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Abstract: Bufalin (BFL) has excellent physiological activities such as defending tumors, improving
cardiac function, and so on. However, due to its poor water-solubility and bioavailability, the clinical
application of BFL remains limited. In order to improve bioavailability of BFL, in our previous
research, a novel peptide-dendrimer (PD) was synthesized and applied to encapsulate BFL. In the
present study, we investigate the absorption property and mechanism of BFL in free form and
BFL-peptide-dendrimer inclusion (BPDI) delivery system by using the Caco-2 cell monolayer model
in vitro. The apparent permeability coefficient (Papp) values of BFL in free or BPDI form were
over 1.0 × 10−6 cm/s. Meanwhile, their almost equal bi-directional transport and linear transport
percentage with time and concentration course indicated that BFL in both forms was absorbed mainly
through passive diffusion. The most important result is that the Papp values of BFL increased about
three-fold more BPDI than those of its free form, which indicated the intestinal permeability of BFL
could be improved while BFL was encapsulated in BPDI form. Therefore, PD encapsulation may be
a potential delivery system to increase the bioavailability of BFL.

Keywords: bufalin; peptide-dendrimer; bufalin-peptide-dendrimer inclusion; Caco-2 cell monolayer;
intestinal permeability; apparent permeability coefficient

1. Introduction

Toad venom is the dried secretion from the posterior auricular glands or skin glands of
Bufobufogargarizans Cantor or Bufomelanostictus Schneider [1]. Due to its unique properties—such
as detoxification, pain relief, and inducing resuscitation [2]—toad venom has been used as traditional
Chinese medicine since around 581 BC (Tang Dynasty)for the treatment of furuncle and carbuncle,
sore throat, mental confusion caused by heatstroke and abdominal pain, vomiting, and diarrhea [3].
Bufalin (BFL) (Figure 1B), the major bufanolide steroid in toad venom, has demonstrated a variety
of biological activities including tumor inhibition, enhancing cardiac function, exciting respiration,
anti-inflammation, boosting immunity, and providing local anesthesia [4]. However, due to the highly
hydrophobic structure, BFL is a poorly water-soluble drug and with low bioavailability, which limits
its application in clinic [5]. Hence, improving intestinal absorption and bioavailability of BFL by
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developing an appropriate drug delivery system or drug carrier is crucial for enlarging its range of
therapeutic applications.

Solid dispersions, polymer nanoparticles, lipid nanoparticles, micelles, and microemulsions
have been developed and applied for delivery of poorly water-soluble drugs [5]. Among them,
a dendrimer-based delivery system has shown good application prospects as a drug target vector and
controlled-release carrier [6–8]. In recent years, asymmetric peptide dendrimer (PD) has attracted more
attention and has been more properly applied for drug delivery due to its more advantages in terms
of excellent biocompatibility, low cytotoxicity, and protease-hydrolysis resistance while compared
to the low generation commercial PAMAM dendrimers [9–11]. In brief, asymmetric PD is highly
branched with three-dimensional space and provides many hydrophobic cavities [12]. The poorly
water-soluble small molecules can be attached to the dendrimers according to physical inclusion
or noncovalent combination, and hence the water solubility as well as intestinal absorption can be
increased [13,14]. With respect to the enhancing effects of PD on the bioavailability of small molecules,
there have been a handful of reports. For instance, a synthesized PD with arginine as the terminal
amino acid has been reported to enhance the deposition and permeation of 5-fluorouracil across human
epidermis [15]. Meanwhile, PDs were also efficient on improving the antigen-binding capacity of
antibodies by site-specifically conjugating to antibodies, and therefore were applied for antibodies
delivery [16].

To improve the bioavailability of BFL, in our previous study, an asymmetric amino acid-based
PD (Figure 1C) was synthesized and applied to encapsulate BFL, and eventually constructed the
bufalin-peptide-dendrimer inclusion (BPDI) (Figure 1A). In the present paper, we investigate and
compare the permeation properties of BFL when it was in free form or in BPDI using the well-accepted
human colon adenocarcinoma (Caco-2) cell monolayer model [17], finally to predict if BPDI is useful
to improve the absorption and availability of BFL.
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Figure 1. Molecular structure of bufalin-peptide-dendrimer inclusion (A); bufalin (B) and peptide-
dendrimer (C).

2. Results

2.1. Cytotoxicity of BPDI on Caco-2 Cells

The viability of Caco-2 cells were measured after treated for 180 min with Hanks’ balanced salts
solution (HBSS) (negative control), paclitaxel (positive control, 25, 50, 75 and 100 µM), BFL (50, 75,
100 and 125 µM) and BPDI (containing BFL 50, 75, 100 and 125 µM), respectively. Results (Table 1)
showed that the viabilities after treatment by BFL or BPDI were over 95%, which indicated that they
were no-toxic to Caco-2 cells at these concentrations for 180 min. Hence, those concentrations of BFL
and BPDI were chosen as the test concentrations.
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Table 1. Cytotoxicities of BFL and BPDI in Caco-2 cells.

Compounds Viability (%)

Paclitaxel
25 µM 50 µM 75 µM 100 µM

65.3 ± 7.2 43.5 ± 5.4 34.8 ± 3.2 30.5 ± 2.6

BFL
50 µM 75 µM 100 µM 125 µM

102.06 ± 7.2 100.10 ± 8.6 99.09 ± 8.5 98.90 ± 6.4

BPDI
50 µM 75 µM 100 µM 125 µM

103.28 ± 10.2 98.60 ± 8.2 100.75 ± 4.8 97.20 ± 9.8

2.2. Validation of Caco-2 Monolayer Model

After seeding, the transepithelial electrical resistance (TEER) values of the monolayer developed
in this study increased steadily over time, and were above 500 Ω/cm2 on day 21. The apparent
permeability coefficient (Papp) values of propranolol and atenolol tested with the monolayer were
(5.17 ± 0.16) × 10−5 cm/s and (6.86 ± 1.15) × 10−7 cm/s, respectively, which were closely consistent
with the acceptable values reported in the literature [18–20]. Thus, the Caco-2 cell monolayer model
established was validated for the assessment of the intestinal absorption potential of BFL and BPDI.

2.3. Transmembrane Transport of BFL and BPDI

The transmembrane transports of BFL and BPDI were evaluated by using the validated Caco-2
cell monolayer model. As shown in Figure 2, either in free BFL or in BPDI, the bidirectional transport
percentages of BFL increased approximately linearly with time (Figure 2A), and their transport amounts
increased with concentration in the range of 50–125 µM in an approximately linear manner at 120 min
(Figure 2B). Meanwhile, it can be observed that the transports of BFL in the BPDI form increased while
compared to those in free BFL.

The Papp values of bi-directional transport of BFL and BPDI were summarized in Tables 2
and 3. In general, BFL and its formulation BPDI showed moderate transport due to a Papp value of
1–10 × 10−6 cm/s. Papp value of BPDI ranged from 4.18–5.24× 10−6 cm/s, which was about three-fold
increment of that of freeBFL (1.46–1.62 × 10−6 cm/s). Furthermore, Papp values of free BFL or in BPDI
have no significant variation with the change of concentration or transport time.

By the way, the Papp of BFL and BPDI in the apical-to-basolateral direction (Papp AP→BL), as well
as that in the basolateral-to-apical direction (Papp BL→AP) were compared respectively to explore
the possible transporting mechanism. As shown in Table 2, the ratios of Papp AP→BL to Papp BL→AP,
were larger than 1 both in free BFL and BPDI. Nevertheless, these ratios of BFL and BPDI were very
similar each other.

Table 2. The apparent permeability coefficient (Papp) values of bi-directional transport of BFL and
BPDI with different concentrations.

Concentration (µM)

Papp (10−6cm/s)
Papp AP→BL/Papp BL→AP

AP→BL BL→AP

BFL BPDI BFL BPDI BFL BPDI

50 1.58 ± 0.32 5.48 ± 0.42 1.37 ± 0.18 3.83 ± 0.70 1.15 1.43
75 1.47 ± 0.08 4.65 ± 0.48 1.32 ± 0.14 3.39 ± 0.53 1.11 1.37

100 1.46 ± 0.02 4.22 ± 0.39 1.29 ± 0.10 3.32 ± 0.12 1.13 1.27
125 1.64 ± 0.12 4.34 ± 0.48 1.35 ± 0.45 3.21 ± 0.82 1.21 1.35

AP→BL: Transport from AP to BL side; BL→AP: from BL to AP; Papp AP→BL/Papp BL→AP: the ratio of Papp BL→AP to
Papp AP→BL. The time point was at 120 min. Data are means ± S.D. (n = 3).
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Table 3. Papp values of bi-directional transport of BFL and BPDI with time course.

Time (min)

Papp (10−6cm/s)
Papp AP→BL/Papp BL→AP

AP→BL BL→AP

BFL BPDI BFL BPDI BFL BPDI

60 1.52 ± 0.22 5.24 ± 0.82 1.14 ± 0.28 3.91 ± 0.82 1.33 1.40
120 1.36 ± 0.08 4.40 ± 0.84 1.08 ± 0.17 3.20 ± 0.74 1.26 1.38
180 1.28 ± 0.02 4.18 ± 0.64 0.99 ± 0.12 2.97 ± 0.17 1.30 1.40

AP→BL: Transport from AP to BL side; BL→AP: from BL to AP; Papp AP→BL/Papp BL→AP: the ratio of Papp BL→AP to
Papp AP→BL. The concentrations of BFL and BPDI were 75 µM, respectively. Data are means ± S.D. (n = 3).
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Figure 2. Transports of BFL and BPDI across Caco-2 cell monolayer. (A) The transport amounts at
120 min with different concentrations (n = 3); (B) The percentages of transports in different time points
with a concentration of 75 µM (n = 3).

2.4. The Validation of HPLC Analytical Methods

The HPLC-DAD method was validated in terms of linearity, precision, accuracy. Results showed
that the linear regression equation was obtained as y = 12.295x + 23.295 with r2 of 0.9966. The linear
range was from 0.2 µmol/L to 20 µmol/L. The limit of detection (LOD) and limit of quantitation (LOQ)
were 0.05 µmol/L and 0.17 µmol/L, respectively. The relative standard deviations (RSDs) of intra-day
and inter-day precisions were of 1.25% and 2.12%, respectively. The recovery was 96.95% with RSD
values less than 3.24% (Supplementary Materials, Table S1).

3. Discussion

Bufalin (BFL), the dominant bioactive component in toad venom, has been demonstrated to
possess a variety of potential pharmacological effects. However, the poor water-solubility and
bioavailability limits its therapeutic application. In our previous investigations on delivery system of
BFL, a novel bufalin-peptide-dendrimer inclusion (BPDI) was synthesized to enlarge the bioavailability
of BFL. In the present paper, the intestinal permeability and transport capability of BPDI was
evaluated using a human Caco-2 cell monolayer model. Caco-2 cells were derived from human colon
adenocarcinoma. They can spontaneously differentiate into epithelium-like cells and form brush-like
edges with the defined boundary and tight junctions under the culture condition. Their morphological
features, functional expression of marker enzymes and osmotic characteristics are similar to those of
normal intestinal epithelial cells. Moreover, the typical hydrolase and transporters for nutrients in
the intestine microvillus are also expressed in Caco-2 cells. Therefore, Caco-2 cells are widely used as
cell models for the in vitro study of drug transportation and metabolism of epidermal cells in small
intestine [21,22].

In our current study, the Caco-2 cell monolayer was successfully established and validated by
measuring the TEER values between AP and BL sides and Papp values of propranolol and atenolol,
respectively. Subsequently, the permeability of BFL (Papp values) in free form and in BPDI form was
detected by the developed method.
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Drug molecules penetrate across Caco-2 monolayers mainly in passive diffusion, carrier-mediated
influx, and efflux manners [23,24]. Based on Figure 2, transports of BFL in either free or BPDI form
increased approximately in time- and concentration-dependent manner, which indicated that passive
diffusion is the main transport mechanism of free BFL and BPDI. In addition, Papp values of free BFL
and BPDI (Tables 2 and 3) showed no increment with the concentration and time, as well as the ratios
(Papp A→B/Papp B→A) were less than 1.5, which also indicated BFL and its PD inclusion transported
Caco-2 monolayer mainly by passive diffusion [25,26].

As shown in Tables 2 and 3, the Papp values of BFL increased in BPDI form, which indicated
the intestinal permeability of BFL could be improved while BFL was encapsulated in BPDI form.
This permeability improvement might be associated with the promotion of dissolution of BFL in BPDI
form. Being a lipophilic compound, BFL passes across cytomembrane mainly in a passive transport
manner, and therefore dissolution is the key factor to affect its absorption. The PD could promote the
dissolution of BFL outside the cell membrane and permeability across the cell membrane.

In summary, BPDI could increase the intestinal permeability of BFL across Caco-2 monolayer,
therefore PD may be a potential delivery system of water-insoluble drugs such as BFL.

4. Materials and Methods

4.1. Chemicals and Reagents

Bufalin (purity > 98%) was purchased from Chengdu PufeiDeBiotech Co., Ltd. (Chengdu, China).
BPDI (content of bufalin was of 18.5%, w/w) was synthesized by Jing Jing, one co-author
of current manuscript. Dimethyl sulfoxide (DMSO), propranolol and atenolol (purities > 98%),
hydroxyethylpiperazine ethane sulfonic acid (HEPES), nonessential amino acid (NEAA) and
ethylenediaminetetraacetic acid (EDTA) were products of Sigma-Aldrich Chemicals (Steinheim,
Germany). Dulbecco’s modified Eagle’s medium (DMEM), Hanks’ Balanced Salts solution (HBSS),
Eagle’s Balanced Salts solution (EBSS), fetal bovine serum (FBS) and penicillin (100 U/mL)/streptomycin
were purchased from Gibco Laboratories (Life Science Technologies, Carlsbad, CA, USA). Trypsin was
purchased from Shenzhen New Top Biotech Co., Ltd. (Shenzhen, China). Phosphate buffered saline (PBS)
was purchased from BOSTER biological Technology Co., Ltd. (Wuhan, China). 1-octyl sodium sulfonate
was product from Beijing J&K Chemical Technology Co., Ltd. (Beijing, China). Analytical grade sodium
bicarbonate (NaHCO3) and potassium dihydrogen phosphate (KH2PO4) were purchased from Tianjin
Mao Tai Chemical Reagent Factory (Tianjin, China). Liquid chromatography-grade acetonitrile, methanol,
and phosphoric acid (H3PO4) were purchased from E. Merck (Darmstadt, Germany). Double deionized
water was purified by Milli-Q water system (Millipore Corp., Bedford, MA, USA).

Caco-2 cells (HTB-37™) were purchased from the American Type Culture Collection (ATCC,
Rockville, MD, USA), and cultured in DMEM containing D-glucose (4.5 g/L), Na2CO3 (3.7 g/L),
supplemented with 10% FBS, 1% NEAA, penicillin (100 U/mL), and streptomycin (100 µg/mL) in an
atmosphere of 5% CO2 and 90% relative humidity at 37 ◦C [27]. All cells were between passages 35
and 45.

4.2. Cytotoxicity of BPDI in Caco-2 Cells by MTT Assay

The cytotoxicities of free BFL and its formulation, BPDI against Caco-2 cells were tested using
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Caco-2 cells at the
logarithmic growth were seeded in 96-well plate at the concentration of 4.0 × 105 per well and
incubated in an atmosphere of 5% CO2 and 90% relative humidity at 37 ◦C for three days. After cells
attachment, HBSS solution (negative control), paclitaxel (positive control, 25, 50, 75, and 100 µM), BFL
(50, 75, 100, and 125 µM), and BPDI (containing BFL 50, 75, 100, and 125 µM) solutions were added
into each well, respectively. After cells were treated for three hours, HBSS solution was removed,
and cells were rinsed with PBS and incubated with 20 µL of MTT solution (0.5 mg/mL) for 4 h at 37◦C
and 5% CO2. Then the cells were shaken with 200 µL of DMSO for 10 min, and the absorbance was
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read on the microplate reader (SPECTROstar Omega, BMG LabTech GmbH, Ortenberg, Germany)
at 570 nm. The viability rates were calculated by the equation: % = A/A0 × 100, wherein A was the
average absorbance value of treatment group, and A0 was the average absorbance value of negative
control group.

4.3. Transport Experiment of BFL and BPDI through Caco-2 Monolayer

4.3.1. Establishment of Caco-2 Monolayer Model

Caco-2 cells (4.0 × 105 per mL) at the logarithmic growth were seeded into the AP (apical) side of
a 24-well Transwell™ plates (Corning Inc., Cambridge, MA, USA). DMEM solution was added into
the apical (AP) side (0.5 mL) and basal (BL) side (1.0 mL) of the chamber, respectively. The cell culture
was maintained at 37 ◦C under 90% humidity and 5% CO2. The medium was refreshed every two
days in the first week, and then on every day the following week. After cells were cultured for 21 days,
the integrity of the cell monolayer was evaluated by measuring trans-epithelial electrical resistance
(TEER) values between AP and BL sides with Millicell-ERS system and by transport experiment
using the standard compounds, propranolol and atenolol (the high and poor transcellular transport
markers), respectively [28,29]. The cell inserts were considered as qualified for trans-membrane
transport evaluation only if the resistance reached above 500 Ω/cm.

4.3.2. Transport Experiment

On day 21, the culture medium was removed from the AP and BL sides of the trans-well
filters. The Caco-2 monolayers were rinsed twice with pre-warmed HBSS (37 ◦C) and incubated
for 20 min. Then HBSS was removed completely. The test solution of BFL or BPDI (was added to
AP (0.4 mL) or BL side (3.2 mL), and then same volume of HBSS was added to the corresponding
sides (BL or AP sides). Incubation continued at 37 ◦C for 180 min. To evaluate the permeability of
test compounds across the cell monolayer, solutions from BL (0.4 mL) or AP (3.2 mL) side were
collected at different time intervals (60, 120, and 180 min), and replaced with the same volume of HBSS.
The collected solutions were lyophilized and stored under −80 ◦C before HPLC analysis. Experiments
for each time point were repeated three times and were performed on the independent chamber.

4.4. HPLC Analysis

4.4.1. Chromatographic Conditions

Chromatographic analysis was performed using a Alltima TM C18 column (4.6× 250 mm, 5 µm)
on an Agilent 1200 liquid chromatography system, equipped with a quaternary solvent delivery system,
an auto-sampler and a DAD detector. The isocratic eluting solution consists of A: 0.2% phosphoric
acid and B: acetonitrile (54:46, v/v); the detection wavelength and flow rate were set at 226 nm and
1.0 mL/min, respectively. The HPLC analysis will be run for 25 min.

4.4.2. Preparation of BFL Standard Solution and Test Solutions

Accurately weighed 3.86 mg of BFL was dissolved in 10 mL HBSS to create a stock standard
solution with concentration of 1000 µM and then stored at −80 ◦C away from light. Then the stock
solution was diluted with fresh HBSS to a series of concentrations ranged of 0.2–20.0 µM to establish
the calibration curve. All samples were dissolved in 150 µL methanol and centrifuged at 13,000 rpm
for 5 min, respectively. The supernatants were collected for HPLC analysis.

4.4.3. Validation of HPLC Method

The HPLC method was validated in terms of linearity and precision and accuracy. Three concentrations
of BFL standard in six replicates in a single day were analyzed as intra-day precision and duplicating the
intra-day experiment on two successive days was analyzed as inter-day precision. The recoveries were
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calculated by comparing the analytical amounts of BFL at three concentrations with real amounts of added
BFL standards.

4.5. Data Analysis

Apparent permeability values (Papp) for the test compound was calculated according to the
equation [22]

Papp = (dQ/dt)/(AC0)

where Papp is the apparent permeability (cm/s), dQ/dt is the appearance rate of the test compound on
the receiver side (µg/s), A represents the surface area of carbon ester membrane (cm2), and C0 is the
initial concentration of compounds on the given sides (µg/L). The results presented in this study are
the averages of at least three replicates and were expressed as the mean ± standard deviation (SD).

Supplementary Materials: Supplementary materials are available online. Table S1: The intra-and inter-day
precision and recovery of BFL.
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