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Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides
tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review
inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is
controlled by an (Q,r) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare
apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To
address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result
shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal
inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights.

1. Introduction

This paper reports an analytical study which is based on a
real case of a healthcare apparel service centre, called the
Troels H. Povlsen Care Apparel Centre (supported by The
Hong Kong Polytechnic University). This healthcare apparel
service centre is a nonprofit-making organization which pro-
vides tailor-made apparel-making services for the elderly and
disabled people. With its very small-sized inventory capacity,
this service centre cannot keep a lot of fabric materials in
stock. Unlike many other apparel providers, the clients of this
healthcare centre have special demand on cutting and many
of them are willing to wait for some time even when the
orders are backlogged (because they cannot find any other
organizations which can provide this service with an afford-
able price). However, backlog and hence “stockout” is a seri-
ous problem because the clients do urgently need the apparel
products to help them with their living. As a result, the centre
tries to achieve a very low stockout level which is termed as
“stockout risk.” However, as the centre is nonprofit-making,

having an efficient and sustainable operation [1] means the
centre also has to minimize the cost.

Concerning such a situation, we study in this paper a sin-
gle item partially backordered inventory system governed by
a continuous review (Q,r) policy: (i) when the inventory posi-
tion (stock on hand plus stock on order minus backorders)
reaches the reorder point r, an order is placed with the batch
size Q; (ii) the storage space is capacitated, and unmet
demands are partially backordered; and (iii) there is a “free
waiting time” during which there is no backorder cost for
the model. The optimization problem is to achieve the stock-
out risk target with the optimal cost minimizing (Q,r) inven-
tory policy.

Notice that for stochastic inventory control systems, the
(Q,r) policy is one of the most widely used policies. However,
it is well-reported that there is no simple solution scheme for
computing the optimal parameters of the (Q,r) policy [2]. To
make the situation more challenging, in addition to the target
stockout risk consideration, in the healthcare apparel centre’s
inventory control problem, there is a capacity constraint. Last

Hindawi
Journal of Healthcare Engineering
Volume 2017, Article ID 9210532, 12 pages
https://doi.org/10.1155/2017/9210532

https://doi.org/10.1155/2017/9210532


but not least, facing the stockout risk, some of the demands
are lost while some are backlogged because some customers
are willing to wait but not all. This situation is known as “par-
tial backlog” in inventory control, and it affects the design of
the optimal inventory (Q,r) policy significantly. Obviously,
the conventional (Q,r) policies which do not consider stock-
out risk, capacity, and partial backlog together will fail to be
optimal and hence cannot be used to solve the inventory con-
trol problem faced by the healthcare apparel service centre
mentioned above.

Based on the healthcare apparel service centre’s inven-
tory control challenges, this paper aims to develop a novel
optimal (Q,r) policy which can incorporate the stockout risk,
storage capacity, and partial backlog into the optimization
model. To the best of our knowledge, this optimization
problem has not been studied in the literature. In addition,
this paper is based on the real case of a healthcare apparel
service centre and we also conduct our analysis by using
real-world data from the healthcare apparel service (HAS)
centre. This is hence a practice-based study with risk
considerations. These highlight the novelty of this study
and its contributions.

The rest of the paper is organized as follows. In Section 2,
we concisely review the related literature on (Q,r) inventory
models and the importance of risk analysis in healthcare ser-
vices. Section 3 presents the model, describes the notation,
discusses the optimization problems, and provides the algo-
rithm for identifying the optimal solution. Section 4 gives
numerical studies and discusses a few important insights.
Concluding remarks are given in Section 5.

2. Literature Review

In the literature, different kinds of stochastic inventory
control systems are proposed and explored (see [3–9]
and [10, 11]). The (Q,r)-based optimal inventory control
policy is one of them and has been popularly examined.
For example, relatively recently, Song et al. [12] discuss
the effect of lead time and uncertain demand on the opti-
mal (Q,r) policy. Berk and Gürler [13] show that a contin-
uous review (Q,r) policy is reasonably good for a
perishable inventory system with fixed shelf lives and
study the operating characteristics of the system. Some
other studies have conducted analysis and cost evaluation
on the continuous review (Q,r) policy for identical as well
as nonidentical retailers (see, e.g., [14–17]). However, the
(Q,r)-related studies reviewed above have not considered
many important factors such as capacity (i.e., space limita-
tion), service level, and partial backlog together, which is
what this paper aims to address (Studies have been con-
ducted on trade-offs between the service level and inven-
tory (see [18, 19]). In Liu et al. [20], an efficient
procedure is presented to minimize the overall inventory
for a class of manufacturing and supply systems with each
adopting base stock policy while meeting the required ser-
vice level. However, these papers mainly focus on service
level alone but not other factors together. Thus, this paper
is different from them.). Thus, from this sense, this paper

is addressing a more challenging and general problem
than the previous studies.

The other important feature of our model is that we take
characteristics of the customers who are willing to accept a
reasonable waiting time (Note that the concept of “free wait-
ing time” of some customers is related to the advance
demand information (ADI) literature (see [21]). Most previ-
ous studies on ADI concentrate on the value of ADI in
production-inventory systems, for example, Buzacott and
Shanthikumar [18] present a detailed analysis of a single-
stage make-to-stock queue with ADI. Wang et al. [22] study
inventory management with a service level constraint under a
flexible time-window fulfillment scheme. They use an (s,S)
policy and develop algorithms to find the optimal parame-
ters. We consider a continuous review environment and
allow for free waiting time in this paper.) after placing their
order into account and formulate the inventory control prob-
lem as a “partial backordering optimal inventory control
problem.” Observe that quite many prior studies have
explored the partial backorder issue in inventory manage-
ment. For instance, Montgomery et al. [23] introduce a
partial backorder inventory policy in which a fraction of
unfilled demand is backlogged. Kim and Park [24]
explore a similar problem and suggest a modified sce-
nario in which the cost of backorder is assumed to be
proportional to length of waiting time. Moinzadeh [25]
sets customer’s waiting time to a constant number, which
is similar to us. However, the basic inventory system they
adopted is the (s-1,s) system, and the optimization con-
straints are totally different. Rabinowitz et al. [26] analyze
a (Q,r) system with an upper bound on backorder. They
consider the scenario in which an emergency order will
be placed if the number of accumulated backorders is
more than the bound. Hu et al. [27] consider a partial back-
order inventory problem under a waiting time-dependent
backlogging setting.

Another topic relevant to our research is the “quoted ser-
vice time” issue, which has been commonly studied in queu-
ing theory-related studies. To our knowledge, the first piece
of related analytical work was done by Bertrand [28]. After
that, Wein [29] and many related studies focus on employing
the “conditional sojourn time concept” in analyzing the “due
date lead time- (DDLT-)” related problems. Yano [30]
develops a newsboy model to determine the “safety lead
time.” Duenyas and Hopp [31] later review this problem
with the semi-Markovian decision process. They also con-
nect their work with other scheduling optimization prob-
lems. Kut and Song [32] explore quick service, quoted
service time, and uniform service time systems. They
develop a model which analytically captures the relation-
ship between service time, capacity, and price. Axsäter [33]
introduces a partial backorder system in which any unfilled
demand can be satisfied with transshipment. Observe that
in our paper, we introduce a model with the critical time
point concept similar to Zhang et al.’s [34] “quoted service
time,” but our model setting and optimization problem are
totally different.

Inventory problems under different circumstances are
usually of great complexity. An important observation
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from the review of the current optimal inventory control
policies is that although many methods proposed in the
literature are sophisticated, they are not easy to execute
and implement in practice. This brings out an important
aspect as argued by Alstrøm [35] that relatively few com-
panies in practice employ the “scientifically sound” and
“precisely optimal” inventory policies. In fact, the determi-
nation of optimal values for the control variables—even in
a very simple inventory control system—is a complex task
and therefore not favored by practitioners. Heuristic solu-
tions are hence presented to solve (Q,r)-related inventory
control problems. For instance, Yang et al. [36] propose
a simple heuristic algorithm to find a near-optimal (Q,r)
policy (see [37, 38] for some other related studies). In this
paper, we also try to find a heuristic solution scheme
which is easy to understand and to implement for practi-
cal inventory control, especially for the target healthcare
centre. We derive the stocking cost, backorder cost, and
lost sale cost separately and finally obtain the average cost
function (of an order cycle). Since there is no simple effec-
tive method to find the analytically closed-form expression
of the optimal Q and r, we develop a heuristic algorithm,
which is built on an improved genetic algorithm to find
the (approximately) optimal (Q,r) policy. Considering the
practical situation of the healthcare centre with limited
space constraint and limited throughput each day, the
inventory problem cannot simply be solved by the current

policies. Such kind of small or medium-sized organizations
with a limited storage space which are offering a tailor-
made service are not uncommon nowadays. Moreover,
these organizations usually have some clients who are will-
ing to wait for a reasonable time as they might not be able
to get the ordered products immediately. Of course, they
will leave if they get impatient. As for the organizations,
it is necessary for them to keep the inventory in a certain
level so as to keep potential customers and achieve their
inventory service level target. That is why partial backlog,
space capacity, service level, and waiting time control must
be taken into consideration to design an appropriate
“tailor-made” inventory policy feasible for such organiza-
tions to execute. However, though work has been done
on inventory policies, little research has paid attention to
this realistic and existing problem. Besides, few papers
have conducted an analysis on the characteristics of partial
backlog, space capacity, and waiting time in the field of
inventory management, let alone in the healthcare relevant
area. Focusing on the real-world inventory problem listed
above, which is also based on the real case of the health-
care centre, it is essentially important for us to generate
a customized inventory policy which contributes to the
practical usage and fills the current academic gap. That
is why we think the issues we consider in this paper are
important. To show a clear picture about the literature
positioning and originality of this paper, we prepare

Table 1: The literature positioning of this paper.

Papers
Stochastic
demand?

(Q,r)
policy?

Heuristic
solution?

Partial
backlog?

Space
constraint?

Waiting
time?

Service
level?

Healthcare
related?

Federgruen and Zheng [2], Forsberg [17] Yes Yes Yes No No No No No

Silver [8], Goyal and Satir [6], Browne and
Zipkin [4], Eynan and Krop [5], Tarim and
Kingsman [9], Ben-Daya and Noman [3],
He et al. [10], Li et al. [11]

Yes No No No No No No No

Lau and Lau [7] Yes No No No Yes No No No

Forsberg [17], Zheng [44], Lau et al. [45],
Song et al. [12], Berk and Gürler [13],
Axäter [14], Axäter [15], Axäter [16]

Yes Yes No No No No No No

Montgomery et al. [23] Yes No Yes Yes No No No No

Kim and Park [24] Yes Yes No Yes No Yes No No

Moinzadeh [25] No No No Yes No Yes No No

Rabinowitz et al. [26] Yes Yes No Yes No No No No

Hu et al. [27] No No No Yes No Yes No No

Bertrand [28], Wein [29], Yano [30], Duenyas
and Hopp [31], Kut and Song [32]

No No No No No Yes No No

Axsäter [33] Yes No No Yes No Yes No No

Zhang et al. [34] No Yes No Yes No Yes No No

Platt et al. [38], Gallego [37], Yang et al. [36] No Yes Yes No No No No No

Jha and Shanker [40], Chu et al. [41],
Lee et al. [42], Ouyang et al. [43]

No No No No No No Yes No

Buzacott and Shanthikumar [18],
Wang et al. [22]

No No No No No Yes No No

Özer and Wei [21] No No No No Yes Yes No No

This paper Yes Yes Yes Yes Yes Yes Yes Yes
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Table 1 which clearly outlines, item-by-item, how this
paper is similar to and different from the other related
studies in the literature.

3. The System Description

We concisely describe the inventory system in the context of
a two-echelon make-to-order (MTO) supply chain. Consider
the configuration built as a single item system driven by a
Poisson demand process (see Figure 1).

Demands are random with a mean demand rate λ The
inventory is reviewed continuously by a (Q,r) policy (see
Figure 2): whenever the inventory position drops to r, the
inventory manager issues an order to the supplier for a
replenishment amount of Q units of goods, and the ordered
goods arrive after a constant lead time L Demand arriving
at time t will be immediately met if the inventory level I(t)
(see Figure 2) is positive. Otherwise, the customer will be told
a quoted service time during which customers are willing to
wait. When customers turn back after waiting, they may
probably still be backordered if the orders are outstanding.
Let Ω denote the value space of (Q,r) defined by

Ω = Q, r ∣0 < r <∞, 0 <Q <∞, r,Q ∈R 1

4. The Optimization Model

Consider a single-item inventory system controlled by a (Q,r)
policy. Our problem is to determine the optimal inventory
policy parameters r and Q to minimize the expected average
cost on cycle time C Q, r , where the expected average cost
on a cycle time is given as follows:

C Q, r = E TC
E TC

,
E TC = K + cQ + hE IC + pE LS + bE BC

2

IC is the available stock in a cycle time and LS and BC rep-
resent, respectively, the lost sales and the backorders in a
cycle time.

Define

p j λt = λt je−λt

j
3

We have the following approximation by using the
classical “integration by parts” method:

L

0
p j λt dt ≈

1
λ
P j + 1 λL ,

TLS =
0 Tr ≥ L

L − Tr Tr < L

4

where Tr is the time for r units to be depleted.
Notice that Tr follows an Erlang distribution with

parameters r and λ, and its probability density function
is λp r − 1 λt . Thus, we have

E TLS =
L

0
L − t g t dt

=
L

0
λ L − t p r − 1 λt dt

= LP r λL −
r
λ
P r + 1 λL

5

The expected number of lost sales per cycle can be
obtained as

E LS = λE TLS = λLP r λL − rP r + 1 λL 6

With the above model, we can derive Lemma 4.1.

Lemma 4.1. Consider the following:

E TC = Q
λ
+ E TLS 7

Proof of Lemma 4.1. On average, all items ordered are con-
sumed in a single cycle; the satisfied demands per unit time
can be denoted as Q/E TC It is equal to the incoming
demands minus lost sales, that is,

λ −
E LS
E TC

Q
E TC

= λ −
E LS
E TC

, q e d 8

This yields Lemma 4.1.
Denote TB as the time period of backorders. The

existence of TB is related to Tr .

TB =
0 Tr > L − T

L − T − Tr 0 < Tr ≤ L − T
9

We derive the expected time period for backorders
as follows:

E TB =
L−T

0
L − T − t g t dt

=
L−T

0
L − T g t dt −

L−T

0
tg t dt

= L − T P r λ L − T −
r
λ
P r + 1 λ L − T

10

Thus, the expected number of backorders is given by

λE TB = λ L − T P r λ L − T − rP r + 1 λ L − T

11

Material
supplier

HAS
centre Customer

Orders

Replenishment Order
fulfillment

Orders

Figure 1: The healthcare apparel service centre supply chain
system.
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We can then get the cumulative backorders at time t,
B t , in the following:

B t = λtP r λt − rP r + 1 λt 12

Denote the expected backorders per cycle by BC When
the inventory level falls below 0, backorder costs are incurred
in the time interval Tr , t There is no shortage penalty cost
incurred by backorders during the free waiting time T When
t falls into a certain interval, Tr < t < L − T , the expression for
BC can be expressed as follows:

BC =
L−T

Tr

λ t − Tr dt 13

Given that the probability density function of Tr is
f s = λp r − 1 λs , we can find the closed-form expression
for Proposition 4.2.

Proposition 4.2. Consider the following:

E BC = λ L − T 2

2 P r λ L − T

−
λ L − T r

λ
P r + 1 λ L − T

+ r r + 1
2λ P r + 2, λ L − T

14

Proof of Proposition 4.2. Consider

E BC = E
L−T

Tr

λ t − Tr dt

=
L−T

0

L−T

s
λ t − s dt f s ds

= λ L − T 2

2 P r λ L − T

−
λ L − T r

λ
P r + 1 λ L − T

+ r r + 1
2λ P r + 2 λ L − T , q e d

15

Denote the expected inventory held per cycle by E IC
For the sake of clarity, we separate the “derivation” of E IC

into two parts: prior to the replenishment time, denote
it by E IB , and after the replenishment time, denote it
by E IA Define E IT = E IA + E IB and D t as the
total demand during 0, t As defined earlier, note that
I t represents the inventory level at time t. We have
Proposition 4.3.

Proposition 4.3. Consider the following:

E IB = rL −
rL2

2 + rL2

2 P r − 1 λL − rLP r λL

+ r r + 1
2λ P r + 1 λL

16

Proof of Proposition 4.3. Consider

E IB =
L

0
E I t +dt =

L

0
E r −D t +dt

=
L

0
〠
r−1

x=0
r − x p x λt dt

= 〠
r−1

j=0

r − j
λ

P j + 1 λL

= rL −
rL2

2 + rL2

2 P r − 1 λL − rLP r λL

+ r r + 1
2λ P r + 1 λL , q e d

17

In the following, we deduce the expected inventory
held per cycle after the replenishment time E IA Let I L
(distributed from r −Q to r) be the inventory level just before
a replenishment order arrives and T r be the time for r
demands to arrive from time 0. We have Pr I L = j =
p r − j λL , j = r −Q, r −Q + 1,… , 0,… , r, and we can
derive Proposition 4.4.

Proposition 4.4. Consider the following:

E IA = 1
2λ 〠

r

j=r+1−Q
p r − j, λL j +Q 2 + j +Q − r r + 1

18

Inventory
level I(t)

Tr

TC

TLS

T

L Time

r

Figure 2: The inventory level variation in an order cycle time TC
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Proof of Proposition 4.4. Let Z =Q + I L be the inventory
level just after a replenishment order arrives. The state space
of Z is r, r + 1,… , r +Q Denote Ti as the interarrival time of
the demands. The Ti, i=1, 2, 3,… , are i.i.d. exponential

random variables with mean 1/λ The expected inventory
held from the replenishment time until the next ordering
time is then given by

Hence, we have

E IA = 1
λ

〠
r+Q

z=r+1
Pr Z = z z + z − 1 +⋯ + r + 1

= 1
2λ 〠

r+Q

z=r+1
Pr Z = z z2 + z − r r + 1

= 1
2λ 〠

r+Q

z=r+1
Pr Z = z z2 + z − r r + 1

= 1
2λ 〠

r

j=r+1−Q
Pr I L = j j +Q 2 + j +Q − r r + 1

= 1
2λ 〠

r

j=r+1−Q
p r − j, λL j +Q 2 + j +Q − r r + 1

20

Thus,

E IC = rL −
rL2

2 + rL2

2 P r − 1 λL − rLP r λL

+ r r + 1
2λ P r + 1 λL + 1

2λ

〠
r

j=r+1−Q
p r − j, λL j +Q 2 + j +Q − r r + 1 ,

q e d
21

In this paper, we consider the service level constraint in
the inventory control model as well. In addition, if demand
exceeds r, the inventory system will experience a shortage.
Let X − r + = max X − r, 0 According to Ravindran et al.
[39] and Jha and Shanker [40], the expected shortage can
be expressed as follows:

E X − r + =
+∞

r
X − r dF x = σ Lψ r , 22

where ψ r = ϕ r − r 1 −Φ r > 0 which denotes the right
linear loss function of the standard normal distribution and
ϕ r and Φ r are probability density function and cumula-
tive distribution function of the standard normal distribu-
tion, respectively.

Notice that the stockout risk target can be converted
into an analytical constraint which has been considered
in some inventory optimization problems in recent
research (see [41, 42]). In particular, Lee et al. [42] pro-
pose an algorithm to get the “computable” order quantity
for an inventory model with such a constraint. Observe
further that the no-stockout risk target can be expressed
as a proportion of demand that can be met from the stock
in a cycle. According to Ouyang et al. [43], the no-stockout
risk target constraint can be converted into the following
format: λLψ r /Q ≤ 1 − ξ ≡ n Thus, the optimization
problem can be expressed as the nonlinear optimization
problem, Problem (P1), as shown below:

min
r,Q

C Q, r ,
s t  r +Q ≤m,
λLψ r
Q

≤ n,

Q > 0,
r > 0

23

5. Data Analysis

5.1. Case Study. We illustrate the performance and appli-
cability of the derived optimal inventory control model
by using data collected from the healthcare apparel service
centre we introduced in Section 1. Observe that the centre
operates in a make-to-order (MTO) mode in which it will
produce the product after the customer advises his/her
specific needs with precise measurement. Thus, what the
centre needs is to keep inventory of the materials and fabrics.
Since the centre is a nonprofit-making charity organization,
minimizing inventory costs is its major consideration
(instead of profit). With the relatively small-sized inventory
capacity and storage space, the centre cannot keep a lot of
fabrics and materials in its stockroom. Customer orders
arrive stochastically and cannot be controlled. Overall speak-
ing, the proposed (Q,r) inventory control model is applicable
to this centre.

In the following analysis, related data are collected from
the healthcare centre covering the period from January to
March, 2013. Without loss of generality, we set λ = 1,m =
200, and the numbers in the tables (Tables 2–4) are scaled
consistently to keep the confidentiality of the sensitive data.

IA =

0 Z = r

T1, T2,… , TZ−r

Z

⋮
r + 1

= ZT1 + Z − 1 T2 +⋯ + r + 1 TZ−r Z > r
19
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We conduct the analysis on three separate products, namely,
the wheelchair raincoat, safety jumpsuit, and apron. We con-
sider the optimal inventory control policy for each product
separately because the required fabric for each item is differ-
ent and will be sourced from a different textile supplier.

Table 3 shows the parameters of the optimal policy and
also the respective cost under the optimal policy. Table 4

shows the current practice in which the ordering policy is
based on the “gut feeling” of the manager. With the optimal
policy, the ordering quantity of each item has a reduction
(see Table 5). Table 6 shows the improvement by using the
optimal policy. From Table 6, it is obvious that the expected
total cost on an order cycle is reduced substantially at around
20% with the model introduced in the paper for this specific
healthcare service centre case. This is an inspiring result as
the healthcare service centre can attain the same high ser-
vice level while reducing the respective total cost substan-
tially. This helps to achieve an efficient, effective, and
sustainable healthcare service operations.

5.2. Sensitivity Analysis. To generate more insights on the sit-
uation under which the optimal inventory control policy is
especially efficient, sensitivity analysis is conducted on the
major parameters in the optimization model. Since the three
products we explored have similar features, we just present
the result for the “Wheelchair Raincoat.” Tables 7–12 show
the numerical sensitivity analysis results. Figures 3–8 clearly
illustrate the effect of different parameters’ variation on r,Q
and C Q, r Table 13 shows a summary.

From Table 13, we can see that when the ordering
(purchasing) cost c increases, the average inventory cost
increases. This result is as expected because c is the

Table 2: Parameters of the model (per one unit of the item).

c h p b L α ξ

Wheelchair raincoat 40 20 8 5 3 1 0.01

Safety jumpsuit 45 24 9 6 5 0.95 0.015

Apron 42 22 8 3 2 0.85 0.01

Table 3: Optimal policy of r and Q in service level constraint.

r,Q C r,Q
Wheelchair raincoat (10.90,85.1) 81.3

Safety jumpsuit (8.72,77.3) 74.7

Apron (7.98,71.5) 61.9

Table 4: Current practice (in the centre).

r,Q C r,Q
Wheelchair raincoat (18,90) 107.3

Safety jumpsuit (13,80) 93.1

Apron (10,75) 78.8

Table 5: Reduction of batch size by using the optimal policy.

Reduction on Q Percentage reduction on Q

Wheelchair raincoat 5.3 5.89%

Safety jumpsuit 2.7 3.38%

Apron 3.5 4.67%

Table 6: Inventory cost improvement by using the optimal policy.

Cost saving Percentage cost saving

Wheelchair raincoat 25.4 23.7%

Safety jumpsuit 17.6 18.9%

Apron 16.7 21.2%

Table 7: The effect of variation of c on Q and r.

c r,Q C r,Q
40 (10.90,85.1) 81.3

50 (11.81,87.2) 86.6

60 (13.12,88.9) 91.3

70 (14.98,90.4) 94.7

80 (16.01,92.1) 99.6

90 (17.47,93.9) 103.5

Table 8: The effect of variation of λ on Q and r.

λ r,Q C r,Q
1 (10.90,85.1) 81.3

1.2 (11.32,86.3) 84.2

1.4 (11.98,87.6) 86.6

1.6 (12.36,89.4) 88.9

1.8 (13.07,91.2) 91.5

2.0 (13.78,93.1) 94.3

Table 9: The effect of variation of b on Q and r.

b r,Q C r,Q
5 (10.90,85.1) 81.3

6 (11.82,86.5) 82.7

7 (12.93,87.8) 83.9

8 (13.83,89.0) 85.1

9 (15.42,89.9) 86.4

10 (16.56,90.7) 87.7

Table 10: The effect of variation of h on Q and r.

h r,Q C r,Q
20 (10.90,85.1) 81.3

21 (12.37,83.9) 83.1

22 (13.85,82.3) 84.6

23 (15.81,80.8) 86.0

24 (16.92,78.9) 87.1

25 (17.88,77.6) 88.3
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purchasing cost. It is interesting to note that a larger c leads to
a larger Q and a larger r, and this relates to the fact that a
larger Q slows down the increasing rate of the ordering cost
on each unit. For the mean demand rate λ, a larger λ leads
to increases in r,Q, and cost C. By definition, a larger λmeans
customer demand per unit time increases. To avoid the
occurrence of stockout, the optimal inventory policy will
have both r and Q being larger, which also leads to a bigger
average cost C. For the backordering cost b, when it increases,
backorder is being penalized more, and hence both r and Q
increase, which also yields a higher cost C. When the stock-
out penalty p increases, it brings about increases in r and
average inventory cost. When stockout cost per unit time
becomes larger, the shortage cost is magnified. To avoid the
stockout situation, the level of reorder point has to be raised.
For the holding cost h, when it becomes larger, the average
inventory cost increases. It is interesting to note that the opti-
mal Q derived by the nonlinear optimization model also
increases. This can be explained by the fact that a largerQ off-
sets the increase in the inventory cost on each unit. Finally,
when the specified service level (with respect to stockout) ξ
increases (which means the inventory service level drops),
the optimal Q decreases. This is intuitive as a lower quantity
is needed for the case when inventory service level is lower.

5.3. Comparison with EOQ Model. To evaluate the signifi-
cance of the proposed policy, another classical model in
inventory management is used to compare with policy. Con-
sidering the background of the case study, traditional EOQ
model should be extended under the conditions of partial
backordering and stochastic demands. In this case, orders
of size are placed from a supplier when the stock drops down
to the reorder level. Due to the uncertainty in customer
demand during lead time, there are chances of shortages if
demand is underestimated and high holding costs if demand
is overestimated. When shortages occur, they are

backordered. According to Yan (2005), when an order is
placed as the inventory level hits zero, the optimal order size
and the minimized average total cost are derived as follows:

Q∗ = 2Kλ
h

,

CEOQ = hQ∗

2 + Kλ
Q

+ C

24

Backlogging is allowed in this case, thus the optimal order
size and reorder position are

Q∗ = 2K p + h λ

hp
,

l∗ = h
p + h

Q∗

25

Besides, the expected average cost is

C Q, l = p + h l2

2Q + hQ
2 − hl π e 26

We have done a comparison between r,Q policy and
EOQ policy with available data of the healthcare centre.

From the results (see Table 14), it is clear that the
expected average cost per cycle time of EOQ policy is
much higher than that of r,Q policy. We can conclude
that EOQ method requires frequent replenishment with
fewer order quantity of each cycle time to handle the uncer-
tain customer demands. Back to the case study, since the
healthcare centre, as a nonprofit organization, provides
apparel-making service only for specific group of people, fre-
quent replenishments might increase the ordering cost and
the holding cost. In terms of these twomethods, the proposed
r,Q policy seems to be better and more appropriate for the
healthcare centre to adopt.

6. Concluding Remarks and Future Research

Based on the real-world operations of a healthcare apparel
service centre in Hong Kong, this paper explores a partial-
backorder (Q,r) inventory control policy with capacity and
service level constraints. An analytical optimization model
is constructed to solve the problem. Employing data col-
lected from the healthcare apparel centre, further analysis
is conducted. The computational findings indicate that
the expected total cost on an order cycle is reduced sub-
stantially at around 20% with the use of the optimal inven-
tory control model introduced in the paper. This is a very
remarkable result as this significant saving of the total cost
would help to lead to the long-term sustainable operations
of the healthcare service centre, which is a nonprofit-
making service organization.

As a concluding remark, we believe that the derived
inventory control model is important not only because it
helps significantly improve the operations’ efficiency in the
specific healthcare apparel service centre as explored in this
paper but it also has good implications to a more general

Table 11: The effect of variation of p on Q and r.

p r,Q C r,Q
8 (10.90,85.1) 81.3

9 (9.72,86.9) 83.7

10 (8.91,87.8) 85.2

11 (8.02,89.0) 87.0

12 (7.23,90.2) 88.6

13 (6.31,91.5) 89.8

Table 12: The effect of variation of ξ on Q and r.

ξ r,Q C r,Q
0.01 (10.90,85.1) 81.3

0.02 (11.65,84.1) 82.7

0.03 (13.08,82.0) 84.4

0.04 (16.35,79.5) 87.6

0.05 (19.12,77.8) 90.8

0.06 (23.87,76.5) 96.1
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Figure 3: The effect of variation of c on Q, r, and C(r, Q).
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domain: First, the service level is considered in our inventory
model. For many real-world practices (including the health-
care apparel centre we mentioned in this paper), it is neces-
sary to keep an appropriate service level so that stockout
cost is controlled. Second, under our proposed policy, the
expected average cost on a finite horizon is minimized so that
a better budget allocation can be achieved and resources can
be fully utilized. This is critical to nonprofit-making charity
organizations. Third, free waiting and partial backorders
are both allowed in our model. The inventory cost function
with partial backordering cost is hence more comprehensive
and closer to real-world practices. Fourth, we have derived
various propositions on the model’s structural properties
which also supplement the existing literature on inventory
control. Fifth, a case-based sensitivity analysis has been con-
ducted to reveal important insights on how each major
model parameter affects the optimal inventory policy and
its performance (measured in cost).

Similar to other analytical studies in inventory control,
our work has several limitations. For example, we currently
assume that both the inventory service level and the storage
space are all prespecified constraints. In future research, we
plan to extend our analysis to a more challenging case when
the service level and the storage space are decision variables.
Considering the simplicity of operation, (Q,r) policy is
adopted for the healthcare centre to solve the inventory con-
trol problem in the case study. However, other policies might
also be considered to compare with (Q,r) policy. In addition,
the impact of variations in multiple parameters will be ana-
lyzed in the future research.

Parameters

TC: The order cycle time
T: The service time
Tr : The time for r units to be depleted
TLS: The time period in which lost sales occur
K : The fixed ordering cost
c: The purchasing cost per unit

p: The stockout risk associated cost (per unit stockout)
h: The holding cost per unit per time unit
b: The backordering cost per unit per time unit
X: The stock level (continuous random variable)
IC : The expected stock in a cycle
I t : The inventory level at time t
g t : The probability density function of time t
LS: The number of unfulfilled demand, just like “lost sale”
BC : The backorders in a cycle
k: The safety factor
m: The maximum capacity
ξ: The target stockout risk tolerance level
n: 1 − ξ (the target no-stockout risk level)
λ: The demand rate
L: The lead time
Q: The order quantity (as a decision variable).
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