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DNN-Based Score Calibration with Multi-Task
Learning for Noise Robust Speaker Verification
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Abstract—This paper proposes and investigates several deep
neural network (DNN)-based score compensation, transformation
and calibration algorithms for enhancing the noise robustness
of i-vector speaker verification systems. Unlike conventional
calibration methods where the required score shift is a linear
function of SNR or log-duration, the DNN approach learns the
complex relationship between the score shifts and the combi-
nation of i-vector pairs and uncalibrated scores. Furthermore,
with the flexibility of DNNs, it is possible to explicitly train
a DNN to recover the clean scores without having to estimate
the score shifts. To alleviate the overfitting problem, multi-task
learning is applied to incorporate auxiliary information such
as SNRs and speaker ID of training utterances into the DNN.
Experiments on NIST 2012 SRE show that score calibration
derived from multi-task DNNs can improve the performance
of the conventional score-shift approch significantly, especially
under noisy conditions.

Index Terms—Deep learning, speaker verification, score cali-
bration, multi-task learning, noise robustness.

I. INTRODUCTION

Automatic speaker verification aims to verify whether a test
utterance is spoken by a target speaker. Since 2011, the i-vector
approach [1] together with probabilistic linear discriminant
analysis (PLDA) [2] have dominated this area. Under this
framework, each utterance is represented by a low-dimensional
i-vector that captures speaker- and channel-dependent charac-
teristics, and the PLDA model aims to separate the speaker
variability from channel variability in the i-vector space.
During verification, given an i-vector pair derived from the
utterance of a target (claimed) speaker and the utterance of a
claimant, a likelihood ratio score (namely PLDA score)

S =
p(i-vector pair|same speaker)

p(i-vector pair|different speaker)

is computed to determine whether the i-vectors in the i-vector
pair are from the same speaker or not. When computing the
PLDA score, the separation of speaker and channel subspaces
in the PLDA model is leveraged to marginalize the channel
effect on the i-vector pair. This marginalization process leads
to a likelihood ratio score that is mainly dependent on speaker
characteristics of the i-vector pair.

One of the main challenges in speaker verification is to
enhance the noise robustness of speaker verification systems.
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In particular, the speaker characteristics in i-vectors may be
distorted if the background noise is very severe. In recent
years, a lot of effort has been made to mitigate the problem.
For example, Hasen and Hansen [3] proposed to enhance and
normalize acoustic features by feature-domain factor analysis.
Denoising autoencoders (DAE) [4] have been applied to re-
store speech either in the spectral domain [5], [6] or in the
i-vector space [7], [8].

Attempts have also been made to improve noise robustness
in PLDA models. For example, Hasan et al. [9] and Garcia-
Romero et al. [10] trained a PLDA model by pooling speech
from multiple conditions, and Li and Mak [11], [12] modeled
the noise-level variability in utterances by introducing an SNR
factor and an SNR subspace into the PLDA model. In [13],
[14], Mak et al. advocated that utterances of different SNR
levels will not only cause the i-vectors to fall on different
regions of the i-vector spaces but also change the orientation
of the speaker subspace. A mixture PLDA model with mixture
alignments determined by the SNR level of utterances was then
derived to model the SNR-dependent i-vectors.

Observing that adverse acoustic conditions and duration
variability in utterances could have detrimental effect on
PLDA scores, researchers explored the potential of other
backends to replace the PLDA models, e.g., support vector
machines (SVMs) [15] or even end-to-end learning [16].
Besides, a number of score calibration methods [17]–[19] have
been proposed to compensate for the detrimental effect on the
PLDA scores. While many of these methods can compensate
for the duration mismatch only, there are techniques also
take the SNR mismatch into account [20]–[23]. All of these
methods compensate for the detrimental effect by modeling
it as a shift in the PLDA scores. The goal is to estimate the
appropriate shift from some meta data (e.g., duration and SNR
[20], [21]) or from the i-vectors [22] to counteract the effect.

In [17], [20], [21], the score shift was deterministic and
was assumed to be linearly related to the SNR of utterances
and/or to the logarithm of utterance duration. In [23], the
shift was stochastic and was assumed to follow a Gaussian
distribution with mean and variance dependent on the speech
quality. Given an observed noisy score, a Bayesian network
was used to infer the posterior distribution of the target and
non-target hypotheses, from which a calibrated likelihood-ratio
is computed. On the other hand, the score shift in [22], [24]
was assumed to be simple functions (bilinear transformation
and cosine distance) of the two quality vectors derived from
the i-vectors involved in the scoring. While promising results
have been achieved, the relationship between score shift and
SNR and log-duration may not be linear, and the bilinear
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transformation and cosine distance scores may not accurately
reflect the true relationship between the score shift and i-vector
quality.

In this paper, we attempt to obviate the above restrictions
by directly modeling the complex relationship between score
shift and distorted i-vectors. Inspired by the recent findings
that deep neural networks (DNNs) have a high capacity in
modeling complex relationship, we trained a DNN using i-
vector pairs (derived from both clean and noisy speech) as
inputs and the ideal score shifts as target outputs. This method,
however, requires parallel training data comprising clean and
noisy i-vectors so that ideal score shifts can be computed
during the training stage. To obviate this requirement, we
trained a second DNN that can produce close-to-ideal (clean)
PLDA scores by using i-vector pairs augmented with the
PLDA score as input. To further leverage the meta data (SNR
and speaker labels) that can be easily obtained from training
utterances, we used multi-task learning to train a third network
whose input is identical to the second DNN but its outputs
aim to achieve two tasks: regression and classification. For
the former, the network was trained to produce ideal score
shift, clean score, and the SNRs of target and test utterances,
whereas for the latter, the network aims to classify whether the
i-vector pairs come from the same speaker or from different
speakers.

The paper is organized as follows. We will introduce the
previous score calibration methods in Section II; based on
these methods, we propose the DNN-based calibration meth-
ods in Section III, where the DNNs are trained to output the
calibrated score directly without estimating the score shift.
Experiments on NIST 2012 SRE in Section IV show that the
auxiliary tasks in multi-task learning help the DNNs to find a
better solution, which makes the multi-task DNNs outperform
the single-task DNNs under all SNR conditions significantly.

II. QUALITY-BASED SCORE CALIBRATION

To improve the robustness of speaker verification, Man-
dasari et al. [20], [21] and Hasan et al. [17] proposed several
quality measure functions (QMFs) to compensate for the score
shift caused by background noise and short utterance duration.
A QMF is a function of some quality measures such as SNR
and duration that can be directly obtained from utterances.
Denote S as the uncalibrated verification score of a target-
speaker utterance and a test utterance. Also denote λtgt and
λtst as the quality measures of the target-speaker and test
utterances, respectively. Then, the calibrated score S′ can be
computed as follows:

S′ = w0 + w1S +Q(λtgt, λtst), (1)

where Q(λtgt, λtst) is a QMF. In [20], [21], the QMFs were
based on the duration and SNR of test speech:

QSNR(SNRtst) = w2SNRtst

QDur(dtst) = w2 log (dtst)

QSNR+Dur(SNRtst, dtst) = w2SNRtst + w3 log (dtst),

(2)

where SNRtst and dtst are the SNR and duration of the test
utterance, and w2 and w3 are their corresponding weight. If

the effect of noise in the target utterance is also considered,
QSNR becomes:

QSNR2(SNRtgt,SNRtst) = w2SNRtgt + w3SNRtst, (3)

where SNRtgt is the SNR of the target-speaker utterance. In
Eqs. 1–3, the weights wi, i = 0, . . . , 3, can be estimated by
logistic regression [25].

By assuming that i-vectors are acoustic-condition depen-
dent, Ferrer et al. [24] and Nautsch et al. [22] derived a
quality vector q based on the posterior probabilities of various
acoustic conditions given an i-vector. Thus, each i-vector
(either from target speaker or test speaker) is associated with
a quality vector, and the score shift of a verification trial is a
function of the quality vectors derived from the i-vectors in
that trial. In [22], the function is called the function of quality
estimate (FQE). Specifically, i-vectors derived from utterances
of 55 combinations of different durations and SNRs were used
to train 55 Gaussian models Λj = {µj ,Σ}55j=1. Each of these
Gaussian models has its own mean µj estimated from the i-
vectors of the respective condition, but they share the same
global covariance matrix Σ. The j-th element of q for an i-
vector x is defined as the posterior of the j-th condition:

qj =
N (x|µj ,Σ)∑
j′ N (x|µj′ ,Σ)

, j = 1, . . . , 55. (4)

Given the i-vectors xtgt and xtst from a target-speaker and
a test speaker, respectively, the corresponding quality vectors
qtgt and qtst are obtained from Eq. 4 and the score shift can
be obtained from a symmetric bilinear matrix W or cosine-
distance score as follows:

QUAC(qtgt, qtst) = w2q
ᵀ
tgtWqtst

Qqvec(qtgt, qtst) = w2cos(qtgt, qtst),
(5)

where
cos(a, b) =

aᵀb

‖a‖‖b‖
.

In Eq. 5, the elements in a quality vector are the posteri-
ors with respect to the corresponding SNR/duration groups,
and the simple functions (bilinear transformation and cosine
distance) of the two quality vectors could only reflect their
similarity in terms of SNR and duration. It is still very close
to the QMFs in Eq. 2 and Eq. 3, where the score shift is
assumed to be linear with respect to SNR of utterances and/or
to the logarithm of utterance duration. As we will discuss in
Section IV and Fig. 9, the relationship between score shift
and SNR and log-duration is complex, and only the SNR and
log-duration information is not enough to estimate the ideal
score shift. The i-vectors are essential for estimating the ideal
score shift.

III. DNN-BASED SCORE CALIBRATION

This paper proposes an innovative score calibration algo-
rithm to mitigate the limitations of the score calibration algo-
rithms described in Section II. The main idea is to use deep
neural networks (DNNs) to estimate the appropriate score shift
or to output clean PLDA scores given noisy i-vectors and noisy
PLDA scores as input. When the DNN is used for estimating



3

DNN-based Score 
Compensation / 
Transformation 

Logistic 
Regression 
Calibration 

Calibrated 
Score 

I-Vector Pair & 
Uncalibrated 

Score 

DNN-Based Score Calibration 

Fig. 1. DNN-based score calibration.

the score shift, it essentially performs score compensation and
its role is the same as that of the function Q in Eq. 1. However,
when the DNN is used for outputting clean PLDA scores,
it essentially performs score transformation. For whatever
roles, a further calibration process is essential because the
DNN cannot guarantee that the resulting scores are true log-
likelihood ratios. To avoid cluttering with terminologies, we
collectively refer to the score compensation, transformation,
and calibration processes as DNN-based score calibration.
Fig. 1 shows the full process.1

A. DNN Score Compensation: Estimating Score Shifts by
DNNs

The proposed algorithm uses a DNN to estimate the appro-
priate score shift given the target and test i-vector pairs (xtgt

and xtst) and the uncalibrated PLDA score S as shown in
Fig. 3. Specifically, given an uncalibrated PLDA score S of a
verification trial, the compensated score is given by:

S′1 = S + DNN1(xtgt,xtst, S), (6)

where DNN1 denotes the output of a DNN that receives
i-vector pairs and uncalibrated scores as input. With these
inputs, the DNN outputs the shift of PLDA scores due to the
deviation of the acoustic conditions from the clean one:

DNN1(xtgt,xtst, S) ≈ δscore = Scln − S, (7)

where Scln is the PLDA score if both xtgt and xtst were
derived from clean utterances. Substituting Eq. 7 to Eq. 6, we
have:

S′1 ≈ S + (Scln − S) = Scln,

which means that the clean score can be recovered.
To train DNN1, we need i-vectors derived from both clean

and noise contaminated utterances where the amount of noise
contamination should be varied to give a rich set of δscore’s.
This can be done by using the FaNT tool [28] with the target
SNR set to various levels. The procedure of computing Scln, S
and δscore at the training stage is illustrated in Fig. 2. Note that
Fig. 2 depicts the situation where both of the target-speaker
and test utterances are noisy. However, in real environments,
there are situations where either the target-speaker utterance or
the test utterance is clean, or both are clean. To accommodate
these situations, some of the “noisy i-vectors” in Fig. 2 should
be derived from clean speech. Therefore, if both of the i-
vectors in the lower branch of Fig. 2 are derived from clean

1In some studies [26], [27], the term calibration strictly referred to the
process of adjusting the scores without affecting the equal error rate (EER).
Here, we follow the terminology in [20]–[22] and relax the definition of
calibration to include the processes that lead to better EER performance.

Clean Test 
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Clean Target 
Speech 

Noisy Target 
Speech 

Noisy Target I-Vector Noisy Test I-Vector 

Clean Score 

Noisy Test 
Speech 
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PLDA Scoring 
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I-Vector Extractor Clean Target I-Vector Clean Test I-Vector 
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S

Fig. 2. Procedure of computing clean scores, noisy scores and score shifts
during the training stage. The SNRs of the target speech and the test speech
can be different, and even one or both of them could be clean.

utterances, we have S = Scln and δscore = 0. This is exactly
what we want the DNN to produce when the input i-vectors
are clean.

The PLDA score of i-vector pair (xtgt, xtst) can be ex-
pressed in terms of the log-likelihood ratio LLR(xtgt,xtst):

S = LLR(xtgt,xtst)

=
1

2
xᵀ
tgtQxtgt +

1

2
xᵀ
tstQxtst + xᵀ

tgtPxtst + const,
(8)

where Q and P are the matrices derived from the total
covariances and across-speaker covariances of i-vectors [29].
Using Eq. 8, the general form of score shift is:

δscore = LLR(xtgt cln,xtst cln)− LLR(xtgt,xtst)

=
1

2
xᵀ
tgt clnQxtgt cln −

1

2
xᵀ
tgtQxtgt

+
1

2
xᵀ
tst clnQxtst cln −

1

2
xᵀ
tstQxtst

+ xᵀ
tgt clnPxtst cln − xᵀ

tgtPxtst.

(9)

Note the difference between Eq. 9 and the bilinear transfor-
mation in Eq. 5. The score shift in Eq. 9 involves not only
a bilinear transformation between the target-speaker and test
i-vectors in its last term, but also the bilinear transformation
of clean and noisy test i-vectors. If we were to know the clean
test i-vector (xtst cln) for every noisy test i-vector (xtst), then
Eq. 9 can be easily computed without a DNN. However, as
we do not know xtst cln, we resort to relying on the DNN
to learn the complex relationship between the input i-vector
pairs and the score shifts.

B. DNN Score Transformation: Recovering Clean PLDA
Scores by DNNs

The score calibration method in Section III-A and previous
scoring methods such as QMF and FQE use the concept of
score shift to compensate or calibrate the scores. However, if
the clean score can be restored, the estimation of score shifts
seems to be redundant. To make the restored scores close to the
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Fig. 3. Single-task DNN with score shift as output.

ideal clean scores, we can use a DNN to model the complex
relationship between the i-vector pairs, noisy scores (S), and
the clean scores (Scln):

S′2 = DNN2(xtgt,xtst, S) ≈ Scln. (10)

In this model, the DNN (see Fig. 4) receives an i-vector pair
and its corresponding noisy score as input, and it is trained to
output the clean score.

C. Multi-task DNNs for Score Compensation/Transformation

The DNNs in Fig. 3 and Fig. 4 have hundreds of input nodes
but only one output node. Their goal is to learn a regression
task to produce the desired score shifts or clean scores. During
training, the squared errors in the output node will need to
be propagated to hundreds of nodes in both the hidden and
input layers. Our experience is that having a single source of
errors makes the backpropagation (BP) of error gradients very
inefficient. One possible solution to assisting the network to
learn the regression task is to introduce some auxiliary tasks
for the network to learn. In the literature, this is known as
multi-task learning [30], [31]. Therefore, a multi-task DNN
with auxiliary information in the output layer may help to
improve the learning efficiency.

Fig. 5 shows a DNN that uses multi-task learning to learn
not only the main task (producing score shift δscore and
clean score Scln) but also the auxiliary tasks (producing the
SNRs of target-speaker and test utterances and same-speaker
and different-speaker posteriors). To incorporate the auxiliary
information, we may add auxiliary nodes to either the input

.	.	.	.	.	.	

.	.	.	.	.	.	

.	.	.	.	.	.	

xtgt xtst S

.	.	.	.	.	.	

Clean	Score	

.	.	.	.	.	.	

.	.	.	.	.	.	

DNN2 (xtgt, xtst,S) ≈ Scln = Ideal Clean Score
Scln

Target-speaker	I-vector	 Noisy	Score	Test	I-vector	

Fig. 4. Single-task DNN that recovers the clean scores.

layer, the output layers, or both. However, we opt for adding
the auxiliary nodes to the output layers rather than to the input
layer for four reasons:

1) Adding more input nodes will require the error signals
from the error source to be propagated to more input
nodes, which is contradictory to our goal of easing the
BP training.

2) Given the large number of input nodes corresponding to
the i-vector pairs, the squared errors in the output node
will mainly depend on the i-vectors rather than the small
number of auxiliary inputs. As a result, BP training will
tend to find a network that is insensitive to the variability
in the auxiliary inputs.

3) Adding auxiliary nodes to the input layer means that
it is necessary to estimate this information during the
calibration stage. While some information such as SNRs
of utterances can be easily estimated, others such as
whether the input i-vector pair belongs to the same
person or not (see Fig. 5) is not that trivial. In fact,
the latter is the goal of the application in the first place.

4) Having more output nodes means that more error signals
can be propagated to the hidden layers. The error signals
from the auxiliary tasks can guide the network to learn
the main task [32]. They also serve as a regularizer to
avoid overfitting the main task [30].

Both the clean score Scln and ideal score shift δscore can
be the target outputs of the multi-task DNN. Once the multi-
task DNN has been trained, the calibrations defined in Eq. 6
and Eq. 10 can be obtained from the output of this DNN.
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Fig. 5. Multi-task DNN with classification and regression capacities.

Besides, according to Eq. 3, the SNRs of the target-speaker’s
utterance and the test utterance, SNRtgt and SNRtst, are useful
for estimating the score shift. Therefore, we have 4 output
nodes in the regression task as shown in Fig. 5. In addition to
the regression task, a classification task can be added. Because
our goal is to verify speakers, two classification output nodes
indicating whether the input i-vector pair is from the same
speaker or not is added to the network. In this paper, the
regression part of the DNN uses linear output nodes and
minimum mean squared error as the optimization criterion,
whereas the classification part uses softmax outputs and cross-
entropy as the optimziation criterion.

The outputs of a multi-task DNN with 4 regression nodes
and 2 classification nodes are the concatenation of two vectors:

DNN3(xtgt,xtst, S) ≈[
[δscore, Scln,SNRtgt,SNRtst]︸ ︷︷ ︸

Regression

, [p+, p−]︸ ︷︷ ︸
Classification

]ᵀ
, (11)

where p+ and p− are the posterior probabilities of same-
speaker and different-speaker hypotheses, respectively. Similar
to the notation in Eq. 7, Eq. 11 means that the DNN uses the i-
vector pair (xtgt,xtst) and the original score S as input. With

the multi-task learning strategy, the network outputs the score
shift δscore, the clean score Scln, the SNRs of target-speaker
speech and test speech SNRtst, and the posterior probabilities
(p+ and p−).

During score compensation and transformation, only the
score shift and clean score produced by the multi-task DNN
will be used:

DNN3,shift(xtgt,xtst, S) ≈ δscore, (12)

and

DNN3,cln(xtgt,xtst, S) ≈ Scln. (13)

Therefore, we have

S′3 = S + DNN3,shift(xtgt,xtst, S)

≈ Scln,
(14)

and

S′4 = DNN3,cln(xtgt,xtst, S)

≈ Scln.
(15)

D. Producing Likelihood-Ratio Scores

Our goal is to use DNNs to estimate the ideal clean scores
or ideal score shifts in order to improve the performance in
terms of equal error rate (EER) and minimum detection cost
(minDCF). Therefore, the DNNs are not trained to produce
true likelihood ratios so that the decision thresholds for which
these performance metrics are minimized are application de-
pendent.

For real-world deployments, it is desirable to have
application-independent decision thresholds [33] such that not
only the EER and minDCF are minimized, but also the actual
DCF (actDCF) or Cprimary at specific thresholds are also small.
To this end, all of the compensated/transformed scores are
subject to further calibration to produce true likelihood-ratio
scores using the logistic regression (LR) in the Bosaris toolkit
[34]:

S′′ = w0 + w1S
′
i, (16)

where S′i, i = 1, 2, 3, and 4, are the compensated/transformed
scores in Eqs. 6, 10, 14 and 15, respectively. This calibration
step only shifts and scales the DNN calibrated scores, which
reduce the actDCF without affecting the EER and minDCF.

IV. EXPERIMENTS

A. Experimental Setup

Score calibration experiments were conducted on the NIST
2012 SRE under Common Condition 4 (CC4, male). This
evaluation condition involves 723 male target speakers, with
a total of 7,116 telephone utterances for enrollment and 3,900
telephone utterances for performance evaluation. Totally, there
are 2,775 target-speaker trials and 122,624 impostor trials. The
duration of these utterances ranges from 10 to 300 seconds
(before voice activity detection (VAD)). All utterances were
spoken in English. These utterances cover a wide range of
SNR, from 0dB to 30dB as shown in Fig. 6.
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To investigate the capability of various calibration methods
under noisy environments, we used the FaNT tool [28] to add
babble noise to the target-speaker utterances and test utterances
at an SNR of 15dB, 6dB, and 0dB, respectively. Therefore, we
have four groups of training utterances and four groups of test
utterances, with the first group being the original utterances
and the last three groups having SNRs close to 15dB, 6dB,
and 0dB, respectively. Hereafter, we refer to these 4 groups
as SNR groups. The SNR distributions of the 4 groups of test
utterances in CC4 are shown in Fig. 6. Note that although
the target SNRs that we applied to FaNT are 0dB, 6dB, and
15dB, Fig. 6 shows that the peaks of the SNR distributions
do not align to these targets. The misalignments are due to
the discrepancy in the VAD decisions for adding noise and
for measuring SNRs. Specifically, FaNT has its own VAD
for estimating the amount of noise to be added to the clean
signals, whereas the measured SNRs in Fig. 6 were based
on the voltmeter function in FaNT and the decisions of our
noise-robust VAD [35].

The whole training set comprises 7116×4 = 28, 464 target-
speaker utterances from 723 target speakers in CC4 of NIST
2012, leading to 284642 ≈ 810 million i-vector pairs. Using
the procedure shown in Fig. 2, these i-vector pairs give rise to
810 million PLDA scores and score shifts. A random subset
of these scores and score shifts were selected for training
the DNNs in Fig. 3 to Fig. 5 (see Section IV-B) and for
estimating the calibration weights in Eqs. 1, 3 and 16. To
ensure that all DNNs were trained by the same set of i-vector
pairs and PLDA scores, only one PLDA model was trained.
Specifically, it was trained by using the utterances from the 4
SNR groups mentioned earlier and the i-vectors derived from
the microphone utterances (interview speech) of the same set
of target speakers in NIST 2006–2010 SREs.

The evaluation protocol of the NIST 2012 SRE defines the
target trials and impostor trials (in the .ndx files). For each
trial, a target speaker is defined but not his/her enrollment
utterances. It is up to the evaluator to select the appropriate
enrollment utterances for each trial. Because CC4 in 2012
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p(
S

N
R

)

 

 

Original CC4 Group
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Fig. 6. The SNR distributions of the original and noise contaminated
test utterances in NIST 2012 SRE (CC4 and CC5, male). For the noise
contaminated utterances, babble noise was added to the original utterances
at an SNR of 0dB, 6dB, and 15dB, respectively.

SRE involves noise contaminated test utterances, we used the
original target-speaker utterances and their noise contaminated
counterparts from the 6dB and 15dB SNR groups as enroll-
ment utterances. In the sequel, we refer to this test condition
as “original”. In addition to this “original” test condition, we
created three test conditions based on the noise contaminated
test utterances. Specifically, for the 15dB test condition, test
utterances at the SNR of 15dB were used for scoring, and
similarly for the 6dB and 0dB test conditions. The enrollment
utterances were different for different test conditions. Specif-
ically, for the 15dB test condition, the enrollment utterances
were obtained from the 15dB and 6dB SNR groups; for the
6dB and 0dB test conditions, the enrollment utterances were
respectively obtained from the 6dB and 0dB SNR groups.

The weights of the QMF in Eq. 3 and the calibration
weights in Eq. 1 and Eq. 16 were trained by using 1.5
million same-speaker utterance pairs and 400 million different-
speaker utterance pairs derived from the target speakers in the
four SNR groups. For Eq. 1 and Eq. 3, using the logistic
regression program in the FoCal toolkit, we obtained the
weights w0 = −21.5197, w1 = 0.1966, w2 = 0.1284 and
w3 = 0.1284, leading to:

S′ = 0.1966S + 0.1284SNRtst + 0.1284SNRtgt − 21.5197.

Speech regions in the speech files were extracted by using a
two-channel voice activity detector [35]. 19 MFCCs together
with energy plus their 1st and 2nd derivatives were extracted
from the speech regions, followed by cepstral mean normal-
ization and feature warping with a window size of 3 seconds.
A 60-dim acoustic vector was extracted every 10ms, using a
Hamming window of 25ms.

B. DNN Training

To highlight the advantages of multi-task learning, a multi-
task DNN (Fig. 5) that implements Eq. 12 and Eq. 13 was
compared with two single-task DNNs (Fig. 3 and Fig. 4) that
implement Eq. 6 and Eq. 10. For the single-task DNNs, we
trained restricted Boltzmann machines (RBM) layer-by-layer
using the contrastive divergence algorithm [36], [37]; then we
fine-tuned the networks using the backpropagation algorithm
with sigmoid nonlinearity in the hidden layers. Mini-batch
gradient descent with a batch size of 1000 was used. The
learning rates for the classification task and regression task
are 0.005 and 0.05, respectively. Because there are over 810
million i-vectors pairs that can be used for training, to speed up
the training process, 3.2 million pairs were randomly chosen
for every 10 iterations of backpropagation training. Totally,
we applied 200 iterations of backpropagation to fine-tune the
networks.

The RBM at the bottom layer has Gaussian visible nodes
and Bernoulli hidden nodes. The remaining RBMs use
Bernoulli distributions in both visible and hidden layers. Both
the inputs and desired outputs (except for the classifica-
tion outputs in Fig. 5) of the DNNs were processed by z-
normalization. The last layer of the classification part in Fig. 5
were initialized with small random weights. All DNNs have 4
hidden layers, with each layer comprising 256 hidden nodes.
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The multi-task DNN (DNN3) was trained in a slightly
different manner. Because having a balanced training set is
beneficial for the network to learn the classification task, for
every iteration we extracted 700,000 same-speaker i-vector
pairs and 700,000 different-speaker i-vector pairs for training.
We applied 300 iterations of backpropagation to fine-tune
DNN3.

C. Denoised Senone I-vectors

We used a senone i-vector/PLDA system [6] to produce the
uncalibrated (noisy) scores, which form our baseline results.
The system is equipped with a denoising deep classifier that
extracts frame-based bottleneck features from the MFCCs of
utterances. The deep classifier is formed by stacking two layers
of RBMs on top of a denoising autoencoder (DAE) [38]. This
structure allows us to extract bottleneck features and estimate
the posterior of senones for i-vector extraction [39], which
effectively incorporates phonetic information into the senone
i-vectors.

We followed the standard procedure to pre-process the i-
vectors for Gaussian PLDA modeling. Specifically, the 500-
dimensional senone i-vectors were whitened by within-class
covariance normalization (WCCN) [40] and length normaliza-
tion [29], followed by linear discriminant analysis to reduce
the dimension to 200 and variance normalization by WCCN
[41]. These 200-dimensional i-vectors were input to the PLDA
model and the DNNs.

V. RESULTS AND DISCUSSIONS

A. Distributions of PLDA Scores and Score Shifts

To investigate the property of PLDA scores under various
background noise levels, we scored clean target-speaker i-
vectors against noisy test i-vectors and plotted the distributions
of the resulting scores. Fig. 7 shows the distributions of these
uncalibrated scores under four background noise levels of test
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Fig. 9. The distributions of score shifts with respect to the SNR of test
utterances when the target-speaker utterances is clean. The SNRs follow the
distribution shown in Fig. 6, and the score shifts follow the distribution shown
in Fig. 8. The figure shows that the relationship between SNRs and score shifts
is non-linear, and that at low SNR, the variability of score shifts is very large.

utterances: Clean, 15dB, 6dB, and 0dB. Evidently, the scores
tend to be larger and their variances tend to be smaller when
the background noise level increases.

Because our goal is to use DNNs to compute the ideal score
shifts, it is of interest to inspect the relationship between the
ideal score shifts and test utterances’ SNR. To this end, we plot
the distributions of ideal score shifts (S − Scln) under three
SNR conditions for the test utterances in Fig. 8 and against
all SNRs in the test utterances in Fig. 9. Interestingly, the
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TABLE I
Performance of various score calibration methods in NIST 2012 SRE (CC4, male speaker, core task) with test utterances contaminated with different levels

of babble noise. All networks have 4 hidden layers. LR: Logistic regression.

Original 15dB
Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 1.56 0.218 0.855 2.27 0.225 0.778
SNR-dep Score Shift (Eq. 3) 1.68 0.209 0.780 2.24 0.215 0.770

Score Shift by Multi-task DNN (Eq. 12) 1.65 0.178 0.694 2.32 0.203 0.626
Recovered Clean Score by Multi-task DNN (Eq. 13) 1.50 0.189 0.517 2.21 0.211 0.455

6dB 0dB
Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 2.29 0.276 0.749 5.37 0.753 0.779
SNR-dep Score Shift (Eq. 3) 2.28 0.269 0.811 5.35 0.754 0.794

Score Shift by Multi-task DNN (Eq. 12) 2.34 0.231 0.604 4.00 0.488 0.547
Recovered Clean Score by Multi-task DNN (Eq. 13) 2.16 0.243 0.470 3.48 0.409 0.516

TABLE II
Performance of various score calibration methods in NIST 2012 SRE (CC5, male speaker, core task). The DNN has 4 hidden layers. LR: Logistic regression.

Original
Score Calibration Method EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 2.48 0.267 0.861
Score Shift by Multi-task DNN (Eq. 12) 2.54 0.260 0.640

Recovered Clean Score by Multi-task DNN (Eq. 13) 2.51 0.242 0.716
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Fig. 10. Graph showing the relationship between the recovered clean scores
S′
4 in Eq. 15 produced by a multi-task DNN and the noisy input scores S

when the i-vector pair is fixed. The input i-vector pair is a fixed non-target
pair. Both S and S′

4 were normalized by the same set of z-norm parameters.
The DNN is a multi-task one with 4 hidden layers.

score shifts exhibit a large variability when the SNR of test
utterances is very low (0dB). This high variability is definitely
not because of the high variability in SNR, as evident in Fig. 6
where the SNR distribution of test utterances is very narrow
near 0dB. Quite the opposite, the high SNR variability in the
15dB group shown in Fig. 6 leads to the least variability in
score shifts (green dashed curve) in Fig. 8. Therefore, at low
SNR, the score shifts will become more difficult to estimate,
which demonstrates a major drawback of the methods that
entirely rely on SNR of utterances (e.g., QMF in Eq. 3). In
theory, the FQE in Eq. 5 is better in the sense that it does not
use SNR information directly but instead uses it implicitly
through the i-vectors and the Gaussian models. However,

whether the bilinear transformation and cosine distance can
accurately estimate the score shift at high background noise
level is unclear. As demonstrated in Fig. 9, the relationship
between score shifts and utterances’ SNR are fairly complex
and definitely non-linear.

Because i-vectors are noise-level dependent [13], it makes
sense to directly predict the score shifts from i-vectors rather
than implicitly through the Gaussian models of the i-vectors
as in FQE. Therefore, we advocate that through multi-task
supervised learning, the DNNs can estimate the score shifts
accurately and even recover the clean scores. This is supported
by the results to be presented next.

B. Sensitivity of Score Output to Score Input

For 200-dimensional pre-processed i-vectors, the number
of input nodes corresponding to the i-vector pairs is 400,
whereas there is only one score input node. This large ratio
may cause the network insensitive to the noisy scores. To find
out if it is the case, we plotted the recovered clean scores
S′4 (Eq. 15) produced by a multi-task DNN against the input
noisy scores S. To focus on the sensitivity of S′4 with respect
to S, the i-vector pair was fixed to an arbitrary non-target
pair. Surprisingly, as shown in Fig. 10, the recovered scores
are fairly sensitive to the noisy input scores despite of the large
ratio between the two types of input nodes. This result, in fact,
agrees with our recent finding that the input noisy scores play
an important role in recovering the clean scores [42].

C. Results on NIST 2012 SRE

1) Comparing Various Calibration Methods: Table I shows
the performance of various score calibration strategies, in-
cluding SNR-dependent score shifts (Eq. 3) and recovering
clean scores by multi-task DNNs (Eq. 13). The baseline refers
to using the noisy PLDA scores for computing EER and
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TABLE III
Performance of single-task and multi-task DNNs for estimating the score shifts and recovering the clean score in NIST 2012 SRE (CC4, male speaker, core

task) with test utterances contaminated with different levels of babble noise. All networks have 4 hidden layers.

Original 15dB 6dB 0dB
Score Calibration Method EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

Score Shift by Single-task DNN
(Eq. 7) 2.26 0.267 3.25 0.285 3.27 0.322 4.83 0.538

Score Shift by Multi-task DNN
(Eq. 12) 1.65 0.178 2.32 0.203 2.34 0.231 4.00 0.483

Recovered Clean Score by Single-task
DNN (Eq. 10) 7.35 0.693 8.11 0.643 8.06 0.733 12.25 0.989

Recovered Clean Score by Multi-task
DNN (Eq. 13) 1.50 0.189 2.21 0.211 2.16 0.248 3.48 0.409

TABLE IV
Performance of single-task and multi-task DNNs with different numbers of hidden layers for estimating the score shifts (Eq. 7 and 12) in NIST 2012 SRE

(CC4, male speaker, core task). The test utterances were contaminated with different levels of babble noise.

Original 15dB 6dB 0dB

Network Type No. of Hid-
den Layers EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

1 2.39 0.322 3.49 0.342 3.65 0.413 5.75 0.676
Single-task 2 2.14 0.264 3.21 0.298 3.18 0.339 4.87 0.575

3 2.50 0.296 3.70 0.330 3.79 0.398 5.68 0.632
4 2.26 0.267 3.25 0.285 3.27 0.322 4.83 0.538
1 1.55 0.202 2.16 0.208 2.21 0.242 4.49 0.624

Multi-task 2 1.55 0.187 2.17 0.197 2.14 0.228 4.04 0.554
3 1.55 0.193 2.11 0.201 2.08 0.239 4.20 0.571
4 1.65 0.178 2.32 0.203 2.34 0.231 4.00 0.488

TABLE V
Performance of single-task and multi-task DNNs with different numbers of hidden layers for recovering the direct clean scores (Eq. 10 and 13) in NIST

2012 SRE (CC4, male speaker, core task). The test utterances were contaminated with different levels of babble noise.

Original 15dB 6dB 0dB

Network Type No. of Hid-
den Layers EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

1 3.79 0.634 4.89 0.580 5.10 0.679 9.09 0.957
Single-task 2 5.02 0.719 5.93 0.675 6.38 0.750 10.81 0.980

3 7.81 0.779 8.86 0.741 9.52 0.818 14.27 0.997
4 14.61 0.910 15.41 0.881 17.05 0.942 21.44 1.002
1 1.50 0.234 2.08 0.222 2.11 0.278 4.48 0.605

Multi-task 2 1.48 0.199 2.37 0.210 2.14 0.241 3.83 0.502
3 1.71 0.187 2.53 0.213 2.34 0.243 3.58 0.448
4 1.50 0.189 2.21 0.211 2.16 0.248 3.48 0.409

minimum detection cost function (minDCF) and using logistic
regression for computing the actual DCF (actDCF). The results
show that the proposed method achieves the best performance
across all of the SNR levels. At 0dB, it also outperforms the
baseline significantly.

Fig. 11 shows the normalized Bayes error rates of the
minDCF and actDCF of various systems as a function of
effective target prior. Among all systems, the one based on
score shift computed by the multi-task DNN (green) has a
very small margin between the actDCF and minDCF.

The results of the same experiments on CC5 of NIST 2012
SRE are shown in Table II. Unlike the results in CC4, DNN
calibration does not show obvious advantage as compared to
linear calibration. We suspect that this is because most of the
utterances in CC5 have higher SNRs than those in CC4 (see
Fig. 6). When the SNR is high, the benefit of DNN score
calibration diminishes. Also, since the utterances in CC5 were
collected in a noisy environment while the DNN was trained
by data with artificially added noise, the DNN may be weak

to deal with the natural noises and the Lombard effect.

2) Single-task vs. Multi-task: Table III compares the per-
formance between single-task DNNs and multi-task DNNs.
Regardless of which output to be used (the score shift output
in Eq. 6 or the direct score output in Eq. 10), the multi-task
DNN performs much better than the single-task DNN.

A comparison between the first row of Table III (Score
Shift by Single-Task DNN) and the first and second rows of
Table I reveals that only under very noisy conditions (0dB), the
calibrated scores produced by the single-task DNN (Eq. 7) can
improve performance; in all other conditions, this approach
performs even poorer than the ones without score calibration or
the conventional approach where the score shift is linear with
respect to utterances’ SNR. This result suggests that estimating
the score shifts entirely from the i-vector pairs and noisy scores
(Eq. 7) is not a good idea. Under the clean condition, the score
shifts estimated by the DNN in Eq. 7 have detrimental effect
on the uncalibrated scores. However, the good performance in
the second row of Table III suggests that once the auxiliary
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TABLE VI
Performance of various score calibration methods in a subset of NIST 2012 SRE (CC4, male speaker, core task) with test utterances contaminated with

different levels of babble noise. The speech from 500 speakers was used to train the multi-task DNN as in Fig. 5, and the 38,820 trials in CC4 of the other
223 speakers were used in the test trials. The DNN has 4 hidden layers. LR: Logistic regression.

Original 15dB
Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF

Baseline (LR on noisy PLDA scores) 1.21 0.194 0.867 1.96 0.214 0.794
Score Shift by Multi-task DNN (Eq. 12) 0.94 0.168 0.751 1.96 0.206 0.698

Recovered Clean Score by Multi-task DNN (Eq. 13) 0.82 0.188 0.777 1.57 0.214 0.726
6dB 0dB

Score Calibration Method EER(%) minDCF actDCF EER(%) minDCF actDCF
Baseline (LR on noisy PLDA scores) 1.89 0.266 0.755 5.09 0.709 0.722

Score Shift by Multi-task DNN (Eq. 12) 1.65 0.274 0.673 3.67 0.507 0.634
Recovered Clean Score by Multi-task DNN (Eq. 13) 1.55 0.309 0.728 3.70 0.548 0.704
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Fig. 11. Normalized bayes error rate plots showing that the minDCF and
actDCF of different systems as a function of effective target prior in NIST
2012 SRE (CC4, male speaker, core task) contaminated with babble noise at
an SNR of 0dB.

information is added to the network, the score shifts estimated
by the multi-task DNN become very close to the ideal ones.

Table III also allows us to compare the performance of using
the DNN to estimate the score shift (δscore, Fig. 3) and using
the DNN to recover the clean scores (Scln, Fig. 4). Specifically,
for the single-task case, Row 1 and Row 3 of Table III show
that the scores recovered by the DNNs are so wrong that the
error is 3 to 4 times that of the baseline (c.f. Table I and the
third row of Table III), while the score shifts by the DNNs
are comparable to the baseline (c.f. Table I and the first row
of Table III). For the multi-task case, Row 2 and Row 4 of
Table III suggest that it is better to recover the clean scores
directly than to estimate the score shifts, provided that multi-
task learning is used to train the DNNs.

Fig. 12 compares the DET performance of the baseline
against the multi-task DNNs. The results clearly suggest
that recovering the clean scores by DNNs leads to superior
performance across a wide range of decision thresholds.

3) Generalization Capability: Using the i-vectors from
target speakers to train the PLDA model and the calibration
DNNs may lead to overfitting on target speakers. In NIST
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Fig. 12. The DET curves of the four systems in NIST 2012 SRE (CC4, male
speaker, core task). Test utterances were contaminated with babble noise at
an SNR of 0dB.

2012 SRE, the enrollment utterances of target speakers come
from previous NIST SREs. As these utterances were also used
for training the PLDA model and the DNN, there may be
chance that they can only work for these target speakers.
To demonstrate the generalization capability of the multi-
task DNNs, we selected 500 target speakers from CC4 and
used their i-vectors and PLDA scores (scores between same
targets and between different targets) to train a multi-task
DNN as in Fig. 5. The target and non-target trials (totally
38,820) derived from the remaining 223 target-speakers were
then used for performance evaluation. To the PLDA model
and the DNN, these 223 speakers are unseen speakers. As
shown in Table VI, the multi-task DNNs perform significantly
better than the baseline. More importantly, the performance
in Table VI is comparable to and in many cases better than
that in Table I. This suggests that both the PLDA model and
DNN can generalize to unseen speakers and that using the
enrollment utterances for training does not lead to overfitting.

4) Different Numbers of Hidden Layers: All of the DNNs
in Tables I and III comprise four hidden layers. It is of interest
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to see how they perform if the number of hidden layers varies.
Table IV and Table V show the performance of single-task and
multi-task DNNs with different number of hidden layers for
estimating the score shifts and recovering the clean scores,
respectively. Theoretically, a network with a deeper structure
should posses a larger capacity to perform the mapping task.
However, the results do not show such trend, especially for
the single-task DNNs in Table IV where they were used for
estimating the score shifts. In particular, the single-task DNN
with 3 hidden layers performs worse than those with 2 and
4 hidden layers. In Table V, the performance of single-task
DNNs (for recovering clean scores) becomes worse when the
number of hidden layers increases. But this phenomenon does
not occur in the multi-task DNNs. Further investigations on
the error profiles during the BP training process reveal that the
training errors of single tasks DNNs increase when the number
of hidden layers increases. This contradicts to the common
belief that networks with a higher capacity should produce a
lower training error. One possible cause of this contradiction
is that the networks are stuck at bad local minima. The multi-
task DNNs do not suffer from this problem, primarily because
the auxiliary output nodes can introduce additional errors to
help the network to learn the main task [30].

As discussed in [43], when a DNN becomes deeper, its
accuracy may get saturated; further increase in the depth will
lead to performance degradation. This phenomenon can also
be observed in Table V. In our case, this phenomenon is not
caused by overfitting, because adding more layers leads to
higher training error; instead, vanishing gradients and slow
convergence are more likely to be the cause. One possible
way to alleviate this difficulty is to use residual networks
[43]. A special property of residual networks is that they are
trained to produce the difference between the desired mapping
function f(x) and the input x instead of producing f(x). With
this special arrangement, networks can enjoy performance gain
from increased depth. Eq. 7 is similar to the residual function
in [43], where the score shift δscore is indeed the residual
between the desired clean score Scln and the input noisy score
S. This explains why the DNNs that estimate score shifts
(Fig. 3) are easier to train than the ones that recover clean
scores (Fig. 4).

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed several DNN-based score cali-

bration algorithms, where the calibrated scores and score shifts
are estimated from the i-vector pairs of verification trials.
The conventional calibration methods such as quality measure
functions (QMF) assume that score shift caused by background
noise is a linear function of the utterance’s SNR. Our results,
however, suggest that the score shift is nonlinearly related to
SNR. Also, QMFs are deterministic functions of SNR in that
when the SNR is fixed, the score shift will also be fixed. Our
results, however, show that the lower the SNR, the larger the
variability in the ideal score shift, which suggests that SNR
alone is not adequate for estimating the score shift. These
observations motivate us to use more flexible models such
as DNNs to model the complex relationship between the i-
vector pairs, uncalibrated scores, and score shifts. This paper

has shown that DNNs are flexible enough for recovering the
clean PLDA scores directly, allowing us to skip the score-shift
estimation entirely. By introducing auxiliary tasks to the DNNs
through multi-task learning, we demonstrated that the resulting
DNNs can learn the main task better, which is supported by
their superior performance across a wide-range of SNRs.

Despite the promising results, the proposed methods have
some weaknesses. First, the methods are more computation-
ally demanding than the conventional ones because of the
DNNs. However, the extra computation time is insignificant
when compared with the time for i-vector extraction. This is
especially the case for long test utterances as the complexity
of i-vector extraction is proportional to the number of speech
frames in the utterances. Second, the DNNs are not trained to
produce true likelihood ratios; therefore further calibration is
essential. Third, the DNNs require clean and noisy utterance
pairs for training, whereas conventional methods such as
QMFs and FQEs do not have this requirement.

The multi-task DNNs have five auxiliary output nodes, three
for the SNR information and two for the speaker information.
The current study did not investigate which of the auxiliary
information is more important or helpful. Also, there may be
other auxiliary information, such as the duration of utterances,
that is also useful. These are the interesting directions that are
worth investigation in the future.

In this work, both of the training and testing datasets cover
a wide range of SNR, meaning that the DNNs were trained to
handle test utterances with different SNRs. Because the SNR
ranges are the same for both training and testing, the behaviour
of the DNNs under unseen SNR is unclear. In future work, it
is of interest to use one SNR group for training a DNN and
test it on anther SNR group to investigate the generalization
capability of the DNN under SNR mismatch conditions. Cur-
rently, utterances were contaminated with babble noise only.
The robustness of DNN-based calibration for other types of
noise and for reverberated speech also are worth investigation.

We adopted the DNN training procedure in [44]. Over
the years, a number of advanced training procedures have
been developed. For example, the RBM pre-training can be
replaced by discriminative pre-training [45]. The stochastic
gradient descent can also be enhanced by using adaptive
moment estimation (Adam) [46]. It is also possible to replace
the sigmoid activation by other nonlinear functions, such as
hyperbolic tangent and softsign, to avoid saturation at the
top hidden layer [47] or to achieve better performance [48].
Furthermore, it has been found that rectifier nonlinearity, such
as ReLU, is beneficial for acoustic modeling [49]. Training can
be sped up by using batch normalization [50]. Deeper networks
can be trained by using the strategy in residual networks [43].
These modern DNN training methods can potentially improve
the performance of the DNN-score calibration techniques
proposed in this paper.
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