be
delivered to all its current neighbors in every round.
Thus, dynamic distance is equal to the minimum num-
ber of rounds required to reach another node. In our
work, we are concerned by the change of the distance
between a pair of nodes. Accordingly, we define a new
model to describe the dynamicity of dynamic distance.

Definition 4 ((Q, S)-distance). The distance between a pair
of nodes in a dynamic network is a (Q, S)-distance, if:
8t2N,8u2V ,8v2V , t0.t+du, t(v),du, t(v)+ (t0 � t)=Qd e�
S�dv, t0(u)

The (Q, S)-distance model means that the distance
between two nodes in a dynamic network may change
from time to time and the difference can be at most S
in every Q consecutive rounds. Please notice that, such
a (Q, S)-distance model is reasonable, considering that
topology changes due to node mobility are much slower
than the speed of message propagation in wireless sen-
sor networks (WSNs) and other systems of mobile
devices. That is, the (Q, S)-distance model may hold for
usual ad hoc networks, with a quite small S compared
with the value of Q.

With the (Q, S)-distance model, we can calculate the
upper bound on the time of a message to be delivered
from the source node to the destination, that is, the time
of ‘‘causal influence.’’30,36 Such calculation is described
by Lemma 1.

Definition 5 (causal influence). Causal influence is the
notion of one node ‘‘influencing’’ another through a
chain of messages originating at the former node and
ending at the latter.30,36 (u, t) , (v, t+ d) denotes that
the message of u sent to v in round t can reach v in
round t+ d.

Yang et al. 5

Lemma 1. In a dynamic network with (Q, S)-distance,
we can get that: 8d1, 8d2, 9d3, (u, t) , (v, t+ d1))(v,
t+ d1+ d2) , (u, t + d1 + d2 + d3), where
d3� d1 + (d1 + d2)=Qd e � S.

Proof. By Definition 4, after d2 rounds compare to t
+ d1, the distance between node u and node v can be
at most d1 + (d1 + d2)=Qd e*S, that is, dv, d1 + d2

(u)
� d1 + (d1 + d2)=Qd e*S. For the graph is undirected,
the message sent from v to u in round t + d1 + d2
can reach u in or before the round t + 2d1

+ d2 + (d1 + d2)=Qd e*S. By Definition 5, we can get
that (u, t) , (v, t + d1)) (v, t + d1 + d2) , (u, t
+ d1 + d2 + d3). The lemma holds.

When node u receives a message sent from a node v at
time t, it will send back a message to node v at time t+1.
Obviously, by Lemma 1, node v can calculate the upper
bound on the arrival time/round. Such calculation is a
basic block of our later algorithm design for counting.

The (Q, S)*-distance model

The (Q, S)-distance model describes the dynamic dis-
tance of any two nodes that may change from time to
time. However, in many distributed computing algo-
rithms and applications, operations may concern more
about neighboring nodes rather than two nodes far
away. This motivates us to extend the (Q, S)-distance
model to the (Q, S)*-distance model that defines the
distance change between neighboring nodes.

Definition 6 ((Q, S)*-distance). The distance between a
pair of nodes in a dynamic network at time t is a
(Q, S)*-distance, if:
8t 2 N, du, t(v)= 1, 8u 2 V , 8v 2 V , t0.t +
1, 1+ (t0 � t)=Qd e*S � dv, t0 (u).

The (Q, S)*-distance model describes the distance
change between neighboring nodes. More precisely,
under the (Q, S)*-distance model, the difference in dis-
tance between any two neighbor nodes can be at most
S in every Q consecutive rounds.

Based on the (Q, S)*-distance model, we can get the
following lemmas, which will be used for later algo-
rithm design and proof.

Lemma 2. In a dynamic network with (Q, S)*-distance,
we can get that: 8d1, 9d2, (u, t),(v, t+1)) (v,
t+1+ d1) , (u, t+1+ d1+ d2), where d2� 1+
d1=Qd e*S.

Proof. By Definition 6, the two nodes u and v are
neighbors of each other at time t, that is, du,t(v) = 1.
After d1 rounds, the distance between them can be at
most 1+ d1=Qd e*S, that is, dv, 1+ d1

(u)� 1+ d1=Qd e*S.
Then, node u and v may not be neighbors anymore. By

Lemma 1, we can get (v, t + 1 + d1) , (u, t+1 +
d1+ d2). The lemma holds.

Lemma 2 indicates that, if two nodes u and v are
neighbors at time t, we can calculate the upper bound
of distance from v to u in later rounds. This can be used
to estimate the time delay of a message in distributed
algorithms.

Now, we consider the distance between non-
neighboring nodes, under the (Q, S)*-distance model.
It is similar to but different from that under the (Q, S)-
distance model.

Lemma 3. In a dynamic network with (Q, S)*-distance,
we can get that: 8d1, 8d2, 9d3, (u, t) , (v, t+ k)) (v,
t+ d1+1) , (u, t+ d1+1+ d2), where d2� ad2

and
ai = ai�1 + (ai�1 + i)=Qd e*S, i = 2, 3, ..., k, a1 = s.

Proof. By the assumption in the lemma, it takes d1
rounds to transfer a message from u to v, that is, the dis-
tance between u and v is d1. Then, a message needs to
be forwarded by at most d1 nodes to reach v (including
u). Without loss of generality, we denote such a journey
of d1 nodes as below.

Now, we consider the message transferred from v to
u. As shown in Figure 2, we use ai to denote the time
that the message reaches node i. Since each pair of
nodes i and i 2 1 are neighbors of each other when
node i forwards the message from u to v, that is, at time
t + d1 2 i, by Lemma 2, the time of message arriving
at node 1 is at most a1 = S. Then, the time for the mes-
sage to reach node 2 is (a1 + 2)=Qd e*S. Easily, we can
get a2 = a1 + (a1 + 2)=Qd e*S. Similarly, we can get
that ai = ai�1 + (ai�1 + i)=Qd e*S. The lemma holds.

Lemma 2 and Lemma 3 provide basis to calculate
time delay of messages, for neighboring node pairs and
non-neighboring node pairs, respectively. Such calcula-
tion is necessary for distributed algorithms, including
counting algorithms, to control message transfer and
communication operations according to time.

Relationship between (Q, S)-distance and
(Q, S)*-distance

The two dynamicity models defined above are related
with each other. (Q, S)-distance model describes
the distance change of any pair of nodes, while the
(Q, S)*-distance model defines distance change of

Figure 2. A journey between u and v.

6 International Journal of Distributed Sensor Networks

neighboring nodes. Intuitively, (Q, S)-distance is more
general than (Q, S)*-distance, in terms of the scenarios
considered, that is, one-hop journey or multi-hop
journey.

However, it is more interesting to consider their rela-
tionship in terms of their power in distributed comput-
ing. Which model is more powerful in providing
dynamicity properties desired in distributed algorithms?
Does a dynamic network defined by the (Q, S)*-
distance model also satisfy the definition of (Q, S)-
distance? After carefully examining the properties
defined in the two models, we get two interesting
conclusions.

(Q, S)-distance and (Q, S)*-distance are equivalent. First, we
consider the power of defining distance dynamicity. We
find out that these two models are equivalent. That is, a
network with (Q, S)-distance can be always defined by
a (Q, S)*-distance model and vice versa. This is a very
interesting conclusion and we prove it as below.

Lemma 4. If a dynamic network follows the (Q, S)*-dis-
tance model, it also follows the (Q, S#)-distance model,
where S# is (n 2 1)*S and n is the total number of
nodes in the network.

Proof. For any node u and v, the dynamic distance
between them is du,t(v) at time t. Then, a message from
u needs to be forwarded by at most du,t(v) nodes
(including u) to reach v. As shown in Figure 2, each
pair of nodes i and i 2 1 are neighbors of each other
when node i forwards the message from u to v. By
Definition 6, if the network follows (Q, S)*-distance
model, the dynamic distance between i and i 2 1 is at
most 1+ (t0 � t)=Qd e at some time t#, that is,
di�1, t0 (i)� 1+ (t0 � t)=Qd e. Then

dv, t0 (u)�
Xdu, t(v)

i=1

di�1, t0 (i)�du, t(v)+ (t0 � t)=Qd e*du, t(v)*S

Since the dynamic network is 1-interval connected,
the dynamic distance between any two nodes is at
most n ÿ Ù 1, that is, du, t(v) � n ÿ Ù 1. Then, we
can get dv, t0 (u)� du, t(v)+ (t0 � t)=Qd e*(n� 1)*S. By
Definition 6, the dynamic network follows the (Q,
(n 2 1)*S)-distance model. The lemma holds.

Lemma 5. If a dynamic network follows a (Q, S)-dis-
tance model, it also follows a (Q, S)*-distance model.

Proof. By Definition 4 and Definition 6, du,t(v) = 1 in
(Q, S)*-distance model is an especial case of du,t(v) in
(Q, S)-distance model. Then, a dynamic network

follows a (Q, S)-distance model also follows the
(Q, S)*-distance model. The lemma holds.

Theorem 4. The (Q, S)*-distance model and (Q, S)-dis-
tance model are equivalent in terms of the power of
describing distance changes.

Proof. By Lemma 4 and Lemma 5, the theorem obvi-
ously holds.

(Q, S)*-distance is more accurate

The second conclusion is about accuracy. By Lemma 5,
a (Q, S)-distance model can be converted to a (Q, S)*-
distance model, with the same value of S. However, by
Lemma 4, a (Q, S)*-distance model can only be con-
verted to a (Q, (n 2 1)*S)-distance model, where
(n 2 1)*S is obviously larger than S. In terms of accu-
racy of distance calculation, (Q, S)*-distance is better
than (Q, S)-distance. Thus, we use different names for
these two models.

Then, given a specific network, we can always find a
(Q, S)*-distance model with a S not greater than the
corresponding (Q, S)-distance model. Namely, (Q, S)*-
distance is better than (Q, S)-distance. Such advantage
in accuracy can help upper algorithms conduct opera-
tions with fewer rounds and reduce both time cost and
message cost.

Algorithm 1—the basic algorithm for
counting in a flat network

Based on (Q, S)-distance model, we design the first dif-
fusing computation algorithm for counting. Different
from typical diffusing computation, this algorithm con-
tains three phases.

The first phase is still the growing phase, which is
used mainly for constructing the tree structure. The
third phase is the shrinking phase, which is used to col-
lect information from the network. For the counting
problem, the information collected is simply the num-
ber of children. These two phases are similar to but not
the same as those in typical diffusing computation,
because new operations are necessary to handle topol-
ogy changes. More importantly, a totally new phase,
called notifying phase, is added between the growing
phase and the shrinking phase. This phase serves the
purpose of determining the termination of growing
phase and invoking the shrinking phase.

As pointed out in section ‘‘Diffusing computation
and its problems in dynamic networks,’’ topology
changes bring two challenges in diffusing computation:
how to determine the leaf nodes and terminate growing
and when to stop sending a message between children
and parent when the neighborhood is destroyed. To

Yang et al. 7

help understanding our algorithm and the novelty, we
describe the basic ideas of addressing these two chal-
lenges as below.

To avoid missing of moving nodes, all nodes in
active keep broadcasting the initiation message. Then,
key point is when to stop such broadcasting and switch
to shrinking. In our algorithm, we let the initiator take
the job of detecting termination of growing. More pre-
cisely, during the growing phase, in every Qth+1
round, the nodes that receive their first initiation mes-
sage in the Qth round will send a signal message to the
initiator, where Q is the value in the (Q, S)-distance
model. Based on the (Q, S)-distance model, the initiator
node can calculate the upper bound on the arrival time
of signal messages and consequently determine whether
all the nodes have joined the tree. Then, the initiator
will invoke the notifying phase to notify others about
the termination of growing phase. The notification
message will be disseminated along the diffusing tree
established in the growing phase. Upon receiving notifi-
cation from initiator, each node will switch to shrinking
phase and determine whether it is a leaf node. The first
challenge is addressed.

When a message is sent between a child and its par-
ent, the sender will keep sending it round by round and
the intermediate nodes will keep forwarding it. Since
the communication is in synchronous rounds, based on
the (Q, S)-distance model, the sender can calculate the
upper bound on the dynamic distance between the child
and parent, and this distance can be used to set the
number of rounds for sending and forwarding the mes-
sage. The second challenge is addressed.

In the following, we first describe the detailed opera-
tions of our algorithm and then prove its correctness
together with the results of performance in time cost
and message cost. Finally, we discuss about variant
operations to improve the algorithm.

Detailed operations of Algorithm 1

In our algorithm, for the simplicity of presentation, we
use ‘‘black’’ and ‘‘white’’ to refer to active node and
inactive nodes, respectively. Then, the procedure of tree
growing is in fact the procedure of coloring nodes from
white to black (Figure 3).

Phase I—growing. Initially, each node is white. When the
initiator node u wants to do counting, it invokes the
algorithm by coloring itself to be black and broadcasts
the initiation message Black(u, r), where r is the round
number and is set to be one by u. Then, the tree is estab-
lished by the diffusing of Black messages, round by
round. Notice that the initiator is any node, which
wants to get the number of nodes in the network.

Upon receiving a black message Black(v, r), a white
node w joins the tree by coloring itself to be black, and

v will be accepted as its parent. Then, in the next round
and later rounds, node w broadcasts the black message
Black(w, r + 1) to its neighbors.

Moreover, node w needs to send two other messages.
One is Ack(w, v, S+1) to its parent v to let v add w to its
child list, where S is the value in (Q, S)-distance model. If
r is the integral multiple of Q, node w will also need to
send the other message Signal(w, m, H) to the initiator u,
where m = r/Q, and H = m*Q+(m+1)*S. To cope
with topology changes, w will keep broadcasting the Ack
message in the following S+1 rounds and the signal
message in the followingH rounds.

Please notice that the limit of rounds for sending and
forwarding can be realized by decrementing the limit
counter, for example, H in Signal message, by one at
each forwarding. Moreover, although three types of
messages may need to be sent by node w in one round,
they can be merged together and sent in one broadcast
as one single message.

When node x receives the Ack message originated
from w, it records \w, rc. in its child list, where rc is
the current round number. Then, the child-parent rela-
tionship between w and x is established.

When node u receives the signal message Signal(w,
m, x), it records \w, m. in the signal list. Then, it will
expect the next Signal message that should arrive in or
before the round (2*m*Q+(m+1+1)*S). If such a
message does not arrive in or before the expected
round, u will switch to the second phase. Please notice
that, due to topology dynamicity, the series of Signal
message may not be delivered in the order of sending,
but this does not matter, because a Signal message
received by u earlier than expected is obviously viewed
as arriving in time.

Phase II—notifying. Phase II is started with sending noti-
fication message by node u. Node u sends Notify
(u, Cu, r) to its children, where Cu is the limit of rounds
that the message should be sent and forwarded and r is
the current round number. With (Q, S)-distance model,
Cu is set to be ((Ru � rcm)=Qd e*S + S + 1), where rcm
is the minimum of the round numbers of receiving Ack
messages from children.

When the node w receives Notify(v, Cv, Rv) from its
parent v, it will stop broadcasting Black message and
sends Notify(w, Cw, r) to its own children, where r is the
current round. Node w records \Rv, dv. in its parent
list, where dv = r 2 Rv and r is the current round num-
ber. If w does not have children, that is, it is a leaf node,
it will switch to Phase III.

Phase III—shrinking. Phase III starts with sending Count
messages at leaf nodes. A leaf node w sends Count(w,
num, M) to its parent node v, where num is the number
of children plus one. This message will be sent and

8 International Journal of Distributed Sensor Networks

forwarded in the following M rounds, with
M =((r � Rv)=Qd e*S + dv + 1.

For a non-leaf node v, if it has received a Count mes-
sage from each child, it will construct its own count
message Count(v, num, M) to its parent, where num is
the sum of all the count values from children plus one.

Finally, the initiator node u will receive the Count
message from all its children and can calculate the final
count results by sum the count values from them. Phase
III ends.

Correctness and performance

To prove that Algorithm 1 solves the counting problem
defined in Definition 2, we need to prove it has the ter-
mination property and accuracy property.

Lemma 6. Before Phase II starts at the initiator node, if
there exist any white nodes in the end of some round r#,

then at least one white node will be colored to black in
round r#+1.

Proof. Since the network is 1-interval connected, at
least one white node, say x, has a neighbor in black at
the beginning of some round r#+1. Because Notify
message has not yet been sent out by the initiator, the
black neighbor of x must broadcast Black message in
r#+1 and x will receive the Black message and join the
tree by coloring itself to be black in round r#+1. The
lemma holds.

Lemma 7. At the end of Phase I, the diffusing tree struc-
ture contains all nodes in the network, and each node
knows its parent and children.

Proof. The proof of the first part is by contradiction.
Assume that one or more nodes are still white at the
moment that the initiator node u starts notifying phase
in round q.

Without loss of generality, we assume the initiator u
switches from Phase I to Phase II due to the miss of the
Signal message m#, which should be received by u in or
before the round (2*m#*Q+(m#+ 1)*S). Then,
q = (2*m#*Q+(m#+ 1)*S)+1.

By Lemma 1, a message Signal(w, m, H) can be
delivered to node u in most m*Q+(m+1)*S rounds.
Missing the Signal message indicates that no white
node turns black in round m#*Q, which contradicts
with Lemma 6. Obviously, the first part holds.

The second part is easier to prove. Since each node
accepts the sender of the first received Black message as
its parent, a child obviously knows about its parent. A
parent gets to know about its child via Ack message.
Due to topology changes, An Ack message may be sent
to the parent node via multi-hop journey. By Lemma 1,
an Ack message Ack(w, v) can be delivered in at most
S+1 rounds. Lemma 7 holds.

Theorem 2 (termination). Algorithm 1 can terminate in
O(D2) rounds, where D is upper bound of the network
dynamic diameter, and the message size is Q(clogn) in
general cases and Q(nlogn) in the worst case, where c is
equal to 2((Ru�rcm)=Qd e*S + S + 1).

Proof. The duration of Phase I is determined by the
diffusing time of Black message. Since Black message is
propagated via direction connect between neighbors,
Phase I can be completed in O(D) rounds. Please notice
that, although Ack messages and Signal messages may
be delivered via multi-hop journey, they are in fact car-
ried by Black messages and do not affect the overall
end time of Phase I.

In Phase II and Phase III, all the connection between
children and parents may be multi-hop. Since each

Figure 3. The pseudocode of Algorithm 1.

Yang et al. 9

message can be delivered in at most D rounds, and the
depth of the tree structure is at most D, Phase II and
Phase III can be completed terminate in at most O(D2)
rounds.

The message size of each message type is determined
by the information carried. In general cases, node ID,
number of nodes and tree depth are all in the same
order of network size n, and can be represented using
Q(logn) bits, the message size of algorithm is in the size
of Q(logn) bits.

In the worst case, when the notification message send
by node u is received by all nodes, the message size of
algorithm is Q(n) bits.

Since the Notify message is forwarded by
((Ru � rcm)=Qd e*S + S + 1) rounds, then in general
cases, a node needs to send at most
2((Ru�rcm)=Qd e*S + S + 1) Notify messages in one round,
and the message size is Q(2((Ru�rcm)=Qd e*S + S + 1)logn)
bits. In the worst case, that is, ((Ru � rcm)=Qd e*S + S)
is greater than D, some nodes need to send all Notify
messages in one round, and the message size is Q(nlogn)
bits. The theorem holds.

Theorem 3 (accuracy). At the end of phase III, node u
can get the accurate number of nodes in the network.

Proof. By Lemma 1, we can easily get that, for each
node, it can surely receive Notify(ID, CID) from its par-
ent, and Count(ID, num, M) from all its children. By
Lemma 7, all the nodes are included in the diffusing
tree, so node u can get the accurate number of nodes
after it receives Count message from each child. The
Theorem holds.

Variant operations

Algorithm 1 described above can be improved by the
following points.

Intermediate notification. In Phase II of Algorithm 1, the
Notify message is sent from a parent to children and
the Notify message may be forwarded by intermediate
nodes. It is possible that an intermediate node has not
received Notify message from its parent. Then, such a
node can switch to Phase II upon the Notify forwarded
and does not need to wait for the Notify message from
its parent. This can obviously speed up the execution of
Phase II and Phase III.

Under T-interval connectivity. In Algorithm 1, we assume
1-interval connectivity, which is quite weak in terms of
topology stability. It can reduce message cost under
T-interval connectivity,12 which stipulates that, for

every T consecutive rounds, there exists a stable con-
nected spanning subgraph.

If the network is T-interval connected, the nodes do
not need broadcasting Black messages in each round.
Instead, each node needs to broadcast Black message
once per T rounds. It is similar for other messages.

From (Q, S)-distance to (Q, S)*-distance

The algorithm described above is originally designed
based on the (Q, S)-distance model. As discussed in sec-
tion ‘‘The (Q, S)-distance model and (Q, S)*-distance
model,’’ the (Q, S)*-distance model is more accurate.
To adapt the algorithm to (Q, S)*-distance model, the
following modifications need to be done.

In Phase I, a node u needs to calculate the upper
bound of the arrival round of Signal(w, m, x) based on
Lemma 3. With (Q, S)-distance model, the bound is
(2*m*Q+(m+1+1)*S). If (Q, S)*-distance model is
assumed, the bound will be am*s, where
ai = ai�1 + (ai�1 + i)=Qd e*S, and a1 = S.

The other messages exchange in Algorithm 1 are
between parents and children (more precisely the end-
ing nodes have ever been neighbors of each other), the
calculation of distance difference can be the same
except that the value S needs to be replaced with the
new value in the (Q, S)*-distance model.

Algorithm 2—the improved algorithm for
counting in a flat network

Algorithm 2 is an improvement of Algorithm 1, by
removing the Signal message so as to save message
cost. In Algorithm 1, when a node turns black in round
r and r is an integral multiple of Q, it will send a
Signal(w, m, H) message to the initiator node. The
Signal message is used by the initiator node to deter-
mine whether all nodes in the network have joined the
tree, that is, all the nodes have turned to be black.

After carefully considering the information carried
with a Signal message, we find that essential informa-
tion needed by the initiator is the maximum round
when a node turns to be black. Then, we can remove
the Signal message and manage to send back the round
number of turning black. More interesting, such infor-
mation can be piggybacked on the Black message.
Compared with the operations in Algorithm 1, such a
design can save message cost. Moreover, the round
number of turning black can also help the initiator ter-
minate Phase I earlier and consequently save overall
execution cost. Such advantages will be analyzed in the
end of this section.

Same as Algorithm 1, Algorithm 2 is described below
using the (Q, S)-distance model, and it can be adapted
to the (Q, S)*-distancemodel similarly as Algorithm 1.

10 International Journal of Distributed Sensor Networks

Detailed operations of Algorithm 2

Similar to Algorithm 1, Algorithm 2 also contains three
phases. The major difference lies in the operations in
Phase I, that is, no Signal messages, new Black mes-
sages and new termination condition of Phase I.

Initially, each node is white. When the initiator node
u wants to do counting, it invokes the algorithm by col-
oring itself to be black and broadcasting the initiation
message Black(u, r = 1, m = 1), where r is the number
of the current round and m is the round number that
the node turns black. Then, the tree is established by
the diffusing of Black messages, round by round.

Upon receiving a black message Black(v, r, m), a
white node w joins the tree by coloring itself to be black,
and v will be accepted as its parent. Then, in the next
round, node w broadcasts the black message Black(w,
r+1, r+1) to its neighbors. In the later rounds, node
w broadcasts message Black(w, r#, M), where r# is the
number of the current round and M is the maximum of
the values of ‘‘m’’ carried with Black messages received
by w.

The operations on Ack messages are similar to those
in Algorithm 1. Node w sends Ack(w, v, S+1) to its
parent v to let v add w to its child list, where S is the
value in (Q, S)-distance model. To cope with topology
changes, w will keep broadcasting the Ack message in
the following S+1 rounds. When node x receives the
Ack message originated from w, it records \w, rc. in
its child list, where rc is the current round number.
Then, the child-parent relationship between w and x is
established.

The handling of Black message at the initiator node
is different from that in Algorithm 1. When node u
receives the message Black(u, r, m), it will update the
value of M kept for the maximum ‘‘m.’’ Then, node u
will expect that a message Black(u, r, m) with m . M
will arrive in or before the round
m+ 1+ (m+ 1)=Qd e*S. If such a message does not
arrive in or before the expected round, u will terminate
Phase I and switch to the second phase.

The operations of the other two phases are almost
the same as those in Algorithm 1. Here, we do not
repeat them.

Correctness proof

Lemma 8. For any m carried with a message Black(u, r,
m), the initiator node u either receives the m or receives
some value m# that is greater than m, in or before the
round m+ 1+ (m+ 1)=Qd e*S.

Proof. By Lemma 1, when node w turns black in
round m, there exists a journey along which the mes-
sage Black(v, r, m) can reach node u in or before the
round m+ 1+ (m+ 1)=Qd e*S. According to the

operations in Phase I, any black node v will broadcast
message Black(v, r, M), where M is the maximum of
the values of ‘‘m’’ carried with Black messages received
by v. If node u does not receive message Black(v, r, m)
in or before the round m+ 1+ (m+ 1)=Qd e*S, the
value m must have been replaced with another greater
value at some node along the journey. The lemma
holds.

Lemma 9. At the end of Phase I, the diffusing tree struc-
ture contains all nodes in the network, and each node
knows its parent and children.

Proof. For By Lemma 8, if some nodes turn into
black in round m, node u will receive m# which is not
smaller than m in or before the round
m+ 1+ (m+ 1)=Qd e*S. If such a message does not
arrive in or before the expected round, it means that no
nodes turns to black in round m. Since the network is
1-interval connected, at least one white node will turn
black in round m until all the white node turn black.
Thus, the diffusing tree structure contains all nodes in
the network. The lemma holds.

Theorem 4 (termination). Algorithm 2 can terminate in
O(D2) rounds, where D is upper bound of the network
dynamic diameter, and the message size is Q(clogn) in
general cases and Q(nlogn) in the worst case, where c is
equal to 2((Ru�rcm)=Qd e*S + S + 1).

Proof. The duration of Phase I is determined by the
diffusing time of Black message. Since Black message is
propagated via direction connect between neighbors,
Phase I can be completed in O(D) rounds. Differ to
Algorithm 1, Signal message has been removed in
Algorithm 2. Thus, the message size in Algorithm 2 is
smaller than in Algorithm 1.

The operations of the other two phases are almost
the same as those in Algorithm 1. Thus, the cost of
Phase II and Phase III in Algorithm 2 is the same as
Algorithm 2. By Theorem 2, we can get that Algorithm
2 can terminate in O(D2) round, and the message size is
Q(clogn) in general cases and Q(nlogn) in the worst
case, where c is equal to 2((Ru�rcm)=Qd e*S + S + 1). The the-
orem holds.

Comparison with Algorithm 1

Compared with the operations in Algorithm 1,
Algorithm 2 can save both message cost and time cost.
In Algorithm 1, Signal messages are sent with an inter-
val of Q rounds and forwarded by intermediate nodes,
removing Signal in Algorithm 2 will save message cost.

Moreover, Algorithm 1 determines the time to ter-
minate Phase I based on the Signal message and the

Yang et al. 11

message is sent with an interval of Q rounds, so the
initiator cannot know the exact round that the last
node joins the diffusing tree. In Algorithm 2, by the
maximum round number carried in Black message,
Algorithm 2 can terminate Phase I accurately and ear-
lier than Algorithm 1, and both time and messages can
be saved.

Algorithm 3—the algorithm for counting
in a hierarchical network

Cluster-based hierarchy is very popular in ad hoc net-
works to reduce communication cost and improve
topology control efficiency. In our previous work,22 we
have considered cluster-based hierarchy in dynamic
networks and designed hierarchical algorithms for
information dissemination.

In this section, we discuss how to extend our flat
counting algorithms to hierarchical ones. Since the
extension to Algorithm 1 and Algorithm 2 are similar,
we present the hierarchical design for only Algorithm 1
and name the new algorithm ‘‘Algorithm 3.’’

To make use of cluster hierarchy in dynamic net-
works, additional models and assumptions on the sta-
bility and connectivity are obviously necessary. In the
design of Algorithm 3, we propose the (Q, S)-distance
clusterhead model, which is defined based on our recent
work on information dissemination.22

In the following, we first present necessary models
and assumptions used and then describe the operations
of Algorithm 3. Finally, we prove its correctness and
analyze its performance. We also compare the two algo-
rithms in terms of both time cost and communication
cost.

The (Q, S)-distance clusterhead model

In a dynamic network with cluster hierarchy, all the
network nodes are grouped into clusters, each of which
is coordinated by a clusterhead node, as illustrated in
Figure 4. A clusterhead is in charge of forwarding mes-
sages from/to its cluster members. We assume cluster

member and clusterhead is connected via direct connec-
tion, that is, one-hop broadcasting. The cluster hierar-
chy may change from time to time due to topology
changes, for example, a node may switch from one
cluster to another, according to the clustering mechan-
ism. We assume that each switch is completed within
one round. Clusterhead and cluster members know
each other via the clustering mechanism.

To model such a dynamic network with cluster-
based hierarchy, the dynamic graph described in section
‘‘System model and problem definition’’ is extend to a
hierarchical dynamic graph:22 G# = (V, E, G, z, C, I),
where V is the set of nodes in the network, E is the edge
matrix, G is lifetime of the system in terms of synchro-
nous communication rounds, r is the presence function
indicating whether a given edge is available at a given
time, and z is the latency function representing the time
taken to cross an edge. C: V 3 G ! {h, g, m} is the
status of each node at a given time, with h indicates
clusterhead, g indicates that the node is a cluster gate-
way node, which is responsible for forwarding packets
between clusters, and m indicates that this node is a
common node, that is, a cluster member.

Definition 7 (T-interval clusterhead connectivity). We say that
a dynamic network has T-interval clusterhead connec-
tivity if: 8i 2 N , 9Y � Gi : VY � V i

h, Y is connected sub-
graph, and 8j 2 ½i, i+ T � 1),Y � Gj.

22

Please notice: V i
h: is the set of clusterhead nodes in

the time.

Definition 8 (L-hop clusterhead connectivity). We say that
the connectivity among clusterheads is L-hop if:
minfLj8S 	 V i

h, v 2 V i
hnS, and 9u 2 S, distance(u,

v) � L}.22

In fact, L indicates the maximum value of the short-
est path between any two clusterheads that connected
directly or by only gateway nodes.

Definition 9 (T-interval L-hop clusterhead connectivity). The
cluster-based hierarchy with both T-interval clusterhead
connectivity and L-hop clusterhead connectivity in the
subgraph Y.22

To design hierarchical counting algorithm, we define
the (Q, S)-distance clusterhead model, which defines the
change of dynamic distance among the clusterhead
nodes by simply extending (Q, S)-distance.

Definition 10 ((Q, S)-distance clusterhead). We say that a
cluster-based hierarchy is connectivity with (Q, S)-dis-
tance among clusterheads that

8t 2 N, t0.t+ du, t(v), u 2 V 0ht, v 2 V 0ht, du, t(v)

+ (t0 � t)=Qd e*s � dv, t0 (u)Figure 4. A hierarchical dynamic network.

12 International Journal of Distributed Sensor Networks

where V 0ht =
St

0 V t
h.

Detailed operations of Algorithm 3

In our design, we assume that the cluster hierarchy is
established by underlying clustering algorithm, which is
out the scope of our work. Since the cluster hierarchy
model is based on T-interval connectivity, Algorithm 3
also assumes T-interval connectivity. The cluster hierar-
chy should be with T-interval L-hop Clusterhead
Connectivity and (Q, S)-distance clusterhead.

Algorithm 3 extends Algorithm 1 by incorporating
the cluster hierarchy, and it also contains three phases.
The major difference between Algorithm 3 and
Algorithm 1 is that we try to construct the diffusing
tree among clusterhead nodes rather than all the nodes.
That is, only clusterhead nodes are really participating
in the diffusing operations. Common members only
need to let some clusterhead count it in the results.
Obviously, such a design will significantly reduce the
communication cost of counting.

The major challenge in the design of cluster-based
counting algorithm lies in the dynamicity of cluster
membership. More precisely, a member node may be
missed due to cluster switches. We address this by mak-
ing use of the three-phase design to obtain a consistent
cluster membership among all clusters.

Phase I—growing. As in Algorithm 1, every node is white
initially, and the counting algorithm is triggered by the
initiator node u. Without loss of generality, we assume
u is a clusterhead node. It first colors itself to be black
and then broadcasts the initiation message Black(u, r),
where r is the round number and is set to be one by u.
Then, the tree is constructed by diffusing Black mes-
sages. Each black node broadcasts the Black message
in the every Tth+1 round.

When a white gateway node receives a black message
Black(v, l), if this is the first Black message received in
the current period of T rounds, it broadcasts Black(v,
l+1) to its neighbors. Please notice that a gateway
node will not change its color here.

When a white clusterhead node w receives a black
message Black(v, l) in round r, it joins the tree by color-
ing itself to be black, and v will be accepted as its par-
ent. Node w sets Bw, the round number it turns black,
to be r.

From this round r, clusterhead node w needs to
record the number of its cluster members for each
round until it gets the Notify message. This operation is
important, because one of such numbers will be used as
the count of w’s cluster and included in the final count-
ing result.

In the next round r+1, node w broadcasts the mes-
sage Black(w, r+1) to its neighbors. Moreover, same
as in Algorithm 1, node w needs to send two other

messages. One is Ack(w, v, S + L, Bw) to the parent v
to inform about the new child. S is the value in (Q, S)-
distance model, and L is the value in T-interval L-hop
clusterhead connectivity. If r=Td e*T � r� L� 1, node
w will also need to send the other message Signal(w, m,
H) to the initiator u, where m= r=Td e and
H =m*T + (m*T + 1)=Qd e*S. Same as in Algorithm
1, to cope with topology changes, w will keep broad-
casting the Ack message in the following S + L
rounds and the Signal message in the following H
rounds. These three messages can be in fact merged
into integrated one.

When a clusterhead x receives the Ack message ori-
ginated from w, it records \w, rc, Bw. in its child list,
where rc is the current round number. When the initia-
tor u receives the signal message Signal(w, m, x), it
records \w, m. in the signal list.

Same as in Algorithm 1, when some Signal message
m# does not arrive in or before the round, Phase I
finishes and u will invoke the second phase.

Phase II—notifying. Phase II is triggered by the missing of
Signal message m# at u. To collect consistent count val-
ues in spite of cluster membership changes, the initiator
appoints the clusterheads to count the number of mem-
bers it had in the specific round F, where F = m#*T.
Such a value is chosen because it is a round that all clus-
terheads have become black and recorded their number
of members. The detailed discussion is shown in cor-
rectness proof.

Node u starts Phase II by sending the notification
message Notify(u, Cu, Ru, F) to its children, where Cu is
the limit of rounds that the message should be sent and
forwarded, and Ru is the current round number. With
the (Q, S)-distance clusterhead model, Cu is set to be
((Ru � rcm)=Qd e*S + S + 1), where rcm is the mini-
mum of the round numbers of receiving Ack messages
from children.

When a clusterhead w receives Notify(v, Cv, Rv, F), it
will stop broadcasting Black message and also stop
recording the number of its cluster members. It also
sends Notify(w, Cw,, Rw, F) to its own children in the
diffusing tree. Node w records \Rv, dv. in its parent
list, where dv = r 2 Rv and r is the current round num-
ber. If w does not have children, that is, BID � F, it is
a leaf node and will switch to Phase III.

Phase III—shrinking. Phase III starts with sending Count
messages by leaf nodes, that is, the clusterheads with no
children turning black before F. Node w sends Count(w,
num, M) to its parent node v, where num is the number
of its cluster members in round F. This message will be
sent and forwarded in the following M rounds, with
M =((r � Pv)=Qd e*S + dv + 1).

Yang et al. 13

The following procedure of shrinking among cluster-
heads is almost the same as that in Algorithm 1, except
that only clusterheads generate and aggregate node
numbers as tree nodes, and only the cluster members in
the specific round F are counted.

Please notice that if clusterhead node was not acting
as a clusterhead in round F, it is viewed as a clusterhead
with no members (even not itself).

Finally, the initiator node u will receive the Count
message from all its children and can calculate the final
count results by sum the count values from them plus
the number of its cluster in round F. Phase III ends.

Correctness and performance

Lemma 10. With Algorithm 3, at the end of Phase I, the
diffusing tree structure contains all clusterheads in the
round F, and each clusterhead knows its parent and
children.

Proof. The proof of the first part is by contradiction.
Assume one or more clusterhead nodes are still white in
round m#*T.

Since the network is T-interval L-hop clusterhead
connected, at least one white clusterhead turns to black
in per L rounds until all the clusterhead turns to black.
Therefore, at least one white clusterhead turns to black
between round m#*T 2 L and m#*T.

By Lemma 1, a Signal(w, m, H) can be delivered to
node u at most m*T + (m*T + 1)=Qd e*S rounds. Node
u has not received m# in Signal message in round
m0*T + (m0*T + 1)=Qd e*S, that means no white node
turns black between round m#*T 2 L and m#*T. This
contradicts with ‘‘at least one white clusterhead turns
to black between round m#*T 2 L and m#*T.

The second part is proved as follows. Since each
node accepts the sender of the first received Black mes-
sage as its parent, a child obviously know about its par-
ent. A parent gets to know about its child via Ack
message. Due to topology changes, an Ack message
may be sent to the parent node via multi-hop journey.
By Lemma 1, an Ack message Ack(w, v) can be deliv-
ered in at most S + L rounds.

Based on the proof of two parts, the lemma holds.

Theorem 5 (termination). Algorithm 3 can terminate in
O(D2) rounds, where D is upper bound of diameter of
networks, and the message size is Q(clogn) in general
cases and Q(n0logn0) in the worst case, where c is equal
to 2((Ru�rcm)=Qd e*S + S + 1) and n0 is the upper bound on
the number of clusterhead nodes.

Proof. The proof is similar to that of Theorem 2 and
omitted here.

Theorem 6 (accuracy). At the end of phase III, node u
can get the accurate number of nodes in the network.

Proof. By Lemma 1, we can easily get that, for each
node, it can surely receive Notify(u, CID, RID, F) from
its parent, and Count(ID, num, M) from all its children
which BID is not greater than F. By Lemma 10, all the
clusterheads in round m#*T are included in the diffus-
ing tree, so node u can get the accurate number of nodes
after it receives Count message from each child. The
Theorem holds.

Performance comparison with Algorithm 1. It is interesting
to compare the performance of our both algorithms.
First, we consider time cost. As proved in Theorem 2
and Theorem 4, the time complexity of both our count-
ing algorithms is in O(D2) of rounds. In fact, the exact
time cost of the counting algorithms is determined by
not only the diameter of the network but also the num-
ber of nodes participated. Since Algorithm 3 has fewer
nodes really participating than Algorithm 1, Algorithm
should be able to terminate earlier than Algorithm 3,
although the exact difference is hard to analyze.

The difference in communication cost is more obvi-
ous and easier to analyze. Roughly, we evaluate com-
munication cost using the total bits broadcasted (or
transmitted) by all the nodes, which is roughly deter-
mined by three factors: the execution time, that is, time
cost in rounds, message size, and the number of nodes
participated.

For Algorithm 1, by Theorem 2, we can get that
Phase 1 has the communication cost is in
O(D2*n2*logn) bits. The communication cost of
Algorithm 3 is calculated based on the number of clus-
terhead, rather than total number of nodes (the cost at
gateway nodes can be neglected in such rough
analysis).

By Theorem 5, we have the communication cost of
Algorithm 3 in O(D2*n2

0*logn) bits, where n0 is the
upper bound on the number of clusterhead nodes and
gateway nodes in m#*T rounds. Considering that n0 is
usually much smaller than n, the communication cost
of Algorithm 3 is much less than that of Algorithm 1.

Simulation results

To the best of our knowledge, existing algorithms are
not suitable for (Q, S)-distance model. Thus, we do not
simulate existing counting algorithms, that is, the simu-
lation cannot be used to compare with existing algo-
rithms. The simulation is used to validate the
correctness of our algorithms and measure their perfor-
mance quantitatively. We conduct simulations via a
widely used simulator, ns-3.

14 International Journal of Distributed Sensor Networks

Simulations setup

We simulate a network with wireless ad hoc nodes ran-
domly distributed in a 1000 m 3 1000 m area. The
range of communication radio is set to be 100 m. The
speed of node movement is set to be 20 m per round.
One round is simulated by one send–receive period.

To ‘‘realize’’ the assumptions on dynamicity defined
in our (Q, S)-distance model, we vary the period of
send-receive round and then different (Q, S) values are
achieved.

The performance of a counting algorithm is mea-
sured via three metrics: accuracy, time cost, and mes-
sage cost. Accuracy refers to how accurate the number
of nodes counted against the real number of nodes.
Counting time is defined as the number of rounds used
to compete counting. Message cost refers to the average
number of messages sent by one node.

Simulation results

We first examine the effect of (Q, S) values. For ease of
simulating, we fix the movement speed of nodes(S = 5)

and change Q values by controlling the time duration
of each send-receive round. Then, we examine the effect
of network size, that is, the number of nodes N.

Accuracy. The results of accuracy are plotted in
Figure 5. All our algorithms can achieve accurate
counting results. This is expected and such results con-
firm our correctness proof in previous sections.

Time cost. The results of time cost in terms of number
of rounds used to complete counting are shown in
Figure 6. Roughly, our algorithms need 100 to 150
rounds to complete the counting task in various cases.
Among the three algorithms, the cluster-based algo-
rithm can always outperform the other two. This clearly
indicates the benefit of cluster hierarchy. Algorithm 2
needs fewer rounds due to the mechanism to terminate
Phase I earlier than Algorithm 1.

Figure 6(a) also shows that the change of Q-value or
number of nodes affects time cost significantly, except
that of Algorithm 3. Intuitively, when S is fixed, a
larger Q value means less dynamicity and counting

Figure 5. Accuracy of counting: (a) accuracy versus Q, with S = 5, N = 160 and (b) accuracy versus N, with S = 5, Q = 6.

Figure 6. Time cost: (a) time cost versus Q, with S = 5, N = 160 and (b) time cost versus N, with S = 5, Q = 6.

Yang et al. 15

should be completed with fewer rounds. However,
Figure 6 shows that a larger Q results in more rounds
for counting, especially in Algorithm 1. Such an inter-
esting effect may be explained by the change of
‘‘dynamic diameter.’’ On one hand, link breakage due
to node movement may cause the increase of diameter.
On the other hand, link establishment may cause
decrease of diameter. Therefore, under the accumula-
tive effect of such two aspects, high dynamicity may
cause longer or shorter counting time.

The effect of network size is shown in Figure 6(b).
Roughly, more nodes in the system will cost more
rounds to count them. Benefiting from the cluster hier-
archy, Algorithm 3 is not affected much by the change
of network size.

Message cost. The results of message cost, in terms of
the average number of messages sent at one node, are
shown in Figure 7. The change of Q value does not
affect message cost much, in all three algorithms.
However, network size is a dominating factor in mes-
sage cost. This is expected. More nodes in the system,
more neighbors may present and then more messages
are exchanged for counting. However, Algorithm 3 is
not affected much by N, which shows that cluster hier-
archy is a good choice to improve scalability.

Conclusion and future work

In this article, we study the distributed counting prob-
lem in the environment of dynamic networks. The
major challenge lies in the dynamicity caused by topol-
ogy changes. Based on the notion of dynamic distance,
we propose two system models, called (Q, S)-distance
and (Q, S)*-distance, which are defined to describe the
change of distance between a pair of nodes. Based on
these models, we design three dynamic counting algo-
rithms. We basically adopt the classical approach of
diffusing computation and design mechanisms to han-
dling dynamic topology changes. The three algorithms
differ in mechanisms to determining growing phase and
network architecture, and consequently, they have dif-
ferent message costs and time costs. Compared with
existing counting algorithms, our algorithms can termi-
nate deterministically with accurate results.

Since counting in dynamic networks is a fundamental
but challenging problem in distributed computing, much
more efforts are obviously necessary. One interesting
direction is new dynamicity models in terms of node
mobility, rather than ‘‘dynamic distance.’’ Mobility
model is a more direct view of network dynamicity, but
it is more difficult to be adopted in theoretical algorithm
design for distributed computation problems like count-
ing. Other possible directions include counting in asyn-
chronous network, more general cluster hierarchy with
multi-hop clusters, and so on.

Acknowledgement

This manuscript is an extension of our conference paper pub-
lished in the proceedings of SRDS’14.4 In the extend version,
we have added quite a lot of new and significant content to

make our work more solid and significant. We have defined a
new dynamic model and discussed the relationship between
two modes, which make our work more general. We have
designed a new algorithm, which can improve the counting
algorithm in terms of message cost and time cost. We have
added performance evaluation via simulations. More pre-
cisely, we list the difference between this manuscript and the
conference version as follows:

1. We have added the definition of a new dynamic
model, named (Q, S)*-distance (section ‘‘The
(Q, S)*-distance model’’).

In the journal version, we extend the (Q, S)-distance model to
the (Q, S)*-distance model, which defines the distance change
between neighboring nodes. The lemmas of (Q, S)*-distance
are proved. Moreover, we have added discussion on the rela-
tionship between (Q, S)-distance model and (Q, S)*-distance
model (section ‘‘Relationship between (Q, S)-distance and
(Q, S)*-distance’’). The discussions shows that the (Q, S)-dis-
tance and (Q, S)*-distance are equivalent, but (Q, S)*-dis-
tance is more accurate.

2. We have described the modifications that adapting
the first algorithm to (Q, S)*-distance (section ‘‘From

Figure 7. Message cost: (a) message cost versus Q, with S = 5,
N = 160 and (b) message versus N, with S = 5, Q = 6.

16 International Journal of Distributed Sensor Networks

(Q, S)-distance to (Q, S)*-distance’’). The first algo-
rithm can work well in the networks that follow the
(Q, S)*-distancemodel.

3. We have added a new algorithm for counting in a flat
network (section ‘‘Algorithm 2—the improved algo-
rithm for counting in a flat network’’).

We design a new counting algorithm by improving the algo-
rithm in the conference version. The new algorithm removes
the messages to notify initiator node about the round that the
last node joins the diffusing tree. Compared with the first
algorithm, the second one can terminate Phase I earlier and
cost fewer messages.

4. We have added performance evaluation via simula-
tions (section ‘‘Simulation results’’).

We simulate our counting algorithms using ns-3, a popular
network simulator. We realize our proposed system model by
controlling the movement of nodes and the duration of send-
receive period. The performance of our three algorithms is
evaluated in terms of accuracy, time cost and message cost.
The simulation work confirms our design objectives and pre-
sents interesting insights into the behaviors of counting
algorithms.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This research was partially supported by National

Key Research and Development Program of China (No.
2016YFB0200404), National Natural Science Foundation of
China (Nos U1711263 and 61379157), Program of Science
and Technology of Guangdong (No. 2015B010111001),
Guangzhou Science and Technology Bureau (No.
201704020030), and MOE-CMCC Joint Research Fund of
China (No. MCM20160104).

References

1. Michail O, Chatzigiannakis I and Spirakis PG. Naming

and counting in anonymous unknown dynamic net-

works. In: Proceedings of the 15th international sympo-

sium on stabilization, safety, and security of distributed

systems, Osaka, Japan, 13–16 November 2013. New

York: IEEE.
2. Psaltoulis D, Kostoulas D, Gupta I, et al. Practical algo-

rithms for size estimation in large and dynamic groups.

In: Proceeding of the fourth IEEE international sympo-

sium on network computing and applications (NCA),

Cambridge, 27–29 July 2005, pp.41–48. Washington,

DC: IEEE.
3. Cheng C and Tsaib K. Eventual strong consensus with

fault detection in the presence of dual failure mode on

processors under dynamic networks. J Netw Comput

Appl 2012: 35: 1260–1276.

4. Yang Z, Wu W, Chen Y, et al. Accurate and efficient

counting in dynamic networks. In: Proceedings of the

IEEE 33rd international symposium on reliable distributed

systems (SRDS), Nara, Japan, 6–9 October 2014,

pp.301–310. New York: IEEE.
5. Clementi A, Macci C, Monti A, et al. Flooding time in

edge-Markovian dynamic graphs. In: Proceedings of the

27th ACM symposium on principles of distributed comput-

ing (PODC), Toronto, ON, Canada, 18–21 August

2008, pp.213–222. New York: IEEE.
6. Kempe D, Kleinberg J and Kumar A. Connectivity and

inference problems for temporal networks. In: Proceed-

ings of the 32nd annual ACM symposium on theory of

computing (STOC), Portland, OR, 21–23 May 2000,

pp.504–513. New York: ACM.
7. De Bovenkamp R, Kuipers F and Mieghem PV. Gossip-

based counting in dynamic networks. Proceedings of the

11th international IFIP TC 6 networking conference, Pra-

gue, Czech Republic, 21–25 May 2012, pp.404–417. Ber-

lin: Springer.
8. O’Dell R and Wattenhofer R. Information dissemination

in highly dynamic graphs. In: Proceedings of the 9th joint

workshop on foundations of mobile computing (DIALM-

POMC), Cologne, 2 September 2005, pp.104–110. New

York: ACM.
9. Haeupler B and Karger D. Faster information dissemi-

nation in dynamic networks via network coding. In: Pro-

ceedings of the 30th ACM symposium on principles of

distributed computing (PODC), San Jose, CA, 6–8 June

2011, pp.381–390. New York: ACM.
10. Pettarin A, Pietracaprina A, Pucci G, et al. Tight bounds

on information dissemination in sparse mobile networks.

In: Proceedings of the 30th ACM symposium on principles

of distributed computing (PODC), San Jose, CA, 6–8

June 2011, pp.355–362. New York: ACM.
11. Le Merrer E, Kermarrec AM and Massoulie L. Peer to

peer size estimation in large and dynamic networks: A

comparative study. In: Proceedings of the 15th interna-

tional symposium on high performance distributed comput-

ing (HPDC), Paris, 19–23 June 2006, pp.7–17. New

York: IEEE.
12. Kuhn F, Lynch N and Oshman R. Distributed computa-

tion in dynamic networks. In: Proceedings of the 42nd

ACM symposium on theory of computing (STOC), Cam-

bridge, MA, 5–8 June 2010, pp.513–522. New York:

ACM.
13. Kostoulas D, Psaltoulis D, Gupata I, et al. Decentra-

lized schemes for size estimation in large and dynamic

groups. In: Proceedings of the 4th international sympo-

sium on network computing and applications (NCA),

Cambridge, MA, 27–29 July 2005, pp.41–48. New

York: IEEE.
14. Jelasity M and Montresor A. Epidemic-style proactive

aggregation in large overlay networks. In: Proceedings of

the 24th international conference on distributed computing

systems (ICDCS), Tokyo, Japan, 26 March 2004,

pp.102–109. New York: IEEE.
15. Jelasity M, Montresor A and Babaoglu O. Gossip-based

aggregation in large dynamic networks. ACM T Comput

Syst 2005; 23(3): 219–252.

Yang et al. 17

16. Dijkstra EW and Scholten CS. Termination detection for

diffusing computations. Inform Process Lett 1980; 11(1):

1–4.
17. Angluin D. Local and global properties in networks of

processors. In: Proceedings of the 12th annual ACM Sym-

posium on the theory of computing, Los Angeles, CA, 28–

30 April 1980, pp.82–93. New York: ACM.
18. Han G, Zhang C, Jiang J, et al. Mobile anchor nodes

path planning algorithms using network-density-based

clustering in wireless sensor networks. J Netw Comput

Appl 2017; 85: 65–76.
19. Wang N, Yu J and Qi Y. Nodes neighborhood relation-

based constructing algorithm for minimum connected

dominating set. Comput Eng 2010; 36(13): 105–107.
20. Khawaga SE, Saleh AI, Ali HA, et al. An administrative

cluster-based cooperative caching (ACCC) strategy for

mobile ad hoc networks. J Netw Comput Appl 2016; 69:

54–76.
21. WuW, Cao J, Yang J, et al. Design and performance eva-

luation of efficient consensus protocols for mobile ad hoc

networks. IEEE T Comput 2007; 56(8): 1055–1070.
22. Yang Z, Wu W and Chen Y. Efficient information disse-

mination in dynamic networks. In: Proceedings of the

42nd International Conference on parallel processing

(ICPP), Lyon, 1–4 October 2013. New York: IEEE.
23. Casteigts A, Flocchini P, Quattrociocchi W, et al. Time-

varying graphs and dynamic networks. In: Proceedings of

the 10th international conference on Ad-Hoc, mobile, and

wireless networks (ADHOC-NOW), Paderborn, 18–20

July 2011, pp. 346–359. New York: ACM.
24. Berman KA. Vulnerability of scheduled networks and a

generalization of Menger’s Theorem. Networks 1996;

28(3): 125–134.
25. Erlebach T, Hoffmann M, Kammer F, et al. On temporal

graph exploration. In: International colloquium on auto-

mata, languages and programming, Kyoto, Japan, 6–10

July 2015, pp.444–455. Berlin: Springer.

26. Akrida EC, Gasieniec L, Mertzios GB, et al. Ephemeral
networks with random availability of links: Diameter and
connectivity. In: Proceedings of the 26th ACM symposium

on parallelism in algorithms and architectures (SPAA),
Prague, Czech Republic, 23–25 June 2014, pp.267–276.
New York: ACM.

27. Grindrod P and Higham DJ. Evolving graphs: dynamical
models, inverse problems and propagation. Philos Tr R

Soc S: A 2010; 466(2115): 753–770.
28. Wehmuth K, Fleury E and Ziviani A. A unifying model

for representing time-varying graphs. In: Proceedings of

IEEE international conference on data science and advanced

analytics (DSAA), Paris, France, 19–21 October 2015,
pp.1–10. New York: IEEE.

29. Ducourthial B and Wade AM. Dynamic p-graphs for
capturing the dynamics of distributed systems. Ad Hoc

Netw 2016; 50: 13–22.

30. Kuhn F and Oshman R. Dynamic networks: models and
algorithms. SIGACT News 2011; 42(1): 82–96.

31. Matias C and Miele V. Statistical clustering of temporal
networks through a dynamic stochastic block model. J
Roy Stat Soc B 2017; 79: 1119–1141.

32. Massoulie L, Le Merrer E, Kermarrec AM, et al. Peer
counting and sampling in overlay networks: random walk
methods. In: Proceedings of the 25th ACM symposium on

Principles of distributed computing (PODC), Denver, CO,
23–26 July 2006, pp.123–132. New York: ACM.

33. Mattern F. Efficient distributed snapshots and global vir-

tual time algorithms for non-FIFO systems. Technical
reports, SFB124–24, 1990, University of Kaiserslautern,
Kaiserslautern.

34. Chandy KM, Misra J and Hass LM. Distributed dead-
lock detection. ACM T Comput Syst 1983; 1(2): 144–156.

35. Natarajan N. A distributed scheme for detecting commu-
nication deadlocks. IEEE T Software Eng 1986; 12(4):
531–537.

36. Lamport L. Time, clocks, and the ordering of events in a
distributed system. Commun ACM 1978; 21(7): 558–565.

18 International Journal of Distributed Sensor Networks

