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Abstract

An Acoustic Black Hole (ABH) indentation embedded in thin-walled structures has been proved
remarkably useful for broadband flexural wave focalization, in which the phase velocity of the flexural waves
and the refractive index of the media undergo gradual changes from the outside towards the center of the
indentation. A generalized two-dimensional ABH indentation can be defined by three geometric parameters: a
power index, an extra thickness and a radius of a plateau at the indentation center. The dependence of the
energy focalization on these parameters as well as the energy focalization process is of paramount importance
for the understanding and design of effective ABH indentations. This work aims at investigating the energy
focalization characteristics of flexural waves in such generalized ABH indentations. The calculation of the
flexural ray trajectories is conducted to reveal and analyze the wave propagation features through numerical
integration of the eikonal equation from the Geometric Acoustics Approximation (GAA). The theoretical
results are verified by both experiment using wave visualization technique based on laser acoustic scanning
method and finite element (FE) simulations. Finally, the influence of the geometric parameters on the flexural
wave focalization characteristics in ABH indentations is discussed in detail.
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1. Introduction

The propagation of flexural waves in thin-walled structures such as plates has been arousing persistent

interest, among which an increasing number of studies have been recently reported on flexural wave

focalization utilizing the effect of Acoustic Black Hole (ABH) by means of thickness variations in structures

[1-3]. In an ideal one-dimensional or two-dimensional ABH structure (in which the local thickness along one

given direction h(x) and the distance x satisfy h(x) = ɛxm, (m ≥ 2 ), the local phase velocity of the flexural waves

gradually reduces to zero when reaching the zero-thickness region (x = 0 ) of the power-law-profiled area [4,

5], which warrants efficient wave focalization. Meanwhile, the gradually diminishing thickness in the plate
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also results in a continuous variation of the refractive index of the waves. Owing to its lightweight and

broadband wave trapping feature, ABH structures offer great potentials for a wide range of engineering

applications through structure-borne wave control and manipulations.

However, imperfections are inevitable in any realistically achievable ABH structures due to the limited

machining and manufacturing capability. Therefore, typical two-dimensional ABH structures studied in the

literature usually contain a hole or a circular plateau of constant thickness at the center of the indentation

[6-10]. It was shown that, despite the imperfect thickness profile, appreciable vibration damping can still be

achieved by using a small amount of damping material in the thin-thickness region [7, 11]. One could surmise

that energy focusing feature of the flexural waves still exists in imperfect ABHs due to the continuous

variation of the refractive index within the indentation area and the focalized energy can be effectively

dissipated in the area with high energy concentration. This would potentially increase the applicability of the

ABH structures without the need for extra high-precision manufacturing.

On the other hand, generalized ABHs with modified profiles also help improve the venerable structural

integrity existing in the ideal ABH structures. Achieving and enhancing the desired energy focalization

capability of the ABH structures without compromising their structural integrity would reply on a good

understanding of the energy transport process within the indentation, which eventually allows wave

manipulation or system optimization. As a typical effort, five different lenses with different gradient refractive

index distributions in thin plates were investigated in a previous work [12]. The gradient refractive index

distributions, which were once defined in optical lens for light focusing, were realized by adjusting the local

thickness of the thin plates. Numerical calculated displacement fields show that the focusing behavior of these

lenses for flexural waves is similar to that in the optical lens for electromagnetic waves. Several new types of

generalized ABH indentations were proposed and their energy focalization characteristics were investigated

both numerically and experimentally and compared with those of ideal ABHs [13]. The results show that,

despite the obvious energy focalization in those generalized ABHs (even with a power index less than 2), the

distribution of the focalized energy was quite different from that in an ideal ABH structure. The location of the

energy concentration is found to deviate from the central area of the imperfect ABH indentation, downstream

of the wave incidence. The above analysis, however, mainly focused on the final energy focalization

phenomenon based on energy distribution maps, rather on the energy transport process. Nevertheless, these

results confirm that the generalized ABHs can produce vibration damping effect similar to that in the ideal

ABHs. For future application of the generalized ABHs in real structures, a thorough understanding on the



energy focalization process as well as the influence of various geometrical parameters is of paramount

importance, which can only be made possible by systematically investigating the flexural ray trajectories in

the indentation area.

Among possible theories for the calculation of the ray trajectory, the geometric acoustics method is most

widely used. Several researches based on geometric acoustics have been reported on the derivation of

governing equation and numerical calculation of flexural wave trajectories in plates with smoothly varying

thickness. Krylov used Hamiltonian form of the geometrical acoustics to derive the ray path equation of wave

propagation over a smooth axisymmetric indentation [14]. The validity conditions of the geometrical acoustics

approximation (GAA) of flexural waves were also derived from the equation of motion of thin plates [15].

According to the GAA, the incoming flexural rays entering an ideal ABH indentation under certain incidence

conditions would deflect towards and then focus to the center of the indentation [5, 10]. Existence of a

stationary orbit for flexural waves and the centripetal characteristic of the rays inside the stationary orbit in the

ideal ABH indentation with m = 2 were also exhibited [16, 17], in good agreement with the typical energy

focalization phenomenon in ideal ABHs. The above work focused on ideal thickness profile, investigations on

flexural ray trajectory in generalized ABH indentations with tolerable imperfections is lacking.

In this study, flexural ray trajectories are investigated to analyze the process of wave propagation and

energy focalization through numerical integration of the eikonal equation from geometric acoustics

approximation. The proposed method can also be used as a tool in the design of ABHs for wave focalization

and manipulation in practical applications. The paper is organized as follows. In section 2, the theoretical

background of the GAA and the proposed numerical integration scheme of the eikonal equation are introduced.

The results obtained by direct numerical integration are then verified by both experiments based on a laser

ultrasonic scanning technique and the power flow vectors (PFV) combined with finite element (FE)

simulations in section 3. In section 4, the ray trajectories in both an ideal and two generalized two-dimensional

ABHs with different geometrical parameters are investigated in detail to clarify the energy focalization

characteristics in these generalized ABH indentations. Conclusions are drawn in section 5.



2. Generalized ABH Indentation and Theoretical Background

2.1. Description of the Generalized ABH Indentation

The generic form of a generalized ABH indentation is schematically shown in Fig. 1, whose thickness

profile is described in the following general form:

ℎ(r)=
h1 , ( r < r 1 )

a r-r1 m+h1 , ( r 1 ≤ r ≤ r 2 )
h2 , (r > r 2 )

(1)

Fig. 1. Plate with a generalized two-dimensional acoustic black hole indentation.

For a plate with a given thickness and a fixed outer diameter of ABH, the generalized ABH indentation is

characterized by three parameters (a power index m , an extra thickness h1 and a radius of a plateau r1 at the

indentation center). In a practical ABH structure, the plateau usually serves a number of purposes. Firstly, it

can improve the structural static properties and guarantee the structural integrity. Secondly, a plateau

facilitates the mounting of other components such as viscoelastic material for damping and piezoelectric

material for energy harvesting. Thirdly, it extends the ABH area so as to reduce the effective frequency region

of the ABH [18]. In this work, generalized ABH indentations are divided into two categories. One is the

conventional ABH indentations with a power-law profile with h1 = r1= 0 . The other one is generalized ABH

indentations with h1×r1≠ 0 . The former one leads to the ideal ABH structure when m ≥ 2 .

2.2. Eikonal Equation from Geometric Acoustics Approximation

The two-dimensional equation of motion governing the flexural waves in a thin plate with a variable

local thickness h(x, y) can be expressed as [19]

∇2 (D∇2w)-(1-v)(
∂2D
∂y2

∂2w
∂x2

-2
∂2D
∂x∂y

∂2w
∂x∂y

+
∂2D
∂x2

∂2w
∂y2

)+ω2ρhw=0 (2)

where w is the transverse displacement of the plate; D =Eh3/12(1-ν2) the flexural rigidity; E the Young’s



modulus; ν the Poisson’s ratio; ρ the density and ω the circular frequency. The solution of Eq. (2) in the

conventional GAAwrites

w = A(x, y)exp(ikpφ(x, y) ) (3)

where A(x, y) is the amplitude; φ(x, y) the eikonal of the quasi-plane wave; kp=ω / cp the wave number of

quasi-longitudinal waves and cp the wave phase velocity in the uniform plate. Substituting Eq. (3) into Eq. (2),

both the real and imaginary parts of the resulting expression have to be equal to zero. By omitting the terms

with second and higher derivatives of A(x, y) and φ(x, y) , the so-called ‘eikonal equation’ for flexural waves

in GAA yields [4]

∇φ(x,y) 4= k4φ(x,y)/kp4= n4(x,y) (4)

where ∇ is the gradient operator. The validity conditions of the GAA is ∣ dk /dr ∣ <<k2.The

k ( x , y) = 121/4k p 1/4/ ( h ( x , y))1/2 the wave number in the plate with variable thickness and n (x ,y) the

location-dependent refractive index which can be expressed as a function of the plate thickness as [12]

n(x, y) = (h2/h(x, y))1/2 (5)

It can be seen from Eq. (5) that, despite of the intrinsically dispersive nature of the medium, the refractive

index does not depend on the frequency of the wave, but is related to the geometric parameters of the plate.

The broadband nature of the ABH structures has been proved [7, 20], which is limited by the characteristic

size of ABH indentation. The analysis is valid above the characteristic frequency fc, expressed as

λ= c0/fc ≤DABH [18, 21], where DABH is the diameter of ABH indentation and c0 = [ ω2Eh22

12ρ(1-ν2)
] 1/4 is the wave

speed in the uniform portion of the plate. Above this frequency, the incoming wavelength starts to be equal to

or less than the geometrical characteristic dimension of the ABH indentation.

Assuming r(s) is the position vector at a given point on the ray trajectory, and ds is a differential segment

on the trajectory from the given point, as shown in Fig. 2. The directional vector of the ray trajectory is

s = dr/ ds. Since s is perpendicular to the equiphase surface, it should be parallel to ∇φ .

Therefore, s =∇φ/∣∇φ∣, and eikonal equation from Eq. (4) is written as

∇φ(x,y)= n(x,y) dr/ds (6)

Performing derivative to arc length of trajectory s on both sides of Eq. (6) leads to the ray trajectory

equation in gradient index medium as



d
ds
(n(x, y)

dr
ds
) = ∇n(x, y) (7)

The above ray trajectory equation for flexural wave in analogous to the optical ray equation determined

by the Fermat principle. Translating the solution found for electromagnetic waves into the acoustic waves has

been performed [22], and the flexural wave behaves like optical ray, which demonstrates the validity of the

analysis. The ray trajectories depend on the local refractive index over the plate and initial incident condition

based on GAA. The refractive index does not depend on the frequency of the wave, but is related to the

geometric parameters of the plate. Therefore, the ray trajectories are not depending on the frequency. Since it

is difficult to obtain the analytical solution of Eq. (7) in most cases, numerical calculations are introduced in

the following section.

Fig. 2. Sketch of incident wave and wave trajectory.

2.3. Ray Trajectories Calculation by Taylor Expansion

To solve the ray trajectory equation, a numerical scheme is developed through Taylor expansion.

Retaining the first and second order derivative terms, the position vector r in an adjacent region to the initial

position vector r0 is expressed as

r = r0+
dr(s0)
ds

△s+
1
2!
d2r(s0)
ds2

(△s)2 (8)

where  
00 / / s sd s ds d ds r r û is the directional vector at the initial position of an incident ray and △s the

step size. The truncation of the series warrants an error in the order of (△s)3. Likewise, dr/ ds can be

decomposed as

dr
ds

=
dr(s0)
ds

+
d2r(s0)
ds2

△s (9)



where d2r/ ds2 represents the curvature vector. Assuming k = d 2r/ ds2, one has

r = r0+s△s+
1
2
k(△s)2

s = s0+k△s

k =
1
n
[∇n-

dr
ds
(
dr
ds
·∇n)]

(10)

According to Eq. (10), the k is determined by initial incident conditions r(s0), s(s0) and local distribution

of refractive index n in the ABH indentations. Then, r and s are obtained by choosing a △s, which can be

considered as new incident conditions. Ray trajectories are numerically achieved by repeating the above

operation.

3. Experimental and Numerical Verifications

3.1. Experimental Setup and Test Sample

To validate the calculated ray trajectories, the wave propagation process in an ABH indentation in time

domain was determined through experiments using wave visualization technique based on the laser acoustic

scanning method [23-25]. Calculation results of the ray trajectories are compared with the observed wave

fields. Figure 3 shows the experimental system used, which includes a laser generator (YAG laser, Ultra-100,

Quantel corp., USA) for wave generation, an acoustic emission (AE) sensor (M31, Fuji Ceramics corp., Japan)

for wave measurement, a pre-amplifier (A1002, Fuji Ceramics corp., Japan), an AE analyzer (AE9922, NF

corp., Japan), a high-speed digitizer (PXI-5105, NI corp., USA) signal acquisition and an analog output

module (cRIO-9263, NI corp., USA) for controlling a two-dimensional laser mirror scanner (TSH8203H,

Century Sunny corp., China). The laser pulse scans the sample with a repeating frequency of 20 Hz.

Fig. 3. Schematic diagram (a) and experiment setup (b) of the laser ultrasonic system.



The steel plate used in the experiment is shown in Fig. 4, which has a dimension of 350×240×5mm,

clamped along one edge and free along all others. The indentation in the plate firstly went through a milling

process with a positive allowance of 0.3-0.4mm. After tempering and aging treatment, machining operation

finishes by wire-electrode cutting. The thickness profile of the indentation area in the steel plate used in the

experiment follows h(r)= 7.34×10-4×(r-20)2+0.6,(20 ≤ r ≤ 100) (in mm). The characteristic frequency of the

ABH indentation used in this work is 1398Hz. The AE sensor was fixed and located 150mm away from the

central point on the symmetry axis, and the flat side of the plate was scanned over an inspection region

(250×220mm) by rotating the two-dimensional mirror. The spatial scanning interval is 1 mm giving a total of

55,471 scanning points.

Fig. 4. Diagrammatic sketch of experimental plate.

3.2. Comparisons between the Measured Wave Fields and Calculated Ray Trajectories

The response of the AE sensor to the laser excitation at different scanning points was sampled and

recorded. Based on the reciprocal theorem in elastodynamics, the obtained signals from the AE sensor can be

used to reconstruct the dynamic acoustic wave field in the inspection region. One AE sensor was used to

reconstruct the dynamic acoustic wave field under single point excitation. FE simulation on the same

clamped-free steel plate with ABH indentation was also performed using the commercial FEM software

Abaqus, with a tone burst force applied on the corresponding position of the AE sensor with a center

frequency fcent = 20 kHz. The steel plate with E = 210GPa, ρ = 7800kg/m3 and ν = 0.3 was meshed by using

C3D8 elements under plane stress condition. A minimum of ten elements per local wavelength were used to

guarantee the calculation accuracy in the FE model. The bandwidth of the frequency spectrum of the burst is

from 16 kHz to 24 kHz. Our experimental results are obtained using a pass band filter (15 kHz-25 kHz),

which is similar to the bandwidth of frequency spectrum of the burst tone used as the excitation. Since the



focalization position of waves is independent of the frequency, because the refractive index does not depend

on the frequency, the wave focalization phenomenon is similar even though the bandwidth is slightly different.

Wave propagation process as well as the focalization characteristics in the ABH indentation is revealed in

Fig. 5. The ray trajectories of flexural wave under a point excitation are calculated by the proposed method

using numerical integration. Kirchhoff plate theory is used in the ray model, which has its own limitation in

describing the bending motion in the high frequency range. The vibration pattern of a plate in the high

frequency range undergoing anti-symmetrical Lamb-wave motion will retreat to the flexural mode when the

wavelength becomes much greater than the thickness (Ra=λ/h>>1) [26]. In the steel plate with h=0.005m, the

wavelength of the first-order anti-symmetrical Lamb-wave mode is equal to the thickness (Ra=λ/h=1) when

the frequency is 0.593MHz. When the frequency is much lower than 0.593MHz, the plate theory will give

enough accuracy. Although the Kirchhoff plate theory has lower accuracy than the Mindlin plate theory [27],

their difference is only 1% at 25 kHz, which is highest frequency considered in this plate. As mentioned in

section 2.2, the validity conditions of the GAA is ∣dk/dr∣<<k2. The analysis of the ray trajectories based on

GAA is valid when the frequency is far greater than 45.8Hz. Therefore, the analysis in our work is valid

because the frequency range we analyzed belongs to all the above frequency ranges. The curves with arrows

represent the ray trajectories. The step size of ray trajectory calculation is △s=0.0005m which ensures the

convergence of the numerical calculation.

The wave fields are compared with the predicted trajectories. The comparison between the simulated

displacement fields and the ray trajectories is shown in Fig. 5(a)-(c), while that between the measured wave

fields and the calculated ray trajectories is shown in Fig. 5(d)-(f), demonstrating a good agreement between

them. Results show that the circular wave-fronts are deformed when waves impinge into the ABH indentation.

The ray trajectories are strongly curved and deflected from their original direction. Both the wave fields and

the ray trajectories indicate that the flexural waves focus to a confined region slightly downstream of the

central plateau. Part of the waves passes through the central plateau while others detour around it. The

wavelength of the flexural wave is compressed as the thickness of the plate becomes thinner. In addition, the

times of the wave fields are given in Fig. 5. It should be noted that the time t′ is the time after compensation,

which is a procedure to compensate for the pre-sampling time after the measurement is triggered. The time

intervals between the corresponding wave fields are quite similar, which also shows a good consistency

between the simulation and experiments. We believe that the comparison results can validate the prediction of

flexural wave focalization phenomenon on one hand, and verified the results of the numerical calculation of



ray trajectories from the GAA on the other hand.

Fig. 5. Comparison between the simulated wave fields with the ray paths ((a)-(c)) and the measured ones ((d)-(f)). The curves with

arrows represent the ray trajectories (m=2, r1=0.02m, h1=0.0006m).

3.3. Comparisons between the Power Flow Vectors and Ray Trajectories

The ray trajectories calculated by the GAA are also compared with the power flow vector (PFV) which is

defined as the rate of energy passing through a cross section of a unit area in a structure as a supplementary

indicator to describe the energy transport path. The time averaged net power flow is defined as

P(t) = lim
T→∞

1
T 0

TF ( t ) v ( t ) dt� (11)

where F(t) and v(t) are the instantaneous force and the corresponding velocity at a point, t and T are the time

and observation period. By using the ‘two-transducer’ method [28-30], the active power (also called

time-averaged power or intensity) is obtained as

Ix=
2 Dm'
d'

Im{G12} (12)

where Ix is the active power in the x- direction from one point to adjacent point; G12 the cross-spectrum of

velocity signals; d′ the spacing; m′ the mass per unit area of the plate. Im represents the imaginary part. Eq.

(12) is applicable in both x- and y- directions of the plate (I = ( Ix , Iy)). The PFV gives both the magnitude and

the direction of the energy flux.

In order to make the comparison of the local deflection of wave propagation direction between ray



trajectories and PFV, a deflection angle of ray trajectory is defined as the angle between the local directional

vector and x- direction as

β = arcsin( Iy /∣I∣) (13)

Flexural wave propagation in the ABH indentations with h1 ≠ 0 , r1= 0 is analyzed in this section as an

example, and the propagation directions of the flexural waves are analyzed and compared using the deflection

angle. As shown in Fig. 2, θ is the azimuth angle of the incident wave. In the present analysis, a plane wave

(α = 0 , α is the angle between initial wave vector and x- directions) is considered in the simulation. In all

following cases, the size of the plate is 0.24×0.24×0.005m, and the radius of the ABH indentation is r2 = 0.1m.

The PFV, the displacement fields as well as the typical ray trajectories are plotted in Fig. 6, with a

zoomed-in figure given by Fig. 6(b). It can be seen that the distribution of the PFV agrees well with the ray

trajectories calculated by GAA in all ABH indentation cases. To some extent, energy focalization can still be

obtained in this ABH indentation, slightly downstream of the central point. However, the waves do not

converge to a single point. Figure 7 compares the deflection angles on four typical rays used in Fig. 6,

calculated from the ray trajectories and from PFV, respectively. It shows a fair agreement for the deflection of

propagation direction (with an error less than 5 degree as compared with PFV), which indicates that the

analysis of ray trajectories is valid for predicting and investigating the characteristics of flexural wave

propagation in the plate with generalized ABH indentation.

Fig. 6. Comparison of power flow vectors (FEM) with the ray paths (GA) in the ABH indentation with m = 2 , h1 = 0.001m.



Fig. 7. Comparison of deflection angle on four ray trajectories with the deflection angle of power flow vectors on the corresponding

position.

4. Flexural ray Trajectory in Different Types of ABH

Numerical analyses on the ray trajectories in three types of ABH indentations are conducted in the

following sections: one is the conventional ABH indentation with power-law profile (h1 = r1= 0 ) and the other

two contain generalized ABH indentations with h1 ≠ 0 , r1= 0 and h1 ≠ 0 , r1≠ 0 . The effect of geometric

parameters in the generalized ABH indentations is investigated.

4.1. Flexural Ray Trajectory in Conventional ABH Indentations with a Power-law Profile

Numerical analyses are performed to illustrate the flexural ray trajectories in conventional ABH

indentations with a power-law profile (h(r) = ɛrm) in the first place. Figure 8 reveals the effect of the power

index m on the ray trajectories with a plane wave incidence. It can be seen that the parallel trajectories

outside the indentation are curved towards the ABH indentation. The curvature of the flexural rays rotating to

the center becomes greater when the index m increases, resulting in better focalization to the central point.

More waves will escape from the ABH area with m = 1.5 as compared with the case of the ideal ABH

indentation with m = 2 and m = 3 . With m = 2 , majority of the flexural waves penetrate into the central point

as shown in Fig. 8(b). There exists a critical trajectory separating the rays that converge to the center and those

that diverge in the ideal ABH indentation. The existence of critical trajectory is consistent with the reported



stationary trajectory in ideal ABH structure with m = 2 [17]. In the present case, the critical trajectory

corresponds to θ = 89.72o. The flexural rays with the azimuth angle 89.72o≤ θ≤ 90o which are in the close

proximity to the edge of ABH indentation escape from the indentation. Total focalization of incident waves in

the ABH indentation can be achieved when m = 3 . Therefore, the conventional ABH indentation with larger

index m definitely exhibits better wave focalization ability.

Fig. 8. The trajectories of flexural wave propagation in conventional ABH indentations with power-law profile (h1 = r1= 0 ).

4.2. Flexural Ray Trajectory in generalized ABH Indentations

As mentioned before, the extra thickness is prone to exist in ABH structures in the machining process,

which is observed to have the most impact on the position of energy focalization [13]. In order to demonstrate

the specific propagation path of the flexural waves in generalized ABH indentations with extra thickness, the

ray trajectories are calculated with results shown in Fig. 9. The influence of the extra thickness h1 as well as

the power index m on the flexural rays is investigated. The wave transmission in the generalized ABH

indentations with an extra thickness h1 = 0.001m and h1 = 0.0005m with index m = 1.5, m = 2 and m = 3 are

compared. It can be observed from the results that flexural ray trajectories still deflect inward in the

indentation. However, the focusing characteristic changes compared with that in the conventional ideal ABH

indentations. Energy focalization can still be obtained to certain extent, as evidenced by a small area of high

concentration of the bent rays. With the present symmetric wave incidence, the flexural ray trajectories

converge to the symmetric line downstream the central point, but not to a single point as long as the ABH

indentation contains an extra thickness. In these circumstances, the curvature of the trajectories and the

focusing level of the flexural waves are greatly influenced by the refractive index, which can be enhanced

with a larger m . The extra thickness mainly effects the position of energy focalization, which is closer to the

center with a smaller h1 .



Fig. 9. The trajectories of flexural wave propagation in plates with imperfect ABH indentations (h1 ≠ 0 , r1= 0 ).

Figure 10 depicts the ray trajectories of the flexural wave propagation in plates with another type of

imperfect ABH indentations (h1 ≠ 0 , r1≠ 0 ). The radius of the central plateau is 0.02m. It can be seen that with

an extra thickness h1 = 0.001m, part of the flexural waves propagate into the central plateau, while the other

part detours around the central plateau. This explains the different energy focalization phenomena observed in

the previous work [13], in which it was observed that the energy focuses to a confined region slightly

downstream of the center plateau. The trajectories in plateau region are straight lines. As a way to enhance

wave gathering in a region such as a plateau, a smaller h1 would certainly help. In fact, with a thinner extra

thickness (h1 = 0.0002m), as demonstrated in Fig. 10(d)-(f), much more flexural rays pass through the plateau

compared with those in Fig. 10(a)-(c). Although the curvature of the ray trajectories depends on both h1 and

m , the percentage of the captured energy, however, only depends on h1 . The flexural ray trajectories

propagate into the scope of the plateau through shorter routes with a larger m . Therefore, effective wave

focalization in a confined region such as a central plateau within the ABH indentation can be achieved through

appropriate parameter design.



Fig. 10. The trajectories of flexural wave propagation in plates with imperfect ABH indentations (h1 ≠ 0 , r1= 0.02m).

5. Conclusions

In this study, a numerical integration scheme of the flexural ray equation was proposed and used to

predict the ray trajectories of flexural waves in generalized ABH indentations for the investigations of the

wave propagation and focalization properties. The feasibility of the method was verified through comparison

with experimental results and FEM simulations. The method was applied to both conventional ABHs

satisfying the power law thickness profile relation and the other two types of generalized ABHs with different

geometrical parameters. The following conclusions can be drawn:

1). The conventional ABH indentation with a larger power index m exhibits better effect of wave

focalization. There exists a critical trajectory in the ideal ABH indentation which separates the rays that

converge to the center and those that diverge. The ratio of the rays converging to the center is 99.69% in the

ideal ABH case investigated in this paper. When m = 3 or above, total wave focalization can be achieved.

2). The rays bend towards the symmetry axis of the ABH, but do not converge to a single point in the

ABH indentations with an extra plate thickness. Partial energy focalization can still be obtained, evidenced by

the existence of a confined area containing high concentration of bent rays. The power index m and the extra

thickness h1 affect the curvature of the ray trajectory, as well as the position and the intensity of the energy



focalization. The wave focalization can be enhanced with a larger m and a smaller h1 .

3). In the generalized ABH indentations with a central plateau, only a portion of the rays can enter the

indentation and captured by the plateau. Although the curvature of the ray trajectories depend on both the

extra thickness h1 and the power index m , the percentage of the captured energy, however, only depends on

the extra thickness , not the power index.

As a final remark, effective and tunable wave focalization within a confined region within the

generalized ABH indentations is possible. For a given application, the ABH configuration being considered in

this work is general and provides several geometrical parameters to be eventually tuned for achieving the

optimized ABH performance without compromising the structural integrity. To this end, the proposed analysis

tool becomes important, and it provides guidance for the arrangement of the damping layer. Because of the

main focus of this paper, damping layers were not considered. With visco-elastic damping layers arranged

strategically over the energy focalization area, based on the prediction of the ray trajectories, the damping

characteristics as well as the efficiency of the energy dissipation of the ABH structures need to be

systematically investigated in the next stage of research. Moreover, the proposed analysis method can also be

extended to analyze flexural ray properties in other ABH structures or even inhomogeneous structures with

continuous variation of the refractive index.
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Fig. 1. Plate with a generalized two-dimensional acoustic black hole indentation.

Fig. 2. Sketch of incident wave and wave trajectory.

Fig. 3. Schematic diagram (a) and experiment setup (b) of the laser ultrasonic system.



Fig. 4. Diagrammatic sketch of experimental plate.

Fig. 5. Comparison between the simulated wave fields with the ray paths ((a)-(c)) and the measured ones ((d)-(f)). The curves with

arrows represent the ray trajectories (m=2, r1=0.02m, h1=0.0006m).



Fig. 6. Comparison of power flow vectors (FEM) with the ray paths (GA) in the ABH indentation with m = 2 , h1 = 0.001m.

Fig. 7. Comparison of deflection angle on four ray trajectories with the deflection angle of power flow vectors on the corresponding

position.

Fig. 8. The trajectories of flexural wave propagation in conventional ABH indentations with power-law profile (h1 = r1= 0 ).



Fig. 9. The trajectories of flexural wave propagation in plates with imperfect ABH indentations (h1 ≠ 0 , r1= 0 ).

Fig. 10. The trajectories of flexural wave propagation in plates with imperfect ABH indentations (h1 ≠ 0 , r1= 0.02m).
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