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Abstract 20 

To characterize fatigue cracks, in the undersized stage in particular, preferably in a 21 

quantitative and precise manner, a two-dimensional (2D) analytical model is developed for 22 

interpreting the modulation mechanism of a “breathing” crack on guided ultrasonic waves 23 

(GUWs). In conjunction with a modal decomposition method and a variational principle-24 

based algorithm, the model is capable of analytically depicting the propagating and 25 

evanescent waves induced owing to the interaction of probing GUWs with a “breathing” 26 

crack, and further extracting linear and nonlinear wave features (e.g., reflection, transmission, 27 

mode conversion and contact acoustic nonlinearity (CAN)). With the model, a quantitative 28 

correlation between CAN embodied in acquired GUWs and crack parameters (e.g., location 29 

and severity) is obtained, whereby a set of damage indices is proposed via which the severity 30 

of the crack can be evaluated quantitatively. The evaluation, in principle, does not entail a 31 

benchmarking process against baseline signals. As validation, the results obtained from the 32 

analytical model are compared with those from finite element simulation, showing good 33 

consistency. This has demonstrated accuracy of the developed analytical model in 34 

interpreting contact crack-induced CAN, and spotlighted its application to quantitative 35 

evaluation of fatigue damage. 36 

 37 

Keywords: “breathing” crack; contact acoustic nonlinearity; guided ultrasonic waves; 38 

analytical model; crack evaluation  39 
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1. Introduction 40 

Fatigue damage, pervasive in engineering structures, has posed tremendous jeopardy to 41 

structural integrity and durability. Without timely awareness and subsequent remedial 42 

actions, fatigue damage can potentially lead to tragic consequences, incurring immense 43 

monetary wastage and even loss of life. Amongst various modalities of fatigue damage, the 44 

contact fatigue cracks are prevailing but most insidious. This sort of fatigue damage is 45 

usually initiated by deteriorative changes in material microstructures due to local 46 

accumulation of dislocations, high stress concentration, plastic deformation around 47 

inhomogeneous inclusions or other inherent imperfection, when a structure is subject to 48 

cyclic rolling and/or sliding contact loads. Progressive crack propagation from a microscopic 49 

to macroscopic degree subsequently leads to permanent damage at an observable extent[1]. 50 

 51 

The longer an engineering structure in service the more contact fatigue cracks it may 52 

develop. The presence of contact fatigue cracks in pivotal structural components (e.g., 53 

aircraft engine turbine, rolling bearings or junction components in power plants) can be 54 

extraordinarily detrimental. Exemplarily, a train owned by Norfolk Southern in Columbus, 55 

the United States, detailed on July 11, 2012[2], leading to an urgent evacuation of hundreds 56 

of residents and vast economic loss. Later investigation has revealed that the fracture of a 57 

rail section, initiated by numerous contact fatigue cracks caused by rolling train wheels after 58 

years of service of the rail section, was the culprit of this disastrous case. 59 

 60 

To detect contact fatigue cracks at an embryo stage, qualitatively at least if not 61 

quantitatively, is an imminent task to warrant a reliable service of key engineering structures, 62 

and a rigorously defined and functionally deployed structural health monitoring (SHM) 63 

technique can accommodate such a need. Amongst existing SHM techniques [3-7] the 64 
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guided ultrasonic wave (GUW)-based SHM[8-11] has proven its superb capability to strike 65 

a balance among resolution, detectability, practicality and cost, by taking advantage of 66 

appealing features of GUWs including long-range and quick probing, omnidirectional 67 

dissemination, high penetration, great sensitivity to damage of small dimensions, and cost-68 

effective implementation. 69 

 70 

The majority of existing GUW-based SHM approaches evaluate material deterioration 71 

or structural damage based on changes in linear signal features[12, 13] related with present 72 

damages, such as delay in time-of-flight (ToF)[14], wave reflection and transmission[15], 73 

energy dissipation[16] and mode conversion[17]. Nevertheless, as commented earlier, the 74 

damage in real-world engineering structures usually initiates from imperceptible contact 75 

fatigue cracks that become conspicuous quite late. These fatigue cracks (with its 76 

characteristic dimension much smaller than the wavelength of the probing GUW) may not 77 

engender remarkable changes in linear GUW features. Therefore, when dealing with contact 78 

fatigue cracks, the SHM approaches relying on the use of linear GUW features may be out 79 

of their depth. 80 

 81 

Recognition of the inefficiency of linear GUW features towards evaluating contact 82 

fatigue cracks has motivated alternative attempts to explore nonlinear features extracted 83 

from GUW signals at frequencies other than the excitation frequency of the probing 84 

GUW[18-20]. The nonlinear GUW features are commonly typified by the second-[18, 21, 85 

22]/sub-harmonics[19], mixed frequency responses[23] (e.g., nonlinear wave modulation 86 

spectroscopy), and shift of resonance frequency (e.g., nonlinear resonant ultrasound 87 

spectroscopy)[24] to name a few, as comprehensively surveyed elsewhere[25]. Nonlinear 88 

GUW features have been proven capable of rendering enhanced detectability, sensitivity and 89 
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accuracy compared with their linear counterparts. As an extra merit, nonlinear GUW features, 90 

deployed in a frequency domain, can bypass possible spatial interference from the inspected 91 

structure, therefore possessing good immunity to wave reflections and mode conversion at 92 

structural boundaries. 93 

 94 

Various sources of nonlinearity have been scrutinized[14, 26, 27], on which basis the 95 

nonlinear GUW features, generated when a probing GUW interacts with a contact fatigue 96 

crack, are interpreted. The commonly recognized nonlinear sources include the contact 97 

acoustic nonlinearity (CAN), bi-linear stiffness, hysteresis, Hertzian contact,, thermo-elastic 98 

coupling effect, etc., as reviewed by D. Broda et al.[28]. These sources of nonlinearity jointly 99 

contribute to the manifestation of nonlinearities in captured GUW signals. In particular, the 100 

CAN has been recognized as one of the major sources to introduce nonlinearity, and has 101 

been the core of intensive research. Numerically, Wan et al.[29] studied the interaction 102 

between fundamental symmetric Lamb waves and a buried micro-crack in a thin plate using 103 

a finite-element method (FEM), showing a monotonic increasing relationship between the 104 

CAN and the length of the micro-crack. Shen and Giurgiutiu[30] adopted FEM to simulate 105 

the interaction between Lamb waves and a surface-breathing crack in a plate, giving similar 106 

results. Analytically, Solodov et al.[31] has examined the interaction between a contact crack 107 

and probing waves. By assuming a step-change in the material stiffness at the crack location, 108 

the generation of high-order harmonics induced by the crack was calibrated. Richardson[32], 109 

from an analytical perspective, explored the high-order harmonic generation, by depicting 110 

the motion of two surfaces of a crack (an unbonded interface between two media) under the 111 

modulation of traversing waves. In both studies, the probing waves were modelled as 112 

longitudinal waves, and this has essentially limited the investigation into a one-dimensional 113 

(1D) scenario. On the other hand, a two-dimensional (2D) GUW behaves differently from a 114 
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1D longitudinal wave, and it embraces both propagating and evanescent waves, each of 115 

which features multiple modes co-existing simultaneously. Superposition of individual wave 116 

modes affects the crack when a GUW traverses the crack, under which the motion of crack 117 

surfaces, in a 2D manner, is not a uniform motion throughout the entire crack surfaces as 118 

hypothesized in a 1D case. These diatheses jointly lead to a mechanism of CAN generation 119 

that is substantially different from 1D scenarios, making the existing 1D models largely fail 120 

to construe the modulation of contact fatigue cracks on propagating GUWs accurately. 121 

 122 

With this motivation, the present work is aimed at achieving an analytical insight into 123 

the modulation of a 2D contact fatigue crack with “breathing” behaviors on GUWs. An 124 

analytical model is developed, to quantitatively interpret the underlying mechanism of CAN 125 

generation induced by a contact fatigue crack. With the model, both the propagating and 126 

evanescent waves, along with the converted modes at crack surfaces, can be depicted 127 

explicitly. An analytical prediction of the CAN generation, subjected to the severity of the 128 

crack, is obtained, on which basis a quantitative correlation between CAN embodied in 129 

acquired GUW signals and crack parameters (e.g., location and severity) is ascertained. With 130 

such a correlation, the severity of a contact fatigue crack can be evaluated quantitatively. 131 

 132 

This paper is organized as follows: modulation of a 2D “breathing” crack on 133 

propagating GUWs is modeled analytically, and detailed in the second section. The model 134 

illuminates the generation of high-order harmonics induced by the crack and predicts the 135 

crack-induced wave fields. In this section, a quantitative correlation between the nonlinear 136 

features of GUWs and crack parameters is derived; a set of linear and nonlinear indices is 137 

defined, for evaluating the severity of a contact fatigue crack. In the third section, the 138 

developed analytical model is validated against finite element simulation. Concluding 139 
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remarks are presented in the last section. 140 

 141 

2. Modulation of “breathing” crack on probing GUWS – a nonlinear perspective 142 

Consider a 2D plate-like waveguide, as illustrated schematically in Fig. 1, in which a 143 

contact crack exists along the waveguide thickness, A probing GUW is introduced into the 144 

waveguide with a transmitter (e.g., a piezoelectric wafer) from the upper surface of the 145 

waveguide, left to the crack; and the probing GUW, guided by the waveguide, takes the 146 

modality of Lamb waves, to interact with the crack and accordingly produces transmitted 147 

and reflected waves that are acquired via wave receivers (or other non-contact means such 148 

as laser interferometry), respectively right and left to the crack. GUWs in the waveguide 149 

encompass multiple wave modes including symmetric and antisymmetric Lamb modes. 150 

 151 

Limit the discussion to a lower thickness-frequency product – the highlighted region in 152 

the dispersion curves of GUWs in the waveguide shown in Fig. 2, where only the 153 

fundamental symmetric (S0) and anti-symmetric (A0) Lamb modes exist. For this region, the 154 

S0 mode features a higher velocity than that of the A0 mode, which can be beneficial to avoid 155 

the contamination from the waves reflected by structural boundaries, and therefore is 156 

selected to trigger the “breathing” behavior of the crack and introduce nonlinearity into 157 

GUWs. The interaction between the probing GUW and the contact crack embraces the 158 

following two steps in a “breathing” cycle of the crack: 159 

(1) when the crack closes during wave compression, the propagating GUW is 160 

transmitted without inducing wave scattering; and 161 

(2) when the crack opens during wave dilation – the case shown in Fig. 1 – the 162 

propagating GUW is partially decoupled, producing wave reflection and 163 

transmission in the waveguide. 164 
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These two steps jointly introduce the “breathing” behavior of the crack, and consequently 165 

incurs wave scattering and mode conversion (e.g., conversion of the S0 mode to the A0 mode, 166 

or generation of the first-order symmetric mode (S1) if the frequency is larger than the cut-167 

off frequency of the S1 mode), to distort the probing GUW. It is therefore that a “breathing” 168 

crack can be deemed as a second wave source in the waveguide to introduce a new wave 169 

field that modulates the original wave field – called “crack-induced second source” (CISS 170 

hereinafter) in this study. 171 

 172 

It is the time-dependent traits of CISS – present when the crack opens and absent 173 

otherwise – lead to the generation of CAN. In the following, the amplitude of the CISS-174 

induced CAN is to be ascertained analytically, via a modal decomposition method, Fourier 175 

transform analysis and a variational principle-based algorithm, based on which a set of linear 176 

and nonlinear indices can be defined for quantitative evaluation of the crack severity. Such 177 

a framework is recapitulated in Fig. 3, and as detailed as below. 178 

 179 

2.1. High-order harmonics induced by “breathing” crack 180 

Assume that the crack in Fig. 1 opens at a particular moment, opent , when the stress at 181 

the crack interface turns from the compressional to tensile status in a cycle of interaction 182 

between the probing GUW and the crack. Upon crack opening, the crack interface behaves 183 

the same as it does when the probing GUW traverses a fully opened, notch-like crack of the 184 

same through-thickness depth, in which both the propagating and evanescent waves are 185 

generated. Although the evanescent waves transfer no energy and decay exponentially as 186 

waves propagating, the evanescent waves do influence the stress and displacement fields in 187 

the vicinity of the crack[33] (to be demonstrated in what follows). 188 
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 189 

Mathematically, the propagating and evanescent waves correspond to the roots of the 190 

dispersive equations of Lamb waves in a 2D waveguide, defined as 191 

 
( )

( ) ( )( )

2

2 2 2 2 2
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ph k p p k q
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+ + −
.  (1) 192 

In the above, 

2
2 2

2

L

p k
c


= −  and 

2
2

2

T

q k
c


= − ;   is the angular frequency, h  the half the 193 

thickness of the waveguide, and k  the wavenumber;   and   are the shear modulus and 194 

Lamé constant, respectively; Lc  and Tc   denote velocities of the longitudinal and 195 

transverse/shear modes, respectively. 196 

 197 

Using a Newton-Raphson method [34], the solutions to Eq. (1) can be obtained, which 198 

comprise a finite number of real roots (corresponding to propagating waves) and pure 199 

imaginary roots (associated with evanescent waves), along with an infinite number of 200 

complex roots (also relevant to evanescent waves), in Fig. 4. The root with a negative 201 

imaginary value is physically meaningless, and only those with positive imaginary values 202 

(corresponding to evanescent waves) and the ones with pure real values (propagating waves) 203 

can be acquired in experiment. The stress and displacement fields of all the propagating and 204 

evanescent waves form a complete set of bases[35]. Via appropriate superposition of the 205 

bases, the stress ( ( )3x ) and particulate displacement ( ( )3xu ) fields across the entire 206 

thickness of the waveguide (
3x ) can be depicted as 207 
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where 209 
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                   (2b) 210 

In the above, 1x  and 3x  represent directions of the probing GUW propagation and 211 

waveguide thickness, respectively (Fig. 1); t  is the time, and N an index to distinguish the 212 

order of Lamb wave modes in the waveguide; n  and 
n

u  are the stress tensor and 213 

displacement vector for the nth-order Lamb wave mode, respectively; na  and nk  are the 214 

amplitude and wavenumber of the nth-order Lamb wave mode, respectively. 215 

 216 

When the crack opens, the crack surfaces are stress-free, while the stress and 217 

displacement fields remain continuous in the waveguide underneath the crack tip. In Fig. 1, 218 

the stress tensor (throughout the entire thickness including the cracked region and the part 219 

underneath the crack tip) can be represented in terms of three normal components (viz., 11 , 220 

33  and 13 ), and the displacement vector can be depicted with two orthotropic 221 

components (i.e., 1u  and 3u ). Using a modal decomposition[36], taking into account all 222 

the propagating and evanescent waves, and applying boundary conditions at the location of 223 

the crack, it has 224 
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  (for the part underneath the crack) 230 

(6) 231 

Note that the index n  is applicable to both the propagating and evanescent waves, and in 232 

particular n−  indicates those wave modes propagating opposite to the probing GUW. 
1x  233 

is a direction vector. ( )3

Crack x −
 and ( )3

Crack x +
 signify stress tensors on the left- and 234 

right-side cross-sections of the waveguide at the location of crack (including both the 235 

cracked region and the part underneath the crack), respectively. The incident probing GUW 236 

is labelled with the superscript “ Inc ” in equations. The coefficient na , an unknown 237 

complex to be correlated with the amplitude of the incident GUW, is denoted by Inca . 238 

 239 

To solve Eqs. (3)-(6) numerically, a singular value decomposition (SVD) method[37] 240 

is recalled. In SVD, the infinite evanescent modes in Eqs. (3)-(6) are truncated up to the first 241 

N modes. A total of 20 modes (i.e., N=20), as demonstrated in this study, suffice to embody 242 

the majority of the energy carried by the GUW propagating in the waveguide and therefore 243 

guarantee the accuracy of solutions. The cross-section of the waveguide at the location of 244 

crack is numerically discretized, and the distance between any two adjacent, discretized 245 

points measures 1/25 of the waveguide thickness. To examine the accuracy of such a 246 

discretization, an energy balance-based criteria is applied, in accordance with the fact that 247 

the total energy carried by all the scattered wave modes, including transmitted and reflected 248 

modes, is supposed to approximate to the energy of the incident probing GUW. In this study, 249 

the energy difference between the scattered wave modes and the probing GUW, during SVD 250 

with the current discretization resolution, is less than 5%, validating the accuracy of the 251 

model in depicting the stress and displacement fields in the crack vicinity. 252 
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 253 

With Eqs. (3)-(6), the amplitude of each wave mode (
na ) – a function of 

Inca – can be 254 

obtained. It can be seen that the stress and displacement fields at the crack are indeed the 255 

superposition of the stress and displacement fields of the incident probing GUW and those 256 

of the crack-induced waves (viz., by CISS), as 257 
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where Crack−
u  and Crack+

u  are the displacement vectors of discretized points on the left- 259 

and right-side cross-sections at the location of the crack, respectively. 260 

 261 

With explicit depiction of the stress and displacement fields at the crack in the above, 262 

the CISS during the crack opening can be defined as, 263 

( )

( )

1

1

,

,

open Crack Inc

Inc

open Crack Inc

Inc

a

a

 

 

+ +

− −

= − 

= − 

CISS x

CISS x
                   (8) 264 

where open+
CISS  and open−

CISS  denote the CISS (a force vector) on the right- and left-265 

side cross-sections at the location of crack, respectively. open+
CISS  and open−

CISS  are of 266 

the identical amplitude yet opposite orientation. Considering the amplitude is of interest in 267 

the model, open+
CISS  and open−

CISS   are consolidated into open
CISS   in what follows. 268 

With Eq. (7), the gap of two crack surfaces can be attained by calculating the difference 269 

between the in-plane (
1x  ) displacement of the right- ( ( )1 3 ,Cracku x t+

 ) and left-side 270 

( ( )1 3 ,Cracku x t−
) crack surfaces. When such a distance retreats to zero, namely 271 

 ( ) ( )1 3 1 3, , 0Crack Cracku x t u x t+ −− = , (9) 272 
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the crack closes, and this particular moment is denoted as closet . To solve Eq. (9) makes closet  273 

available. Up to this point, both opent  and closet  of a “breathing” cycle of the contact crack 274 

have been determined, upon taking the influence of CISS-induced wave fields on the 275 

incident probing GUW into account. 276 

 277 

When the probing GUW is continuously emitted into the waveguide via tranmitter and 278 

cyclically interacts with the “breathing” crack, CISS periodically introduces wave fields in 279 

accordance with the above analysis. In the 2D scenario, the displacement of each discretized 280 

point on the crack surface is, under a general circumstance, different from the others at a 281 

moment, while, from Eq. (9), the closer to the crack tip the earlier the point on the crack 282 

surface closes in a “breathing” cycle. For convenience of discussion, the moment at which 283 

the two points, which are respectively located at the center of the left- and right-side crack 284 

surfaces (called mid-point pair in what follows), commence to be in contact is adopted as 285 

the moment that the entire crack, as a whole, begins to close. 286 

 287 

With the developed analytical model, Figure 5 shows the displacement history of the 288 

mid-point pair when the probing GUW is continuously emitted into the waveguide, to 289 

observe that: 290 

(1) the crack is about to open when the displacement of mid-point pair (both have the 291 

same displacement before crack opens) reaches the maximum along the 292 

propagation direction of the probing GUW, which corresponds to the moment when 293 

the stress field at the crack turns from a compressional into a tensile phase; and 294 

(2) the crack intends to close when the gap between the mid-point pair retreats to zero. 295 

 296 

Note that the CISS-induced wave fields distort the incident probing GUW, influencing 297 
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the “breathing” behaviors of the crack, and under such an influence the closet  is determined. 298 

By way of illustration, Figure 5 also compares the displacement history of the mid-point pair 299 

with (using the developed model) and without (using existing 1D models) consideration of 300 

the influence of CISS-induced wave fields, when the crack is at two representative degrees 301 

of severity (50% and 75% of the waveguide thickness). Discrepancy can be seen between 302 

models. The discrepancy, though at a slight degree, imposes significant effect on the 303 

amplitude of the “breathing” crack-induced high-order harmonics in the spectrum which is 304 

to be extracted at double excitation frequency – that is because the magnitude of the crack-305 

induced CISS in frequency domain is sensitive to opent  and closet , and a slight difference in 306 

closet  (due to ignorance of CISS-induced wave fields) can result in remarkable difference in 307 

accordingly ascertained magnitude of CAN. It is noteworthy that in a 1D scenario, the opent  308 

and closet  are linked with the pre-stress which is prerequisite to close the interface, while 309 

that is not the case in a 2D scenario because the waveguide remains continuous (via the part 310 

underneath the crack) when the probing waves are traversing. 311 

 312 

Further, to reflect the above periodical “breathing” behaviors of the contact crack, an 313 

indicator function, ( )f t , is introduced to modulate open
CISS , as 314 

 ( )0e ,
i tbre open f t


=  CISS CISS   (10a) 315 

where 316 

( )
1,

0, .

open close

close open

t t t
f t

t t t T

 
= 

  +

                 (10b) 317 

In Eq. (10a), 
bre

CISS is the modulated CISS featuring “breathing” traits. T  is the duration 318 

of a cycle of the probing GUW. 
0  is the angular excitation frequency. The spectrum of 319 
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bre
CISS   can be obtained by convoluting incident wave period function 0e

i t   with the 320 

indicator function ( )f t , as 321 

 ( )0( ) ( ) (e ) ( ),
i tbre openF F F F f t
 = =  CISS CISS   (11) 322 

where F   denotes the operation of Fourier transform. The notation    represents the 323 

convolution operation. With Eq. (11), the harmonics of various orders can be obtained from 324 

the spectrum, as shown in Fig. 6. 325 

 326 

In the spectrum, 
bre

CISS   features a series of CISS, each respectively existing at 327 

multiples of 
0 . In particular, at 

0  and 
02 , 

bre
CISS  is 328 

 0 0

0
,

bre i topenA e
 



−
=  CISS CISS  (at 

0 ), (12a) 329 

 0 0

0

2 2

2 .
bre i topenA e

 



−
=  CISS CISS  (at 

02 ),  (12b) 330 

where 
0

A  and 
02A    signify amplitudes of the excitation (

0  ) and double excitation 331 

frequency (
02  ) components obtained from the spectrum. 0bre −

CISS   and 02bre −
CISS  332 

defined by Eq. (12) analytically interpret the generation of the reflected and transmitted wave 333 

fields at 
0 , and generation of the second harmonic at 

02 , respectively. 334 

 335 

The model shown in Fig. 1 can be deemed as a jointed waveguide, comprising two 336 

semi-infinite parts that are jointed via the continuous part underneath the crack tip. For each 337 

semi-infinite part, an CISS functions as an independent excitation source applied on the free 338 

end, whose through-thickness distribution can be obtained using Eq. (8) and is plotted in Fig. 339 

7. In a “breathing” cycle of the crack, the second harmonic produced by 02bre −
CISS340 

embraces both the propagating and evanescent waves, superposition of whose stress fields 341 
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on the free end yields to 02bre −
CISS , as  342 

 

0 00
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where 02

nb


 is the amplitude of the nth-order Lamb wave mode at 
02 , to be ascertained 344 

in the next step (Section 2.2); 02

1

bre
CISS

−  and 02

3

bre
CISS

−  represent two decompositions 345 

of 02bre −
CISS  in the 

1x  and 
3x  directions, respectively. 02

11

n  −
and 02

13

n  −
 are the two 346 

decompositions of the stress tensor of the nth-order Lamb wave mode at 
02  . For 347 

convenience of discussion, the location of the crack, where the two semi-infinite parts are 348 

jointed, is set as the origin of the coordinate system, as highlighted in Fig. 7 (viz., 1 0x =  at 349 

the original location of the crack before its interaction with the probing GUW). 350 

 351 

Based on the above derivation, it can be seen that the generation of the second harmonic of 352 

the probing GUW can be attributed to 02bre −
CISS , and the generated wave fields can fully 353 

be depicted analytically using Eq. (13). 354 

 355 

2.2. Propagating waves induced by CISS 356 

With Eq. (13), one can further delineate the reflection and transmission wave fields at 357 

0  or 
02 , from which CISS-induced propagating waves can be isolated from other wave 358 

modes. To this end, the variational principle[38] is recalled in the model. With 02bre −
CISS , 359 

the variational principle for the motion of the waveguide is given by 360 

( ) ( ) ( ) ( )0 0 0 0 0 02 2 2 2 2 2

, jRe Re Re Re 0,
bre

ij i i i j ji i
V S

u u dv CISS u ds
          −
− + − =   361 

( )1, 3, 1, 3i j= =        (14a) 362 
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where   is the density. “ Re ” denotes the real part of a complex number. V and S  stand 363 

for the volume and surface of the waveguide, respectively. i denotes a dummy index (i=1 or 364 

3). 02

iu


 and 02

ji

 ( 0 0 02 2 2
=

n

ji n jib
    −

 ) are the excited displacement and stress fields in 365 

the waveguide when subjected to 02bre

iCISS
−

. 02

iu
  signifies the variation of 02

iu


. 02

iu


 366 

is the second-order derivative of 02

iu


 with respect to time. 02

, jij

 is the partial derivative of 367 

02

ji

  in the direction of 
jx . Specifically, on the upper and lower surfaces of the waveguide, 368 

1j =  (when 3j = ) and 0j =  (when 1j = ); at the free end of each semi-infinite part 369 

where the CISS is applied, 1j =  (when 1j = ) and 0j =  (when 3j = ). Given the fact 370 

that the stress ( 02

ji

 ) and displacement ( 02

iu


) fields induced by 02bre −
CISS  in Eq. (14a) 371 

are the superposition of the wave modes propagating in an infinite waveguide as mentioned 372 

earlier (Section 2.1), all the volume integrals in Eq. (14a) vanish because each term in the 373 

superposition satisfies the differential equations of equilibrium, and this leads to 374 

( ) ( )0 0 02 2 2
Re Re 0

bre

i j ji i
S

CISS u ds
    −
− = , ( )1, 3, 1, 3i j= = .        (14b) 375 

According to the variational principle[38], namely 376 

( )0 0 02 2 2
,

m

i m iu b u
    −
=      ( )1, ,m N=              (15) 377 

where 02

mb


  is the amplitude of the thm  -order Lamb wave mode, 02m

iu
−

  signifies the 378 

particulate displacement of the thm -order Lamb wave mode along the thi  direction at 
02 , 379 

the surface integral in Eq. (14b) gives rise to 380 

( ) 0 0 0 1 0 0 0 1 02 2 2 2 2 2 2
Re Re 0.n mbre n ik x i t m ik x i t

i j n ji m i
S

n

CISS b e e b u e e ds
        − − −  

 −    =    
  

  381 

 (16) 382 

Further, integrating Eq. (16) with respect to t  spanning a complete period of the Lamb 383 
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waves at 
02 , and in the meantime obtaining the value at the free end (when 1 0x =  in Fig. 384 

7), one has 385 

 ( ) ( )0
0 0 0 0

2 2 2 2 2

3Re 0,
h bre n m

i j n ji m i
h

n

CISS b b u dx
      

− − −

−

  
−    =  

  
   (17) 386 

where the bar over a variable denotes its complex conjugate. Using the dummy index defined 387 

earlier, it has 388 

0 0 0
0 0 0

2 2 22 2 2
1 31 3= ,

bre bre brem m m
i iCISS u u CISS u CISS

    − − −− − −
 +  and 389 

( ) ( )0 0 0 0 0 0 0 02 2 2 2 2 2 2 2

1 11 3 13=
n m m n m n

j n ji i n

n n

b u u u b
          − − − − − −

   +  , whereby Eq. (17) can be 390 

re-written as 391 

( )
( )

( )

0 0
0 0

0

0 0 0 0 0

2 22 2
1 31 3

2

3
2 2 2 2 2

1 11 3 13

Re 0.

bre brem m

h

m
m n mh

n

n

u CISS u CISS

b dx
u u b

  



    


 

− −− −

− − − −−

  + −
  

=  
+  

  




  (18) 392 

Considering that ( )02

mb
  can be an arbitrary complex, Eq. (18) is tenable only when the 393 

following condition is met 394 

( ) ( )0 0
0 0 0 0 0 0 0

2 22 2 2 2 2 2 2
1 31 3 3 1 11 3 13 3.

h hbre brem m m n m n

n
h h

n

u CISS u CISS dx u u b dx
        

− −− − − − − −

− −
+ = +   395 

 (19) 396 

For the same reason as stated earlier, the wave modes considered is limited to the first 20 397 

modes (i.e., N=20) which carry the majority of the wave energy in the waveguide. To further 398 

simplify Eq. (19), let 399 

 ( )  0 0 0 02 2 2 2

1 11 3 13 3 =
h

m n m n

mn N Nh
u u dx M

    − − − −

−
+ ,   ( )1, , ; 1, ,m N n N= = (20a) 400 

where  mnM  is a matrix with a dimension of N N , and define the inverse of  mnM  as 401 

   
1

.mnM R
−
=                           (20b) 402 

Multiplying  R  with both sides of Eq. (19) yields 403 



19 

   ( )0 0
0 0 0

2 22 2 2
1 31 3 3

1
.

h bre brem m

n
N h

b R u CISS u CISS dx
   − −− −

 −
  =  +     (21) 404 

Using Eq. (21) and then substituting the analytical depiction of 02bre −
CISS  (ascertained 405 

via Eq. (12b)) into Eq. (21), one can get the conjugate of the amplitude of every single wave 406 

mode (either propagating or evanescent wave) at 
02   (i.e., 02

nb


 ), excited by the 407 

02bre −
CISS .  408 

 409 

It is noteworthy that  mnM   in Eq. (20a), in terms of its physical interpretation, 410 

represents the average rate at which the work is done by the stress of thm -order Lamb wave 411 

mode when this wave mode acts through the particulate displacement of the thn -order Lamb 412 

wave mode – a coupling correlation between two wave modes propagating in the waveguide. 413 

 414 

Along the same line of analysis, the reflected and transmitted wave fields at 
0 , which 415 

is attributed to the CISS induced by the crack at the excitation frequency (i.e., 0bre −
CISS ), 416 

can also be obtained. 417 

 418 

Although both the propagating and evanescent waves are generated by the contact crack, 419 

the evanescent waves exist only in the vicinity of the crack and decay exponentially as wave 420 

propagating [33]. Thus, only the propagating waves (e.g., S0 mode), to be captured with a 421 

far-field receiver in experiment, are exploited in what follows. Bearing this in mind, the 422 

amplitudes of the propagating S0 mode (in far field) at 
0  induced by the 0bre −

CISS and 423 

at 
02   induced by 02bre −

CISS   are denoted by 0

1b


 and 02

1b


  (viz., for S0 mode, n=1), 424 

respectively. Thus, the displacement fields ( 0

1U
  , 0

3U
  , 02

1U
   and 02

3U
  ) of the 425 

propagating crack-induced S0 mode can be ascertained, as 426 
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 ( ) ( )0 0 0 01 1

1 1 1 3 3 1 3 3, ,U b u x U b u x
   
= =   (22a) 427 

( ) ( )0 0 0 0 0 02 2 1 2 2 2 1 2

1 1 1 3 3 1 3 3, ,U b u x U b u x
     − −
= =             (22b) 428 

where 0

1U


( 0

3U


)and 02

1U


( 02

3U


) are the in-plane (out of plane) displacement fields of the 429 

propagating S0 mode at 
0   and 

02  , respectively. ( )1

1 3u x   ( ( )1

3 3u x  ) and ( )01 2

1 3u x
−

430 

( ( )01 2

3 3u x
−

) are the mode shape functions of the in-plane (out-of-plane) displacement fields 431 

of the propagating S0 mode at 
0  and 

02 , respectively. 432 

 433 

Note that the magnitudes of CISS-generated second harmonics, as defined by Eq. (22b), 434 

in the reflected and transmitted waves are identical, because the magnitudes of the two435 

02bre −
CISS  in both semi-infinite parts are the same. This implies that, in principle, during 436 

the evaluation of a contact crack using the crack-induced second harmonic, a “pulse-echo” 437 

configuration (for capturing reflected waves) and a “pitch-catch” configuration (for 438 

capturing transmitted waves) are equally feasible, with comparable sensitivity and accuracy. 439 

In a “pulse-echo” configuration, the reflected wave fields can be illustrated with Eq. (22a), 440 

while in a “pitch-catch” configuration, the influence of the incident probing GUW on the 441 

transmitted wave fields must be taken into account – that is to say the displacement fields of 442 

the propagating S0 mode are the superposition of the incident probing GUW and the 443 

transmitted waves. Considering the probing GUW in this study takes the modality of S0 mode 444 

(viz., 
1Inc

i iu u= ), the said superposition is 445 

 ( ) ( ) ( ) ( )0 0 0 01 1 1 1

1 1 3 1 1 3 3 3 3 1 3 3,Inc IncU a u x b u x U a u x b u x
   
= − = − .  (23) 446 

  447 
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2.3. Damage index for evaluating crack severity 448 

Based on Eqs. (22) and (23), a set of dimensionless damage indices, making use of the 449 

nonlinear (extracted at 
02  ) and linear (at 

0  ) GUW features, is proposed, aimed at 450 

quantitatively evaluating the severity of a contact crack, defined as 451 

 
( )( )

( )( )
( )( )

0 0
0

2 1 22
1 1 31

1 1

1 3 1 3

,
Inc Inc

b u xU
NI

a u x a u x

  −

= =   (24a) 452 

 
0

1 ,R

Inc

b
LI

a



=  
( )0

1
,

IncT

Inc

a b
LI

a


−

=                   (24b) 453 

where NI  indicates a nonlinear index – a ratio of (i) the amplitude of the propagating S0 454 

mode at 
02 , induced by 02bre −

CISS , to (ii) the amplitude of the probing GUW (S0 mode). 455 

Linear-wise, for the purpose of comparison, two linear indices are defined: 
RLI  is the ratio 456 

of the amplitude of the crack-induced, reflected S0 mode to the amplitude of the probing 457 

GUW (S0 mode), and TLI  the ratio of the amplitude of the crack-induced, transmitted S0 458 

mode to the amplitude of the probing GUW (S0 mode). In particular, for the case shown in 459 

Fig. 1, where the wave receiver is placed on the upper surface of the waveguide, NI  can 460 

be evaluated at the upper surface when 3x h= , as 461 

 
( )

( )
( )

0 00
2 1 22

1 11
1 1

1 3 1

.
Inc Inc

b u hU
NI

a u x a u h

  −

= =   (25) 462 

With Eqs. (24) and (25), the nonlinear and linear indices can be obtained using the amplitude 463 

captured with a receiver, to evaluate the severity of a contact crack. 464 

 465 

3. Validation using finite element-based simulation 466 

To validate the developed analytical model, finite element (FE)-based simulation was 467 
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performed. ABAQUS®/CAE was employed for modeling and ABAQUS®/EXPLICIT for 468 

simulation. An aluminum medium, 8 mm in thickness, 1000 mm in length and infinite in 469 

width – a 2D waveguide – was considered and modeled using both the FE and the analytical 470 

model. The material properties of the medium are listed in Table 1. The contact crack in the 471 

waveguide was modeled as a seam with different length – an edge with overlapping nodes 472 

that can be either in contact or apart under the modulation of the probing GUW. To model 473 

the contact interaction between the two crack surfaces, a surface-surface contact-pair 474 

definition, which prohibits the penetration of nodes into opposite surface was adopted to 475 

model the “breathing” behaviors of the contact crack. To ensure accuracy of simulation, at 476 

least ten FE nodes were allocated per wavelength of the GUW at 02 . The simulations 477 

were carried out for cracks with different depth. 478 

 479 

Hanning-window modulated 5-cycle sinusoidal tone bursts with a central frequency of 480 

100 kHz were excited, by applying forces at a pair of FE nodes whose locations were 481 

symmetric about the middle plane of the waveguide, as illustrated schematically in Fig. 8. 482 

Two nodes on the top surface of the waveguide, respectively left and right to the crack, as 483 

shown in Fig. 8, were selected as wave receivers to capture GUW, on which the nodal 484 

displacements were acquired along 
1x  (corresponding to the S0 mode). Allowing for the 485 

dispersive and multimodal properties of GUWs, the thickness-frequency product of the 486 

probing GUW was selected to be 800 kHzmm, as highlighted in Fig. 2, at which only S0 487 

and A0 Lamb modes co-exist – two propagating wave modes which are barely dispersive at 488 

this frequency. 489 

 490 

With the developed FE model, a representative cycle of the crack opening (in tensile 491 

phase of probing GUW) and closing (in compressional phase) is shown in Fig. 9, to observe 492 
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that the tensile stress causes the crack to open and consequently the GUW traversing is 493 

interrupted (crack surfaces are stress-free), while the compressional stress drives the crack 494 

to close and GUW traverses the crack continuously without introducing conspicuous 495 

additional wave fields. Both jointly introduce nonlinearities to GUW signals captured by the 496 

receivers. For illustration, the time-series nodal displacement, captured by the receiver left 497 

to the crack – the reflected GUW from the crack, is displayed in Fig. 10. Applied with a 498 

short-time Fourier Transform (STFT) analysis, the signal spectrum is plotted in Fig. 11 (for 499 

two representative degrees of crack severity). From the spectrum, individual wave modes 500 

can be isolated by making a reference to the analytical dispersive curves, in Fig. 12(a). In 501 

the meantime, the amplitude of each wave mode at 
0  and 

02  are determined from the 502 

spectrum, exhibited in Fig. 12(b) (after normalized to the amplitude of the incident probing 503 

GUW). 504 

 505 

With the known amplitude of each wave mode, the linear and nonlinear damage indices 506 

were calculated using Eqs. (24) and (25). A variety of degrees of crack depth, from 12.5% 507 

up to 98.75% of the waveguide thickness, was explored, in order to calibrate the relation 508 

between the crack depth and the linear/nonlinear GUW features induced by the contact crack. 509 

Such a correlation is shown in Fig. 13 (linear indices in Fig. 13(a), and nonlinear index in 510 

Fig. 13(b)). Good agreement can be observed between FE and analytical results, indicating 511 

the validity and accuracy of the developed analytical model. 512 

 513 

At the embryo stage of a contact crack, for two linear indices, 
RLI  is noted to be trivial, 514 

while 
TLI  remains unchanged. This observation has corroborated an earlier statement in 515 

Section 1 that the linear features of GUWs are barely discernable for fatigue damage in an 516 

undersized stage, and this sort of signal features can become remarkable only when the 517 
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severity of the damage crack reaches a certain extent – (30%) as observed in Fig. 13(a). For 518 

the nonlinear index, it can be seen from Fig. 13(b) that the severer a crack, the greater NI it 519 

will be, and the increasing rate of the nonlinear index tends to decrease when the crack depth 520 

reaches a certain degree (i.e., 60% of the waveguide thickness). Similar trends were reported 521 

by Shen and Giurgiutiu[30], and Wan et al.[29], respectively, both concluding that the 522 

amplitude of CAN increased monotonically to a peak value and then tended to reach a 523 

plateau or decrease slightly. Inversely, the magnitude of the extracted CAN can be used to 524 

estimate the parameters of the crack. The monotonous correlation between the NI and crack 525 

depth indicates that the defined NI  is capable of quantifying the severity of a contact crack. 526 

Compared with the material nonlinearity-induced second harmonic whose magnitude is 527 

usually three orders lower than that of the incident probing GUW, the CAN induced by a 528 

contact crack is prominent. It is also noteworthy that, from the analytical modeling, the 529 

position of the crack along the waveguide thickness is not a factor to affect the evaluation 530 

precision, and therefore the proposed detection framework is applicable to both surface and 531 

buried cracks. 532 

 533 

Moreover, in conjunction with the use of the time-of-flight of the second harmonic, the 534 

location of the contact crack can be pinpointed using appropriate methods, such as the 535 

probability-based diagnostic imaging method[39]. In addition, in contrast to the methods 536 

based on the use of linear GUW features, the detection of the contact fatigue crack using 537 

CAN is immune to the adversity caused by the reflections and mode conversion at the 538 

boundaries. It is also noteworthy that upon the interaction of the contact crack with probing 539 

GUW, accompanying the generation of reflection and transmission, mode conversion is also 540 

to be induced, e.g., A0 can be generated when the symmetric waves traversing the crack, due 541 

to the antisymmetric geometry of the crack, as evident in Fig. 12. This has offered an 542 
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alternative to define other types of damage indices in conjunction with the use of these 543 

converted wave modes. 544 

 545 

4. Concluding remarks 546 

Aimed at characterizing fatigue cracks in a quantitative manner, a dedicated analytical 547 

model is developed to interpret the modulation mechanism of a 2D “breathing” crack on 548 

probing GUWs. In conjunction with a modal decomposition method and a variational 549 

principle-based algorithm, the model is capable of scrutinizing the “breathing” behavior of 550 

the crack when the probing GUW traversing, and analytically depicting the “breathing” 551 

behavior-induced propagating and evanescent waves, from which linear and nonlinear signal 552 

characteristics (e.g., CAN) can be extracted. With the model, a quantitative correlation 553 

between CAN embodied in acquired GUW signals and the crack parameters (e.g., location 554 

and severity) is obtained, whereby a set of damage indices is proposed, able to quantitatively 555 

evaluate the severity of a contact crack. The evaluation, in principle, does not entail a 556 

benchmarking process. FE results well corroborate the analytical model. Further study will 557 

be focused on experimental validation and also the inclusion of internal stress, crack gaps, 558 

slanted incidence and crack roughness in the analytical model. 559 
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 663 

Tables 664 

Table 1 Material and physical properties of the aluminum used in FE validation 665 

Density [kg/m3] 

Elastic modulus 

[GPa] 

Poisson’s ratio
 Lc [m/s] Tc [m/s] 

2660 71.8 0.33 6324 3185 

 666 
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Figure Captions 668 

Fig. 1 Schematic of a 2D infinite waveguide bearing a “breathing” crack when the 

crack is open  

Fig. 2 Dispersion curve of Lamb waves in an aluminium waveguide 

Fig. 3 Flowchart of the proposed framework to quantitatively analyse CAN 

induced by a “breathing” crack  

Fig. 4 Roots to dispersive equation in a complex wavenumber domain 

Fig. 5 Displacement history of a mid-point pair when the crack depth is (a) 50%; 

and (b) 75% of the waveguide thickness (with and without consideration of 

the influence of CISS-induced wave fields) 

Fig. 6 (a) Indicator function based on Eq. (10); and (b) Spectrum of signal in (a) 

Fig. 7 (a) Cross-thickness distribution of CISS; (b) two semi-infinite parts of the 

waveguide with CISS applied on the free end of each part 

Fig. 8 The FE model for validation 

Fig. 9 Snapshots of calculated stress fields when probing GUW traversing a 

“breathing” crack: (a) tensile stress causes crack to open and GUW 

traversing is interrupted; (b) compressional stress makes crack to close and 

GUW traverses continuously 

Fig. 10 Nodal displacement history: black solid—in-plane; red dash—out-of-plane 

Fig. 11 Spectra of the signal shown in Fig. 10 obtained using STFT when the crack 

depth is (a) 50%; and (b) 75% of the waveguide thickness 

Fig. 12 (a) Spectra of the acquired reflection wave fields compared with the 

analytical dispersion curves; (b) comparison between the amplitude of 

incident GUW and the amplitude of the crack-induced waves at 
0  and 

02  

Fig. 13 Defined linear/nonlinear indices vs. ratio of crack depth to the waveguide 

thickness: (a) linear indices; (b) nonlinear index 
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Fig. 2. 690 
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Fig. 3.  699 
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Fig. 4. 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 



37 

 716 

Fig. 5(a)  717 
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Fig. 6 (a) 721 
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Fig. 7(a) 726 
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Fig. 8 737 
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Fig. 9(a) 750 

 751 
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Fig. 10 766 
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Fig. 11(a) 774 
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Fig. 12(a) 779 
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