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Abstract 19 

Ultrasonic guided waves are being extensively investigated and applied to nondestructive 20 

evaluation (NDE) and structural health monitoring (SHM). Guided waves are, under most 21 

circumstances, excited in a frequency range up to several hundred kilohertz or megahertz for 22 

detecting defect/damage effectively. In this regard, numerical simulation using finite element 23 

analysis (FEA) offers a powerful tool to study the interaction between wave and defect/damage. 24 

Nevertheless, the simulation, based on linear/quadratic interpolation, may be inaccurate to 25 

depict the complex wave mode shape. Moreover, the mass lumping technique used in FEA for 26 

diagonalizing mass matrix in the explicit time integration may also undermine the calculation 27 

accuracy. In recognition of this, a time domain spectral element method (SEM) – a high-order 28 

FEA with Gauss-Lobatto-Legendre node distribution and Lobatto quadrature algorithm – is 29 

studied to accurately model wave propagation. To start with, a simplified two-dimensional 30 

plane strain model of Lamb wave propagation is developed using SEM. The group velocity of 31 

the fundamental anti-symmetric mode (𝐴0) is extracted as indicator of accuracy, where SEM 32 

exhibits a trend of quick convergence rate and high calculation accuracy. A benchmark study of 33 

calculation accuracy and efficiency using SEM is accomplished. To further extend SEM-based 34 

simulation to interpret wave propagation in structures of complex geometry, a 3-D SEM model 35 

with arbitrary in-plane geometry is developed. 3-D numerical simulation is conducted in which 36 

the scattering of 𝐴0  mode by a through hole is interrogated, showing a good match with 37 

experimental and analytical results. 38 

 39 

 40 

Keywords: Nondestructive evaluation; Structural health monitoring; Wave scattering; Spectral 41 

element method; Lamb wave; finite element analysis 42 
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1. Introduction 44 

Guided wave (GW)-based techniques in the field of NDE and SHM are promising to interrogate 45 

and detect structural defect/damage [1-3]. Several advantages of GW, including high sensitivity 46 

to damage, long propagation distance to cover large monitoring area with few sensors, and 47 

ability of system integration into the host structure with little additional penalty, endow the GW-48 

based techniques with an online and in situ monitoring capability to various structures including 49 

aircraft, spacecraft, nuclear power plant, pipeline, etc. [4-8]. 50 

 51 

Currently most GW-based techniques rely on the extraction of limited parameters such as Time-52 

of-flight and signal amplitude to identify damage size and location [2, 9]. In order to make full 53 

use of this technology, a fundamental physical interrogation on interaction of GW with various 54 

defect/damage is essential. Thus analytical analysis, together with numerical modeling, plays 55 

an important role of understanding GW in hope of extraction of more parameters. Nevertheless, 56 

when the geometric structure is complex, analytical analysis may not be applicable, which 57 

leaves the numerical modeling the only available method to accommodate complex geometric 58 

shapes. Among common numerical methods [10-14], finite element analysis (FEA) is 59 

dominantly adopted to analyze wave propagation as FEA has a strong adaptability to complex 60 

geometric shapes. Nevertheless, as conventional FEA uses linear/quadratic interpolation 61 

functions to represent coordinate and displacement, it may be inaccurate to depict the complex 62 

wave mode shape. Moreover, mass lumping technique is often adopted in the explicit time 63 

integration to obtain a diagonalized mass matrix. In this way, the calculation efficiency is 64 

improved, but at the cost of sacrificing calculation accuracy. 65 

 66 

To enable a more accurate calculation, time-domain spectral element method (SEM) was 67 

proposed and applied to the modeling of wave propagation. Firstly developed by Patera to solve 68 



 

 

laminar flow in a channel expansion in the mid-1980s, SEM is preferably used in problems 69 

where FEA has a slow convergence rate [15]. Similar to FEA, SEM is also a weighted residual 70 

method and subdivides the whole spatial domain into elements of finite sizes. Two main features 71 

differentiating SEM from FEA are 1) elements in SEM have inner nodes and thus high-order 72 

interpolation functions are adopted, and 2) SEM adopts a numerical integration rule called a 73 

nodal quadrature, where integration points may coincide with nodal points. The first feature of 74 

SEM reduces numerical dispersion errors because high-order interpolation functions present a 75 

better geometric adaption to complex wave mode shapes than linear/quadratic interpolation 76 

functions. The second feature generates a lumped mass matrix intrinsically by the nodal 77 

quadrature without adopting any mass lumping technique. The explicit time integration is 78 

dominantly used to solve the problem of wave propagation in SEM and commercial FEA 79 

software packages. For the purpose of securing calculation efficiency, FEA usually adopts mass 80 

lumping techniques, which force a full mass matrix diagonalized, but these techniques may 81 

undermine the solution accuracy as a result of the approximation. Nevertheless, as SEM 82 

intrinsically achieves a diagonalized mass matrix, the calculation accuracy will not be 83 

compromised. 84 

 85 

When Patera firstly developed SEM to solve the Navier-Stokes equation in fluid dynamics, 86 

nodes follow a Chebyshev collocation, and it is concluded that SEM converges exponentially, 87 

while FEA can only converge algebraically [15]. In 1990s, Komatisch introduced the so-called 88 

Gauss-Lobatto-Legendre (GLL) node collation and Lobatto quadrature in SEM to efficiently 89 

analyze the propagation of seismic wave [16]. Using the GLL-based node collation and Lobatto 90 

quadrature, the mass matrix is intrinsically diagonalized, resulting in a significant improvement 91 

of calculation accuracy. Consequently, less numerical error can be achieved using SEM 92 

compared with conventional linear/quadratic FEA. Recently it is reported that a GPU-based 93 



 

 

SEM was developed to a further speedup of 20 times compared with originally developed SEM 94 

without the GPU acceleration [17]. Other main works about SEM for wave propagation involve 95 

the application to composite [18] and the development of 2-D SEM membrane model and 3-D 96 

SEM model respectively to study the interaction of in-plane waves with cracks [19, 20]. All 97 

these investigations reported a significantly reduced calculation time and computational 98 

resource consumption by using the SEM. Nevertheless, there are few intensive and quantitative 99 

researches about the calculation accuracy of SEM. Zak systematically analyzed several error 100 

sources of SEM while investigating longitudinal waves in the rod structure [21]. The influence 101 

from node distributions, polynomial order and mass lumping techniques, was analyzed to give 102 

an insightful mechanism of error generation and control. Although it is claimed that conclusions 103 

from this work are not restricted only to the longitudinal wave in the rod, there entails more 104 

intensive and quantitative analyses on the Lamb waves in the plate structures. 105 

 106 

Another concern is that only the wave propagation in a relatively simple geometry is built and 107 

solved using the current SEM techniques, such as the sphere structure representing the Earth 108 

[17] and a notch representing the crack in a rectangular plate [19]. Lack of adaptation to 109 

complex geometry shapes, the currently developed SEM technique is yet to be brought into a 110 

broad application to practical problem. Addressing this concern, the development of SEM to 111 

accommodate arbitrary geometry shape is of great significance to transform the theory of SEM 112 

into practical technological application. 113 

 114 

Addressing the above bottleneck and concern, a quantitative analysis into the calculation 115 

accuracy of SEM, together with a development of 3-D SEM with arbitrary in-plane geometry, 116 

is performed in this paper. Section 2 introduces the general principle of SEM and the 117 

development procedure of a 3-D SEM model with arbitrary in-plane geometry. In Section 3, a 118 



 

 

benchmark study of SEM is performed to quantitatively analyze the relation between 119 

calculation accuracy with model parameters. The 3-D SEM model with arbitrary in-plane 120 

geometry is built in Section 4, with the wave scattering from a through hole as example. 121 

Concluding remarks are remunerated in Section 5. 122 

 123 

2. Theory and Principle of SEM 124 

The basic principle of SEM is briefed in this section, with focus on the GLL-based node 125 

collation and Lobatto quadrature. Then the development of 3-D SEM with arbitrary in-plane 126 

geometry is explained. 127 

 128 

2.1 GLL-based Node Collation 129 

SEM differentiates from conventional linear/quadratic FEA in its forms of node collation. Two 130 

forms of node collation are dominantly adopted for SEM, i.e., Chebyshev and GLL-based ones, 131 

the latter of which is chosen in this study. 132 

 133 

Supposing an SEM element in the direction with local coordinate 𝜉 ∈ [−1,1] , Lobatto 134 

polynomial 𝐿𝑜𝑛(𝜉), as the derivative of Legendre polynomial 𝑃𝑛+1(𝜉), is expressed as 135 
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With polynomial order 𝑝, 𝐿𝑜𝑝(𝜉) = 0 results in the zero points 𝜉0

𝐿𝑜𝑝−1
, which, together with 137 

two end points -1 and 1, constitute the GLL-based nodes in the 𝜉  direction with local 138 

coordinates expressed as 139 

  p-1Lo

i 01, ,1 = − . (2) 140 

Assuming a 3-D element with the polynomial order 𝑝𝜉 = 6, 𝑝𝜂 = 5 and 𝑝𝜁 = 3 in the three 141 

directions 𝜉, 𝜂 and 𝜁, the nodes in one SEM element are collated as displayed in Figure 1, 142 



 

 

showing a non-uniform node collation. Lagrangian interpolation is adopted to further derive the 143 

shape function 𝑙𝑖
𝑝(𝜉) in the 𝜉 direction as 144 
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where 𝑝  is the polynomial order, and 𝑖 (𝑖 = 0,1, … , 𝑝)  is the node number. The value of 146 

Lagrangian interpolation with the GLL-based nodes when 𝑝𝜉 = 6 is shown as Figure 2. It is 147 

displayed that the maximum value of each Lagrangian interpolation is a constant value of 1 at 148 

the corresponding nodes. Following the above procedure, the shape function of D-dimensional 149 

element (D=1,2,3) can be derived through multiplication of Lagrangian interpolation functions 150 

in respective directions. 151 

 
152 

Figure 1. GLL-based node collation in 3-D SEM element with the polynomial order 𝑝𝜉 = 6,153 

𝑝𝜂 = 5 and 𝑝𝜁 = 3 in the local coordinate 𝜉, 𝜂, and 𝜁 ∈ [−1,1]. 154 

 155 



 

 

 156 

Figure 2. Lagrangian interpolation with polynomial order 𝑝𝜉 = 6 of GLL nodes. 157 

 158 

2.2 Dynamic Equation 159 

When the entire geometrical domain is discretized into multiple solution sub-domains and 160 

assembled together, the global dynamic equation in the form of matrix is formed and then solved, 161 

to describe the structural response. 162 

 163 

Without loss of generality, for a D-dimensional (𝐷 = 1, 2, 3) element with 𝑁 nodes, global 164 

coordinate 𝒙 and displacement 𝒖 can be denoted using the geometric and displacement shape 165 

functions 𝑵𝒈(𝝃) and 𝑵𝒅(𝝃) in the local coordinate, respectively, as 166 
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where both shape functions are related with the Lagrangian interpolation in Equation (3). For 168 

the 2-D models analyzed in Section 3, 𝑁 = 𝑀, the element is called isoparametric. While for 169 

the developed 3-D models as illustrated in Section 4, there may be 𝑁 < 𝑀, and then the element 170 

is called subparametric. 171 

 172 



 

 

With the above shape function to define coordinate and displacement, together with a series of 173 

deductions involving dynamic equilibrium equation, stress-strain relation, and geometric 174 

equation, the elemental mass and stiffness matrix can be obtained. The single element in the 175 

elemental mass matrix, considering a D-dimensional model (𝐷 = 1, 2, 3) with D displacement 176 

degrees of freedom for each node, is expressed as 177 
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where 𝑁𝑑,𝑚  denotes the displacement shape function at the 𝑚𝑡ℎ  node, 𝑚𝑜𝑑(𝑖 − 𝑗, 𝐷) 179 

denotes the remainder of 𝑖 − 𝑗 to 𝐷, and 𝜌 and 𝑉 are density and volume, respectively. 𝑚 =180 

ceil(𝑖/𝐷), 𝑛 = ceil(𝑖/𝐷), and 𝑜 = ceil(𝑗/𝐷), where ceil(𝑋) denotes the operation to round 181 

𝑋 to the nearest integer greater than or equal to 𝑋. 182 

 183 

All the elemental matrices are assembled to form the global dynamic equation expressed as  184 

 + =Mu Ku f , (6) 185 

where 𝑴, 𝑲, and 𝒇 are global mass matrix, global stiffness matrix, and global force vector, 186 

respectively. The central difference method [22] is predominantly adopted to solve Equation 187 

(6), in which the mass matrix 𝑴 will be inversed. 188 

 189 

In the adopted SEM, mass matrix of the integral form in Equation (5) is calculated numerically 190 

via the Lobatto quadrature algorithm, which is expressed as 191 
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where 𝑓(𝜉) denotes the function for quadrature, 𝑛 is the number of quadrature point, 𝑤𝑖 is 193 

the weighting function, and 𝑅𝑛  the residue. When 𝑛 = 𝑝 + 1 , the collation of quadrature 194 



 

 

nodes coincides with the element nodes. Thus the second term in Equation (5), provided 𝑅𝑛 in 195 

Equation (7) neglected, becomes zero. Consequently a diagonal mass matrix is intrinsically 196 

generated, exerting a remarkable influence on the calculation accuracy. As stiffness matrix 197 

cannot be diagonal, Gaussian quadrature is retained in this paper for the calculation of stiffness 198 

matrix in SEM. 199 

 200 

2.3 Development of 3-D SEM 201 

To improve the adaptation to complex geometry, a 3-D SEM model with arbitrary in-plane 202 

shape combining ABAQUS® and MATLAB® is built as illustrated in Figure 3. The procedure 203 

is as follows. 204 

1) The model parameters, including node number in one wavelength ( 𝑛𝜆 ) and 205 

polynomial order (𝑝𝜉 , 𝑝𝜂 and 𝑝𝜁) of SEM, are confirmed according to benchmark 206 

study in Section 3. 207 

2) ABAQUS® is introduced to discretize the in-plane structure into 2-D 8-node 208 

biquadratic plane Serendipity elements [23]. 209 

3) MATLAB® is adopted for all the remaining calculation. 2-D in-plane SEM nodes 210 

(see Figure 4) are collated according to ABAQUS® mesh and the polynomial orders 211 

determined in Step 1. The global in-plane coordinate (𝑥𝐼 , 𝑦𝐼) of node I in the SEM 212 

element is calculated as 213 
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where 𝑁𝑔,𝑘(𝜉𝐼, 𝜂𝐼) denotes the shape function of Serendipity element at position with 215 

local in-plane coordinate (𝜉𝐼 , 𝜂𝐼) corresponding to the specified 𝐼𝑡ℎ node in the SEM 216 

element. (𝑥𝑘, 𝑦𝑘) is the global in-plane coordinate of the 𝑘𝑡ℎ node in the ABAQUS®-217 

generated element. 218 



 

 

4) The coordinate of out-of-plane SEM nodes 𝑧𝐼 (see Figure 4) is obtained according 219 

to the polynomial order in the thickness direction 𝑝𝜁 as 220 

 
2

I I

h
z = , (9) 221 

where ℎ  is the plate thickness, 𝜁𝐼  is the local coordinate in the thickness direction 222 

corresponding to the specified 𝐼𝑡ℎ node in the SEM element. 223 

5) Construction of global mass, stiffness and force matrix to form dynamic equation. 224 

6) Solution of dynamic equation using explicit integration algorithm. 225 

 226 

 227 

Figure 3 Flowchart of development of 3-D SEM. 228 

 229 

As the material studied in this paper is isotropic, it is reasonable to set the same in-plane 230 

parameter, i.e. 𝑝𝜉 =  𝑝𝜂. MATLAB® R2013a is adopted for the development of 2-D ABAQUS® 231 

mesh into 3-D SEM model and all the calculations. It is noteworthy that since in the in-plane 232 

direction, the geometry shape function is constructed from the initial ABAQUS® mesh 233 



 

 

discretization (see Equation (8)), its polynomial order 𝑁 = 2. Nevertheless, the displacement 234 

shape function is constructed from the developed SEM node collation and thus the polynomial 235 

order 𝑀 can be any integer equal to or over 2 (see Equation (4)). 236 

 237 

 238 

Figure 4. Illustration of SEM element built from ABAQUS® plane element (𝑝𝜉 = 3, 𝑝𝜂 =239 

3, 𝑝𝜁 = 2, the shown element is represented in local coordinate 𝜉, 𝜂 and 𝜁 ∈ [−1,1], and in 240 

the global coordinate the element is usually irregular in order to adapt to complex geometry). 241 

 242 

3. Benchmark Study on Calculation Accuracy of 2-D SEM 243 

A 2-D plane strain SEM model is built to simulate the GW propagation, whereby a benchmark 244 

between calculation accuracy and efficiency of SEM in terms of various model parameters is 245 

established in order to guide further modeling of both 2-D and 3-D cases. 246 

 247 

3.1 Model Description 248 

A 2-D plane strain SEM model is built with MATLAB® R2013a as illustrated in Figure 5. 249 

To narrow down the frequency bandwidth of loading, a 32-cycle Hanning-window-modulated 250 

sinusoidal signal with a central frequency 𝑓𝑐 = 100 kHz  is adopted as an in-plane force 251 

loading 𝐹0  at one node close to the left edge. The boundary reflection at the left edge is 252 

eliminated through a symmetric boundary condition. Geometric parameters are listed in Table 253 

1. And material parameters listed in  254 

Table 2 are the same as [24] to perform a quantitative comparison of 3-D model in Section 4. 255 



 

 

Table 3 lists the theoretical phase and group velocities of fundamental anti-symmetric mode 256 

𝐴0  (central frequency 𝑓𝑐 = 20 kHz and 100 kHz ) with accuracy up to four decimal point. 257 

Element size and node collation are varied according to three parameters, i.e., node number per 258 

wavelength (𝑛𝜆) and polynomial order 𝑝𝜉 and 𝑝𝜂 in the in-plane and out-of-plane direction, 259 

respectively. The arrival time of GW crossing sections A-B and C-D is recorded to calculate 260 

wave group velocity, which, by comparison with theoretical group velocity, reflects the 261 

calculation accuracy. 262 

 263 

Figure 5. Element discretization and node collation of 2-D plane strain SEM model. 264 

 265 

Table 1. Geometric parameters of 2-D plane strain SEM model. 266 

a (mm) b (mm) c (mm) d (mm) l (mm) 

1 30 100 1 450 

 267 

Table 2. Material parameters of both 2-D and 3-D SEM model. 268 

Elastic modulus (GPa) Poisson’s ratio Density (kg/m3) 

69 0.31 2700 

 269 

Table 3. Theoretical phase and group velocities of guided wave. 270 

Frequency (kHz) 
Phase velocity A0 

(m/s) 

Group velocity A0 

(m/s) 
Wavelength (mm) 

20 435.9975 855.2961 21.8 



 

 

100 947.6198 1770.3762 9.48 

 271 

Take the displacement field as illustrated in Figure 6 for example, the fundamental symmetric 272 

mode 𝑆0 arrives earlier, followed by the slower fundamental anti-symmetric mode 𝐴0. As the 273 

concerned frequency 𝑓𝑐 =  100 kHz is far below the cut-off frequency of 𝐴1 mode, only 𝑆0 274 

and 𝐴0 mode propagate in the plate structure. For brevity, only 𝐴0 mode is investigated in this 275 

paper. To calculate the wave propagation velocity, the out-of-plane displacements of both the 276 

top and bottom nodes A and B at the same in-plane position of cross section A-B are extracted 277 

and added to isolate the 𝐴0 mode (Figure 7) expressed as 278 
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which, through Hilbert transform, converts to the wave packet 𝑒𝐴,𝐵
(𝑎)

. Then the wave arrival time 280 

𝑡𝐴,𝐵
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 is calculated as 281 
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Likewise, the 𝐴0 mode at the section C-D is also isolated, whereby the wave group velocity 283 

can be thus calculated as 284 
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The error between the calculated group velocity (𝑐𝑔,𝑐
(𝑎)

) and theoretical group velocity (𝑐𝑔,𝑡
(𝑎)

) 286 

(Table 3) is expressed as 287 
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 289 



 

 

 290 

Figure 6. Typical displacement response containing 𝐴0 and 𝑆0 modes (the scale of 291 

displacement and coordinate in the in-plane and out-of-plane direction is adjusted for 292 

illustration). 293 

 294 

 295 

Figure 7. Displacement signal and wave packet at sections A-B and C-D to extract time of 296 

arrival 𝑡𝐴,𝐵
(𝑎)

 and 𝑡𝐶,𝐷
(𝑎)

. 297 

 298 

3.2 Results and Discussions 299 

To explore the limit of accuracy using SEM to simulate wave propagation, as well as to provide 300 

a benchmark to associate the accuracy with mesh parameter, several sets of numerical 301 

simulation with varying parameters 𝑛𝜆 (1~20), 𝑝𝜉 (1~5) and 𝑝𝜂 (1~4) are performed using 302 

the model as detailed in Section 3.1. 303 

 304 



 

 

Take the case with central frequency 𝑓𝑐 = 100 kHz as example. In the first set of simulation, 305 

𝑝𝜂 is set as 1, the relation of calculation error with in-plane parameter is studied. Figure 8 (a) 306 

displays the calculated error of 𝐴0, which exhibits a trend of decrease as the increase of 𝑛𝜆 or 307 

𝑝𝜉. Nevertheless, the minimum error can only reach around 2% despite the dense in-plane node 308 

collation 𝑛𝜆 = 20 and high polynomial order 𝑝𝜉 = 5. 309 

 310 

Another set of simulation ensues, in which 𝑝𝜂  is set as 4 to guarantee the accuracy in the 311 

thickness direction. Notably, the minimum error decreases drastically to 0.03%, a remarkable 312 

improvement of calculation accuracy compared with 𝑝𝜂 = 1. Thus it is easily concluded that 313 

the polynomial order 𝑝𝜂 decides the minimum calculation error that can be achieved. And only 314 

when 𝑛𝜆  and 𝑝𝜉  are large enough, the minimum calculation error can be realized. Another 315 

noticeable phenomenon is that when 𝑛𝜆 = 𝑁𝑝𝜉, (𝑁 = 1, 2), such as 𝑛𝜆 = 2𝑝𝜉 = 8 in Figure 8 316 

(b), and 𝑛𝜆 = 2𝑝𝜉 = 6 in Figure 8 (a) and (b), the error abruptly increases, which is yet to be 317 

explained in the future research. 318 

 319 

Following the above similar ideas, 𝑝𝜂 is further set as 2 and 3, respectively. Summarizing all 320 

the obtained results, the relation of minimum calculation error with polynomial order in the 321 

thickness direction 𝑝𝜂 is obtained in Figure 9, which indicates a monotonous improvement of 322 

calculation accuracy with the increase of 𝑝𝜂. This benchmark helps selection of 𝑝𝜂 given a 323 

pre-required calculation accuracy, which will be adopted for 3-D models in Section 4. The last 324 

point to stress is that the obtained benchmark above can only be applied to the specified scenario 325 

of 𝐴0  mode, which means that if higher modes A𝑖 (𝑖 = 1,2,3 … )  or 𝐴0  at a much higher 326 

frequency are concerned, the benchmark in the thickness direction should be rebuilt. The 327 

explanation goes as follows: on one hand, taking the fundamental 𝐴0 for example, when the 328 



 

 

frequency-thickness product increases, the mode shape along the thickness direction gets 329 

distorted, which requires more nodes and higher polynomial order in the thickness direction to 330 

approximate accurately the mode shape; on the other hand, if higher modes are concerned, they 331 

present more severe distortion of mode shape compared with fundamental mode. Contrary to 332 

the rebuilding of the benchmark in the thickness direction, the benchmark in the propagation 333 

direction (Figure 8) holds for all the modes under different frequency-thickness product values, 334 

as the parameters 𝑛𝜆 and 𝑝𝜉 are irrelevant to the mode shape in the thickness direction. 335 

 336 

(a) (b)  
337 

Figure 8. Benchmark study of calculated error of 𝐴0 mode using SEM (𝑛𝜆 = 1~20, 𝑝𝜉 =338 

1~5): (a) 𝑝𝜂 = 1, and (b) 𝑝𝜂 = 4. 339 

 340 



 

 

 
341 

Figure 9. Benchmark study between minimum calculation error and polynomial order in the 342 

thickness direction 𝑝𝜂. 343 

 344 

Besides the calculation accuracy, the calculation efficiency is another important factor for the 345 

evaluation of the feasibility of developed SEM. The calculation efficiency in terms of memory 346 

consumption and calculation time is displayed in Figure 10, in which 𝑝𝜂 is fixed as 4, to allow 347 

the variation of 𝑝𝜉 and 𝑛𝜆. The consumed memory is linearly proportional to 𝑛𝜆 with fixed 348 

𝑝𝜉 , which is easily explained as the total node number is linearly proportional to 𝑛𝜆 . The 349 

increased memory consumption with the increase of 𝑝𝜉 provided a fixed 𝑛𝜆 can be attributed 350 

to the increase of nonzero element in the stiffness matrix. The calculation time, however, shows 351 

a nearly quadratic dependence to 𝑛𝜆, as it is a combined effort of the number of nonzero element 352 

in the stiffness matrix and the number of time step in the entire calculation. The latter is 353 

inversely proportional to the length of each time increment, which decreases as the decrease of 354 

distance between two adjacent nodes. Provided the same 𝑛𝜆 , the calculation time shows a 355 

nearly linear increase as the increase of 𝑝𝜉, as only the number of nonzero element increases, 356 

while the distance between two adjacent nodes remains almost the same. 357 



 

 

(a) (b)  
358 

Figure 10 Comparison of (a) consumed memory and (b) calculation time of 𝐴0 mode under 359 

100 kHz using SEM (𝑛𝜆 = 1~20, 𝑝𝜉 = 1~5 𝑝𝜂 = 4). 360 

 361 

4. 3-D SEM Model of Wave Scattering from Through Hole 362 

A 3-D model of wave scattering from a through hole, as an example of the developed SEM 363 

model allowing arbitrary in-plane geometry, is built in this section to validate the correctness 364 

of the 3-D SEM model. 365 

 366 

4.1 Model Description 367 

Following the procedure in Section 2.3, a 3-D SEM model of wave scattering from a through 368 

hole is built as sketched in Figure 11, which is the same as [24] for a quantitative comparison 369 

with both experiments and analytical results. A through hole of ∅20 mm  is drilled on an 370 

aluminum plate with dimensions 1000 × 1000 × 1 mm3 . An out-of-plane force loading is 371 

applied at a point that has a distance of 300 mm to the center of the through hole. Only the left 372 



 

 

half model is built in SEM, considering the symmetry of whole model. Two 10-cycle Hanning-373 

window-modulated sinusoidal signals with central frequencies 𝑓𝑐 = 20 kHz and 100 kHz are 374 

acted as the out-of-plane loading respectively, which dominantly generate 𝐴0 mode. According 375 

to the theoretical wavelength listed in Table 3, it is set that 𝑝𝜉 = 2, 𝑝𝜂 = 1 and 𝑛𝜆 = 10 to 376 

achieve an calculation error around 5%. This setting corresponds to the global mesh size of 0.4 377 

mm and 0.2 mm for 𝑓𝑐 = 20 kHz and 100 kHz, respectively, in the ABAQUS® model. During 378 

signal acquisition, the center of the through hole acts as the origin of a polar coordinate. The 379 

normalized amplitude of the out-of-plane displacement at 𝑟 = 13 mm from the center of the 380 

through hole is extracted at angle 𝜓 from 00 to 3600 at an interval of 50. Here ‘normalized’ 381 

means normalized with the amplitude of the incident wave without crossing the through hole. 382 

 383 

 384 

Figure 11. Sketch of 𝐴0 mode crossing a through hole. 385 

 386 

4.2 Results and Discussions: 387 

4.2.1 𝒇𝒄 = 𝟐𝟎 𝐤𝐇𝐳 388 

The out-of-plane displacement amplitude when the incident 𝐴0 mode of 𝑓𝑐 = 20 kHz scatters 389 



 

 

from the through hole based on the calculation using SEM is shown in Figure 12, to compare 390 

with the analytical results based on classical plate theory (CPT), whose derivation is explained 391 

in detail [24]. The magnitude obtained based on SEM and CPT at the angle close to 00 shows a 392 

relatively large discrepancy, which can be attributed to differences between simulation and 393 

analytical assumption, i.e., a point force-generated circular wave versus straight-crested wave 394 

and a 10-cycle modulated sinusoidal excitation versus a continuous sinusoidal excitation. 395 

Overall speaking, the good match of the two sources of result at most angles, especially at 396 

angles that face the incident waves, together with experiment measurement result [24], validates 397 

the correctness of the developed SEM model. 398 

 399 

 
400 

Figure 12. Amplitude (normalized) on a circle around the cavity based on SEM (spectral 401 

element method) and CPT (classical plate theory): theta direction: 𝜓, radial direction: normalized 402 

amplitude; plate thickness 1 mm, hole radius 𝑟0 = 10 mm, signal acquisition at 𝑟 = 13 mm, 403 

frequency 𝑓𝑐 = 20 kHz. 404 



 

 

 405 

4.2.2 𝒇𝒄 = 𝟏𝟎𝟎 𝐤𝐇𝐳 406 

When 𝑓𝑐 increases to 100 kHz, the wave scattering of incident 𝐴0 encountering the through 407 

hole is also analyzed. Although Mindlin plate theory is preferred over CPT for the analysis of 408 

wave with higher frequency in [24] to take the shear and rotatory moment into consideration, 409 

the displayed error between Mindlin plate theory and CPT is small in [24]. Thus CPT is still 410 

adopted here to give analytical result, to be compared with SEM result (Figure 13). The 411 

comparison of the result, together with the experiment measurement in [24] holds the same 412 

conclusion. The magnitude obtained based on SEM and CPT at the angle close to 00 shows a 413 

relatively large discrepancy, which can be attributed to the reasons explained in the Section 414 

4.2.1. Overall speaking, the good match of the two sources of result at most angles, especially 415 

at angles that face the incident waves, together with experiment measurement result [24], 416 

validates the correctness of the developed SEM model. 417 

 418 

 
419 

Figure 13. Amplitude (normalized) on a circle around the cavity based on SEM (spectral 420 



 

 

element method) and CPT (classical plate theory): theta direction: 𝜓, radial direction: normalized 421 

amplitude; plate thickness 1 mm, hole radius 𝑟0 = 10 mm, signal acquisition at 𝑟 = 13 mm, 422 

frequency 𝑓𝑐 = 100 kHz. 423 

 424 

5. Conclusion 425 

A benchmark study of accuracy and efficiency of SEM for modeling propagation of Lamb wave 426 

is conducted in this research. In SEM, the GLL-based node collation, together with Lobatto 427 

quadrature, intrinsically generates a diagonal mass matrix, which sets the roots for the superior 428 

performance of SEM. The obtained error of group velocity using SEM can reach 0.03% for 𝐴0, 429 

proven to be an accurate simulation tool for wave propagation. To bring SEM into a useful tool 430 

to model complex geometry, a 3-D SEM model with arbitrary in-plane geometry is developed, 431 

whose correctness is validated through a model of 𝐴0 mode scattering from a through hole. 432 

Further development of the 3-D SEM model is on the way to include composite material and 433 

defect such as delamination into consideration. 434 
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