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Abstract 

This paper focuses on the hybrid noise control in a duct using a periodic dual Helmholtz 

resonator (HR) array. A dual HR which consists of two HRs connected in series (neck-

cavity-neck-cavity) leads to two resonance frequencies. A dual HR is analogous to a two 

degrees of freedom mechanical system. Based on the lumped model, the resonance 

frequencies and transmission loss of a dual HR have been derived. However, a dual HR is 

only effective at its resonance peaks with relative narrow bands. Aiming at broader noise 

attenuation bands for hybrid noise control at low frequencies, a periodic dual HR array is 

proposed in this paper. The wave propagation in a duct mounted with a periodic dual HR 

array is investigated theoretically and numerically. The Bragg wave theory and transfer 

matrix method are developed to conduct the investigation. The predicted theoretical results 

fit well with the Finite Element Method. Owing to the coupling of Bragg reflection and 

dual HR’s resonances, a periodic dual array can provide much broader noise attenuation 

bands at the designed resonance frequencies of the dual HR. The proposed periodic dual 

HR array can be used in practical engineering work to reduce hybrid noise at low 

frequencies.  
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1. Introduction 

Ductwork systems have wide applications in engineering, such as ventilation and air 

conditioning system in buildings, aircraft jet engines, automotive air ducts and hydraulic 

system [1-3]. The components of the ductwork system, for instance, dampers, bends 

transition pieces, corners or even attenuators punctuate the original uniform ductwork, 

which are responsible for the generation of the undesired noise as the ductwork system 

begins to work [4]. Abatement of ductwork noise has always been a challenge, especially 

the low-frequency and broadband noise in a ventilation ductwork system due to its 

significant role in modern buildings to maintain good indoor environment [5]. The 

accompanied duct noise from the ventilation system could propagate into the occupied 

zones through the waveguide and could deteriorate human being’s working or living 

environment quality [6,7]. Therefore, it is not surprising that noise attenuation technologies 

for the ventilation ductwork system have received extensive attentions. 

Most traditional methods such as dissipative silencer and passive reactive silencer still 

suffer from some serious drawbacks despite these silencers are widely used in ventilation 

ductwork system. The dissipative silencer performances well at mid to high frequencies, 

however, it fails to be effective at low frequencies because of its high characteristics 

impedance [8,9]. Meanwhile accumulation of dusts and bacterial breeding in porous sound 

absorption materials are notable environmental issues. Passive reactive silencers, the 

Helmholtz resonator (hereafter HR) and expansion chamber are typical examples, show 

stable noise attenuation performance and can be tuned conveniently. Nevertheless, the 

volume of the expansion chamber needs to be sufficiently large in order to deal with low 

frequencies noise [10]. The presence of HR offers a solution of low-frequency noise control, 
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yet it qualifies as a narrow band noise attenuator that it is only effective at its resonance 

with a relative narrow frequency range [11-13].  

The narrow-band behavior of a HR at its single resonance peak makes it not suitable in 

engineering applications and is unable to deal with hybrid noise. In order to mitigate 

multiple tones, HR with a variety of modifications have been proposed. Griffin et al. [14] 

demonstrated a parallel-coupled HR through a thin membrane to obtain three resonance 

frequencies instead of two. Xu et al. [15] proposed a dual HR formed a pair of neck and 

cavity connected in series and illustrated that a dual HR can lead to two resonances at low 

frequencies.  Guan and Jiao [16] analyzed a three degrees of freedom HR which consists 

of three necks and cavities and proposed an optimal design method to inspect the unknown 

size parameter values for resonance frequencies coinciding with the input fundamental 

frequencies. Park [17] investigated the acoustic properties of micro-perforated panel 

absorbers backed by Helmholtz resonators for the improvement of low-frequency noise 

reduction. Besides these endeavors to modified HRs, some researchers aim at a broader 

noise attenuation band at low frequencies. An array of HRs is one possible way to carry 

out this objective. Bradly [18,19] analyzed the propagation of time harmonic acoustic wave 

in periodic waveguides theoretically and experimentally. Sugimoto and Horioka [20] 

investigated the peculiar dispersion characteristics of sound waves propagation in a tunnel 

with an array of identical HRs mounted periodically, marked as stopbands and passbands. 

Cai and Mak [21,22] proposed a noise control zone compromising the attenuation 

bandwidth or peak amplitude of a periodic ducted HR system, and improved the noise 

attenuation performance of the system by adding HRs. Owing to the coupling of Bragg 

reflection and HR’s resonance, a periodic HR array can provide a much broader noise 
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attenuation bands at the HR’s resonance frequency. However, it cannot deal with the hybrid 

noise which often occurs in practical engineering. 

The mechanism of Bragg reflection and modified HRs motivate us to achieve several 

broadband noise attenuation bands in low-frequency range. This paper focuses on the 

hybrid noise control by using a periodic ducted dual HR system. The dual HR which 

consists of two HRs connected in series (neck-cavity-neck-cavity) leads to two resonance 

frequencies. The geometries of the dual HR are significant small compared with the 

wavelength of oscillation. Hence, the lumped parameter theory is employed to approximate 

the dual HR as an equivalent two degrees of freedom mechanical system. An array of dual 

HRs is mounted on the duct periodically. In the interest of low frequencies, the frequency 

range considered in this paper is well below the duct’s cutoff frequency. It is therefore that 

only planar wave is allowed to propagate in the duct. The Bragg wave theory and transfer 

matrix method are developed to conduct the investigation. The theoretical predictions are 

validated by Finite Element Method (FEM) simulation.  

2. Theoretical model of a dual Helmholtz resonator 

A dual HR formed by two HRs connected in series (neck-cavity-neck-cavity) leads to 

two resonance frequencies. A dual HR could be analogous to a two degrees of freedom 

mechanical system, as illustrated in Fig. 1. The mass of air in the first neck, which is 

communicating with the duct, is driven by an external force and two cavities are regarded 

as spring. According to Hooke’s law, it should be noted that the first string has different 

stiffness ( 11K  and 12K  ) to the front and rear masses connected on it. By applying the 

Newton’s second law of motion to the first mass 1M  and the second 2M  respectively yield: 
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2
1 1

1 1 11 1 1 02
j td x dxM R K x S p e

dt dt
ω+ + = , 

2
2 2

2 2 22 2 12 22

d x dxM R K x K x
dt dt

+ + =    (1) 

where 1 0 1 1nM S lρ ′= and 2 0 2 2nM S lρ ′=  are the corresponding mass of air in the necks 

including the end-correction factor ( 0ρ  is air density, 1nl ′  and 2nl ′  are necks’ effective 

length including the end-correction factor, 1S and 2S are necks’ area), 1R  and 2R  are 

damping coefficients of necks, 11K  and 12K  represent the stiffness of the first spring to the 

first mass and second mass respectively, 2 2
2 0 0 2 2/K c S Vρ=  ( iV  with subscript 1, 2i =  

represent the first and second cavity volume respectively, 0c is the speed of sound in the 

air) is the stiffness of the second spring, j te ω is the time-harmonic disturbance. Applying 

the Hooke’s law to the mechanical analogy of a dual HR, the stiffness 11K  and 12K  could 

be obtained as:  

2
0 0 1

11 1 1 2 2
1 1

( )c SK S x S x
V x
ρ

= − ,     
2

0 0 2
12 1 1 2 2

1 2

( )c SK S x S x
V x
ρ

= −                      (2) 

By introducing Eq. (2) into Eq. (1) yields:  

22
0 0 11 1

1 1 1 1 2 2 1 02
1

2 2 22
0 0 2 0 0 22 2

2 2 2 1 1 2 22
1 1

( )

( ) 0

j tc Sd x dxM R S x S x S p e
dt dt V

c S c Sd x dxM R x S x S x
dt dt V V

ωρ

ρ ρ


+ + − =



 + + − − =

                   (3) 

Substituting 1 1
j tx X e ω= and 2 2

j tx X e ω=  into Eq. (3) and rearranging in the matrix form as:  

2 2 2
2 0 0 1 0 0 1 2

1 1
1 1 1 1 0

2
22 2 20 0 1 2 1 2

2 2 0 0 2
1 1 2

0( )

j t j t

j t

c S c S SM j R
V V X e S p e

X ec S S V VM j R c S
V VV

ω ω

ω

ρ ρω ω

ρ ω ω ρ

 
− + + −       =    +   − − + + 
  

 (4) 
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where 1X  and 2X  are the magnitudes of  the first and the second neck’s displacement 

respectively.  Eq. (4) could be simplified as: 

11 12 1 0 1

21 22 2 0
a a X p S
a a X
     

=    
    

                                               (5) 

where 

2 2 2
2 0 0 1 0 0 1 2

1 1
1 1 11 12

2
21 222 2 20 0 1 2 1 2

2 2 0 0 2
1 1 2

( )

c S c S SM j R
V V a a

a ac S S V VM j R c S
V VV

ρ ρω ω

ρ ω ω ρ

 
− + + −     =   +  − − + + 
  

. 

According to Eq. (5), the relation of 1X  and 0 1p S  could be described as

1 0 1 22 11 22 12 21/ ( )X p S a a a a a= − . It is therefore that the acoustic impedance of the dual HR 

could be obtained as: 

0 11 22 12 21
2

1 1 1 22

1
r

p a a a aZ
j X S j S aω ω

−
= =                                    (6) 

By ignored the effect of viscous dissipation through the necks for simplicity ( 1 2 0R R= = ), 

Eq.(6) could be rewritten as:  

2 4 2 2
4 2 2 2 2 0 0 1 2

1 2 0 0 1 2 2 1
1 2 1 1 2

2
2 2 21

0 0 2 2
1 2

1 1 1[ ( ) ]
1

1 1( )
r

c S SM M c M S M S
V V V VVZ

j S c S M
V V

ρω ρ ω

ω ρ ω

− + + +
=

+ −
        (7) 

It is therefore that the dual HR’s angular resonance frequencies are the roots of the 

following equation:  

2 4 2 2
4 2 2 2 2 0 0 1 2

1 2 0 0 1 2 2 1
1 2 1 1 2

1 1 1[ ( ) ] 0c S SM M c M S M S
V V V VV

ρω ρ ω− + + + =              (8) 

Then, the resonance frequencies of the dual HR can be derived from Eq. (8) and be 

expressed as:  
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22 2 4 2 4 2 22 2 2 2 2 2
0 0 0 0 0 0 1 22 2 1 2 2 1

1,2
1 2 2 2 1 1 1 2 2 2 1 1 1 2 1 2

1
2 2 4

c c c S SS S S S S Sf
V M V M V M V M V M V M M M VV

ρ ρ ρ
π

   
= + + + + −   

   
  

(9) 

It can be observed from Eq. (9) that the resonance frequencies of the dual HR are only 

determined by its geometries. Therefore, it is straightforward to design a dual HR with 

desired resonance frequencies. Once the acoustic impedance is obtained, the transmission 

loss of the side-branch dual HR mounted on the duct with cross-sectional area  dS  could 

be given as [2]: 

0 0
10

1 120log ( 2 )
2 d r

cTL
S Z
ρ

= +                                         (10)       

 

Fig. 1 Mechanical analogy of a dual Helmholtz resonator 

3. Wave propagation in a duct with a periodic dual Helmholtz resonator array 

A periodic structure that consists of a number of identical structure components 

distributed periodically. Wave propagation in a periodic system is known as Bloch wave 
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[18]. Only planar wave is considered in duct propagation because the low frequencies of 

interest are well below the duct’s cutoff frequency. Bloch wave theory and transfer matrix 

method are used to investigate the acoustic performance of the periodic dual HR system. 

3.1 Bloch wave in the periodic dual Helmholtz resonator system 

The periodic dual HR system, consisting of a uniform duct with dual HRs attached 

periodically, is demonstrated in Fig. 2. A duct segment with a side-branch dual HR is 

considered as a typical periodic unit. The diameter of the dual HR’s neck is inappreciable 

compared with the length of the duct segment in a periodic unit. Therefore, the length of 

the duct segment is regarded as the periodic distance. The sound properties in the nth  cell 

could be described as sound pressure ( )np x  and particle velocity ( )nu x . In light of the 

low frequencies of interest in the present study, only planar wave is assumed to propagate 

through the duct. The sound pressure is a combination of positive-x and negative-x 

directions. Assuming a time-harmonic disturbance in the form of j te ω , the sound pressure 

and particle velocity are expressed as: 

 ( ) ( ) ( )n njk x x t jk x x t
n n np x I e R eω ω− − − − += +     (11) 

( ) ( ) ( )n njk x x t jk x x tn n
n

d d d d

I Ru x e e
S Z S Z

ω ω− − − − += −    (12) 

where k  is the number of waves, ( 1)nx n d= −  represents the local coordinates, d  is the 

periodic distance, dS  is the cross-sectional area of the duct, dZ  is the acoustic impedance 

of the duct, and nI  and nR  represent respective complex wave amplitudes. By introducing 

the continuity conditions of the sound pressure and volume velocity at the duct-neck 

interface that at  x nd= , Eq. (11) and Eq. (12) may be seen to readily yield the following 

transfer matrix:  
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1

1

(1 )exp( ) exp( )
2 2

exp( ) (1 )exp( )
2 2

d d

r rn n n

n n nd d

r r

Z Zjkd jkd
Z ZI I I

R R RZ Zjkd jkd
Z Z

+

+

 − − −       = =           − + 
 

T        (13) 

T  is the transfer matrix. The sound pressure and particle velocity in an arbitrary can be 

obtained successively by Eq. (13) once the initial sound pressure is known. According to 

Bloch wave theory [18], Eq. (13) can be described as:  

1

1

n n n

n n n

I I I
R R R

λ+

+

     
= =     

     
T      (14) 

where λ  is set to be exp( )jqd− , and q  is the Bloch wave number and is allowed to be a 

complex value. Then, the analysis of the periodic structure boils down to the solution of 

eigenvalues and corresponding eigenvectors problem. There are two eigenvalue solutions 

of λ : 1λ and 2λ with corresponding eigenvectors  1 1[ , ]I Rv v T  and 2 2[ , ]I Rv v T  respectively. 

Then, Eq. (14) can be rewritten in eigenvector form as:  

1 1 1 1 22
0 1 0 2

1 1 1 1 2

...n n n I In n n

n n n R R

I I I I v v
A B

R R R R v v
λ λ+ −

+ −

           
= = = = = +           

          
T T T    (15) 

where 0A  and 0B  are complex constants and can be solved with the boundary conditions. 

The incident wave in the initial part is 0I  and the transmitted wave in the last part is 1nI + . 

The average transmission loss of each HR of the whole system can be expressed as: 

1 1
0 0 1 1 0 2 2

10 10 1 1
1 0 1 1 0 2 2

20 20log log
1 1

I I
n n

n I I

I A v B vTL
n I n A v B v

λ λ
λ λ

− −

− −
+

+
= =

+ + +
    (16) 

The duct is assumed to end up with an anechoic termination. It means that there is no 

reflection in the last part. Therefore, 0B  is required to be zero. Eq. (16) can be simplified 
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as: 10 120 logTL λ= −  for the average transmission loss of a duct with an anechoic 

termination loaded with dual HRs periodically.  

 

Fig. 2 Schematic diagram of a periodic dual HR system 

3.2 Coupling of Bragg reflection and dual HR’s resonances  

The transmission loss of the periodic dual HR system is only related to the solution of 

λ , as discussed above. Owing to the relation of q and λ , the transmission loss of the 

acoustic system refers to the solution of q . The solution of q , as a function of the wave 

frequencies, periodic distance and geometries of a duct resonator system, is allowed to be 

a complex. The real part and imaginary part of q are critical to distinguish the stopbands 

from passbands. The real part of q  is referred to as passbands that have only a phase delay 

during wave propagation, and the imaginary part as attenuation constant named stopbands 

(decay of a wave happens from one unit to the following). It can be known that wave 

attenuation occurs for frequencies that provides an imaginary part to q .  There are two 

mechanisms of the stopbands: dual HR’s resonances and Bragg reflection.  The stopbands 

caused by dual HR’s resonances are situated near dual HR’s resonance frequencies 01f and 

02f , which is also the mechanism of a single dual HR case. The other kind of stopbands is 
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brought about physically by Bragg reflection and will exist near 0 / 2mf mc d=  ( m is an 

integer). The width of the stopband decrease as 21/ m  and the maximum value of the 

imaginary part becomes smaller as 1/ m [20]. 

For a general HR with single resonance frequency, the periodic distance is chosen to 

be half-wavelength of HR’s resonance frequency for the sake of the coupling of first Bragg 

reflection and HR’s resonance. The dual HR has two resonance frequencies 01f and 02f  

(assuming 01 02f f< ). In order to obtain broader noise attenuation bands at these two 

resonance frequencies, both the resonance frequencies are designed to coincide with Bragg 

reflection. Note that the Bragg reflection is exiting at 0 / 2mf mc d=  ( m is an integer). It is 

therefore that the resonance frequencies of the dual HR should also satisfy the relation of 

02 01f mf=  for broader noise attenuation bands at the designed resonance frequencies. The 

resonance frequencies of a dual HR could be tuned straightforward due to they are only 

determined by its geometries. Once a dual HR’s resonance frequencies are designed to be 

02 012f f= , the periodic distance could be set as 01 022d λ λ= =  ( 01λ and 02λ  are wavelength 

of 01f  and 02f  respectively) to make the first and second Bragg reflection coincide with 

two resonance frequencies of the dual HR respectively for the sake of broader noise 

attenuation bands. 

4. Results and discussion  

4.1 Validation of the theoretical prediction of a side-branch dual HR 

The dual HR which consists of two HRs connected in series (neck-cavity-neck-cavity), 

as demonstrated in Fig. 1, leads to tow resonance frequencies. The resonance frequencies 

of a dual HR are only determined by its geometries. The geometries of the dual HR used 
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in this paper are: neck areas 1 0.25S π= cm2 and 2 0.25S π= cm2, neck lengths 1 2.5nl = cm 

and 2 2.1nl = cm, cavity volumes 1 115.2V π= cm3 and 2 62.4V π= cm3. The cross-sectional 

area of the main duct is 25dS = cm2.  Thus the resonance frequencies of the dual HR are 

301 Hz and 602 Hz, which are calculated directly by Eq. (9).  The three-dimensional FEM 

simulation using commercial software (COMSOL Multiphysics [23]) is adopted to verify 

the theoretical predictions. To ensure the accuracy, a fine mesh spacing of no more than 

1/6 of the minimum wavelength of oscillation is adopted to divide the system into 

triangular elements. The predicted resonance frequencies fit well with the FEM simulation 

results, as illustrated in Fig. 3. The comparison of the transmission loss between the 

theoretical predictions and FEM simulation results for the side-branch dual HR are also 

exhibited in Fig. 3. The solid line represents the theoretical predictions, and the dashed line 

represents the FEM simulation results. A good agreement between the theoretical 

predictions and FEM simulations results can be observed in Fig. 3.  
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Fig. 3 Comparison of the theoretical predictions and FEM simulation results (solid 

line represents the theoretical predictions, and dashed line represents the FEM simulation 

results) 

4.2 Validation of the predicted transmission loss of the periodic ducted HR system 

      The geometries of the dual HR and the main duct used here are the same as given above. 

The periodic dual HR system with an anechoic termination to avoid reflected waves from 

downstream is exhibited in Fig. 2. An oscillation sound pressure at a magnitude of 0 1P =  

is applied at the beginning of the duct as the initial boundary conditions. Fig. 4 shows the 

configuration of the periodic dual HR system consisting of six identical dual HRs mounted 

on the duct periodically. The average transmission loss (TL ) of a periodic dual HR array 

system is expressed as 10 120 logTL λ= − , which is only related to the solution of q . For 

the certain dual HR and main duct used in this paper, it indicates that the shape of TL  is 

depended on the periodic distance. When the periodic distance is chosen to be 

010.58 2d λ= , it can be observed from Fig. 5 that the dual HR’s resonances and Bragg 

reflection have separated  effects on the noise attenuation bands. The stopbands caused by 

resonance are situated near dual HR’s resonance frequencies, and are the mechanism of a 

single dual HR case.  

         In order to obtain broader noise attenuation bands at designed resonance frequencies 

of the dual HR, the Bragg reflection is intended to coincide with resonance frequencies. 

The resonance frequencies of the dual HR are 301 Hz and 602 Hz, which is designed to 

satisfy the relation of 01 022λ λ= . Once the periodic distance is chosen to be 01 2d mλ=  

( m is an integer), broader noise attenuation bands could be achieved at both resonance 

frequencies due to the coupling effect of Bragg reflection and dual HR’s resonances, as 
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illustrated in Fig. 6. It can be seen from Fig. 6 that the width of noise attenuation bands at 

resonance frequencies decrease with the increasing of m . It is because of the stopbands 

brought by Bragg reflection decrease as 21/ m  in width.  For the sake of broader noise 

attenuation bands at designed resonance frequencies of the dual HR, the periodic distance 

is chosen to be 01 022d λ λ= = . Therefore, the first and second Bragg reflection can 

coincide with two resonance frequencies of the dual HR respectively. Fig. 7 compares noise 

attenuation bands of different periodic distance cases ( 010.5d λ=  and 010.58d λ= ) with or 

without considering coupling effects.  The coupling of Bragg reflection and dual HR’s 

resonances results in much broader noise attenuation bands at resonance frequencies of the 

dual HR. The FEM simulation used here is similar to the aforementioned description. The 

comparisons of the theoretical predicted results and the FEM simulation results with 

respect to different periodic distances are illustrated in Fig. 8, and the theoretical 

predictions fit well with the FEM simulation results.  

 

Fig. 4 Configuration of the periodic dual HR system consisting of six dual HRs 
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Fig. 5 Noise attenuation bands of the periodic dual HR system due to Bragg reflection 

and dual HR’s resonances separately 

 

Fig. 6 Noise attenuation bands of the periodic dual HR system due to the coupling of 

Bragg reflection and dual HR’s resonances 
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Fig. 7 Noise attenuation bands of the periodic dual array system with and without 

coupling effects 
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Fig. 8 The average transmission loss of the periodic dual HR system in respect of 

different periodic distances (solid lines represent the theoretical predictions, and dashed 

lines represent the FEM simulation results) 

5. Conclusion  

This paper focuses on the hybrid noise control by using a periodic dual HR array, and 

presents theoretical and numerical studies of a periodic dual HR system. The dual HR 

which consists of two HRs connected in series (neck-cavity-neck-cavity) leads to two 

resonance frequencies. The geometries of the dual HR are significant small compared with 

the wavelengths. Hence, the lumped parameter theory is employed to approximate the dual 

HR as an equivalent two degrees of freedom mechanical system. The resonance 

frequencies and transmission loss of a dual HR have been derived. Aiming at broader noise 

attenuation bands for hybrid noise control at low frequencies, a duct with an array of dual 

HRs distributed periodically is investigated. In the interest of low frequencies, the 

frequency range considered in this paper is well below the duct’s cutoff frequency. It is 

therefore that only planar wave is allowed to propagate in the duct. Owing to the coupling 

of Bragg reflection and dual HR’s resonances, a periodic dual array can provide much 

broader noise attenuation bands at the designed resonance frequencies of the dual HR. In 

order to make the first and second Bragg reflection coincide with two resonance 

frequencies of the dual HR respectively, the periodic distance is set to be 01 022d λ λ= = . 

Therefore, two broader noise attenuation bands at the dual HR’s resonances can be 

achieved. The proposed periodic dual HR array can be used in practical engineering work 

to reduce hybrid noise at low frequencies.   
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Figure captions 

Fig. 1 Mechanical analogy of a dual Helmholtz resonator 

Fig. 2 Schematic diagram of a periodic dual HR system 

Fig. 3 Comparison of the theoretical predictions and FEM simulation results (solid line 

represents the theoretical predictions, and dashed line represents the FEM simulation 

results) 

Fig. 4 Configuration of the periodic dual HR system consisting of six dual HRs 

Fig. 5 Noise attenuation bands of the periodic dual HR system due to Bragg reflection and 

dual HR’s resonances separately 

Fig. 6 Noise attenuation bands of the periodic dual HR system due to the coupling of Bragg 

reflection and dual HR’s resonances 

Fig. 7 Noise attenuation bands of the periodic dual array system with and without coupling 

effects 
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Fig. 8 The average transmission loss of the periodic dual HR system in respect of different 

periodic distances (solid lines represent the theoretical predictions, and dashed lines 

represent the FEM simulation results) 

 

 

 

 

 




