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Abstract 

Massive amounts of building operational data are collected and stored in modern 

buildings, which provide rich information for in-depth investigation and assessment of 
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actual building operational performance. However, the current utilization of big 

building operational data is far from being effective due to the gaps between building 

engineering and advanced big data analytics. Data mining (DM) is a promising 

technology for extracting previously unknown yet potentially useful insights from big 

data. This paper aims to explore the potential application of advanced DM techniques 

for effective utilization of big building operational data. A case study of mining the 

operational data of an educational building for performance improvement is presented. 

Decision tree, clustering analysis and association rule mining are adopted to analyze the 

operational data. The results show that useful knowledge can be extracted for 

identifying typical building operation patterns, detecting operation deficiencies and 

spotting energy conservation opportunities. 

Keywords: big building operational data; building energy efficiency; decision tree; 

clustering analysis; association rule mining; 



Practical Application 

The current utilization of big building operational data in the building industrial is rather 

limited due to the lack in experience of using advanced big data analytics. This study 

presents a data mining-based method for analyzing massive building operational data. 

The case study results validate the efficiency and effectiveness of the method proposed. 

It can help building professionals to discover valuable insights into building operation 

patterns and thereby, developing strategies for improving building energy efficiency. 

The method can be fully realized using the open-source software R, which provides 

great flexibilities in its integration with building automation systems. 

 

1. Introduction  

The building sector has become one of the largest energy consumers worldwide. 

According to the U.S. Energy Information Administration, the Building Sector 



(residential and commercial) accounted for 39% of total energy consumption in the 

United States in 2015 [1]. During the building life cycle, building operation represents 

the largest portion of electricity use in most developed countries and areas. Buildings 

shared 74% of the total U.S. retail sales of electricity use in 2015 [2]. In Hong Kong, 

buildings are responsible for 92% of electricity consumption in 2014 [3]. Building 

energy efficiency has become a global urgent issue, and attracted great efforts in both 

academia and industry. To improve the building operational performance, Building 

Automation Systems (BASs) are usually installed in modern buildings, which facilitate 

the real-time monitoring, control and energy management. Massive amounts of building 

operational data are collected and stored in BAS. However, the current utilization of big 

building operational data is far from being effective due to the lack of suitable methods 

or tools for data analysis. Conventional methods for analyzing building operational data 

typically rely on physical principles, statistics and engineering expertise. The inherent 



mechanisms of these analytic methods impose great limitations on their abilities in 

analyzing big data. To address the challenges and opportunities brought by big building 

operational data, advanced data analytics are urgently needed.  

As a promising solution, data mining (DM) technology is renowned for its excellence in 

knowledge discovery from big data. It has been widely used in various industries, 

including financial services, retails, health care, and even counter-terrorism [4, 5]. DM 

techniques can be generally classified into two groups, i.e., supervised and unsupervised 

DM techniques. Supervised DM performs regression or classification based on the 

relationships discovered between input and output variables. The knowledge discovered 

is represented as quantitative or qualitative models. Supervised DM has been applied for 

energy consumption prediction [6-9] and fault detection and diagnosis [10-13] in the 

building field. It is noted that supervised DM can barely bring new and exciting 

knowledge to the building industry, compared with conventional data analytics. The 



major reason is that buildings and building systems are well understood. In addition, 

they usually require the availability of high-quality labeled training data under both 

normal and abnormal conditions. Such training data can be very hard to obtain in real 

building operations, e.g., chiller operational data under different faulty conditions. By 

contrast, unsupervised DM does not require labeled training data and focuses on 

discovering the intrinsic data structures, correlations and associations. In addition, 

unsupervised DM requires less domain expertise since there is no need to explicitly 

pre-define a problem or a mining target, making it more preferable in real applications 

to discover new knowledge. The knowledge obtained by unsupervised DM is usually 

represented as data clusters, association rules, and anomalies [4].   

This paper presents a case study on extracting useful knowledge from massive building 

operational data using DM techniques and their potential applications in improving 

building energy efficiency. The method is developed based on the generic data analytic 



framework proposed in our previous study [14]. The main DM techniques adopted are 

decision trees, clustering analysis and association rule mining. The method has been 

applied to analyze the data retrieved from an educational building in the Hong Kong 

Polytechnic University.  

 

2. Research Method 

2.1 Research outline 

Based on a comprehensive investigation on DM techniques and building operational 

characteristics, a generic DM-based analytic framework has been developed in our 

previous work [14]. Four phases are included in this framework, i.e., data exploration, 

data partitioning, knowledge discovery and post-mining. The data exploration aims to 

improve data quality and transform data into compatible formats for the implementation 

of various DM techniques. Data partitioning aims to enhance the reliability and 



sensitivity of the knowledge discovered by dividing the whole data sets into several 

groups according to building operational characteristics. A number of DM techniques 

are then applied to different data groups separately to extract knowledge at the 

knowledge discovery phase. Customized post-mining methods are developed to 

facilitate the process of knowledge interpretation, selection, and applications. The 

method adopted in this paper is developed from the framework and the main DM 

techniques used are clustering analysis, decision trees and association rule mining. The 

following sections present the details.  

 

2.2 Data partitioning 

Building operations are highly complex due to the constantly changing indoor 

requirements and outdoor conditions. It is therefore not wise to treat the building 



operational data as a whole for data analysis, as it will downgrade the reliability and 

sensitivity of knowledge discovered.  

Typical building operational data are stored in a two-dimensional data table, in which 

each column represents a variable and each row stores measurements sampled at the 

same time step. Data partitioning refers to the process of dividing the entire data table 

into several subsets, each containing a number of rows. 

It is found that two types of methods are suitable for partitioning building operational 

data. The first is to treat each row as an observation and then grouping observations 

based on their similarities. Clustering analysis is one of the most suitable methods to 

perform this task. The aim of clustering analysis is to divide data into several clusters 

while maximizing the within-cluster similarities and minimizing the between-cluster 

similarities. There are three general types of clustering methods, i.e., hierarchical, 

partitioning and density-based methods [4]. The similarities among observations can be 



evaluated using various distance measures, such as the Euclidean distance and Cosine 

distance. It is worth mentioning that due to the curse of dimensionality, the 

distance-based similarity measures may become meaningless when the variable number 

is large [15]. Therefore, users may have to select a small subset of variables as inputs 

for clustering analysis. This subset should be able to reflect the changes in building 

operations. The main drawback of this method is that the result lacks interpretability, as 

the only output is the clustering membership. Further analysis has to be carried out if 

users want to know the data characteristics in each cluster. 

The other method is to partition the data according to one representative variable, which 

can describe the operation characteristics and is also a major concern of building 

professionals, e.g., the building power consumption and the building cooling load. The 

decision tree method, which is one of the most widely used predictive data mining 

techniques, can be applied for this task. A decision tree model adopts a tree structure to 



present the logic flow. The aim is to predict the value of a target variable based on 

inputs. A decision tree model has three main components, i.e., the root, internal and 

terminal nodes. An input variable is selected at each root and internal nodes to enhance 

the prediction performance. Commonly used metrics for performance evaluation 

include the Gini impurity, information gain, misclassification rate and variance [4]. The 

prediction outcomes are shown in terminal nodes and the whole model can be easily 

interpreted as decision rules. An example of decision tree model is shown in Fig. 1. The 

model describes fictional relationships between gender, hair and shoes. Node 1 is the 

root node and the splitting variable selected is the shoe type. Node 3 is called internal 

node. Nodes 2, 4 and 5 are called terminal nodes, which present the prediction result of 

gender. Node 2 indicates that the gender should be 100% Female if one wears high 

heels. Node 5 states that the gender is 100% Male if one wears sneaker and has short 

hair. Node 4 indicates that if one wears sneakers and has long hair, the gender can be 



either Female or Male with possibilities of 60% and 40% respectively. The decision tree 

model is highly interpretable and provides detailed clues on how to partition the data. 

The decision method is applied for the data partitioning task in this study. 

 

Fig. 1. An example decision tree model 

2.3 Knowledge discovery 

Investigating the relationships between different variables is the main approach for 

knowledge discovery. Association rule mining is a popular method to mine associations 



among variables. An association rule A  B states that if A happens, then B happens, 

where A is the antecedent and B is the consequence. Two thresholds are typically used 

for rule generation, i.e., support and confidence. The support is the joint probability of A 

and B both happening while the confidence is the conditional probability of B given A. 

The number of association rules obtained decreases with the increase in the support and 

confidence thresholds. Users may use some statistics for selecting potentially interesting 

rules. For instance, the lift value defines the ratio between the rule confidence and the 

support of the consequence [4]. A lift larger than 1 indicates that the presence of 

consequence is positively affected by the presence of antecedence and vice versa. A lift 

of 1 indicates that the antecedent and consequent are independent from each other. 

Conventional association rule mining algorithms only work with categorical variables. 

The majority of building operational data is numeric and therefore, discretization 

becomes necessary. Data discretization for building operational data is a challenging 



problem, as variables usually have their own behavior and the optimal discretization 

methods are hard to develop without in-depth domain knowledge. Improper 

discretization usually leads to information loss and may severely downgrade the mining 

performance. Quantitative association rule mining algorithms are therefore proposed so 

that both numeric and categorical variables can be mined directly without manual 

discretization.  

This study adopts the QuantMiner [16] as the mining algorithm. If the variable is 

numeric, an interval is automatically identified considering the rule gain and the 

coverage of the interval identified. The interval identified is then used to create 

categorical values for rule generation. The rule gain is calculated using Eq. 1, where 

MinConf refers to the minimal confidence threshold. Genetic algorithm is applied to 

identify the interval by maximizing a fitness function, as shown in Eq. 2, where Anum is 

the number of numeric variables in the rule; IAi is the interval identified of Ai; size(Ai) is 



the range of Ai; size(IAi) is the length of the identified interval. The algorithm prefers to 

select rules with large gains and small intervals.  

    (Eq. 1) 

     (Eq. 2) 

3. Case study 

3.1 Description of building, system and data 

An educational building in the Hong Kong Polytechnic University is selected for 

analysis. It mainly serves as offices and classrooms. The gross floor area is 

approximately 11,000m2, of which about 8,500m2 are air-conditioned spaces.  

The building operational data under concern recorded the operating conditions of the 

Heating, Ventilation and Air-Conditioning (HVAC) waterside system at the interval of 

30-minute. The chiller plant contains 4 water-cooled chillers (denoted as CH-1 to CH-4) 

and 4 cooling towers (denoted as CT-1 to CT-4). Chillers are connected in parallel and 



the chilled water is distributed using 6 primary chilled water pumps (denoted as 

PCHWP-1 to 6) and 6 secondary chilled water pumps (denoted as SCHWP-1 to 6). The 

condenser water is circulated between chillers and 4 cooling towers using 6 

variable-speed pumps (denoted as CDWP-1 to 6). One-year data retrieved from the 

BAS (from January 2015 to December 2015) are analyzed. The data have 17,110 

observations of 113 variables, including almost all the major variables of the HVAC 

waterside system, e.g., temperature, flow rate, pressure and on/off signals. 

 

3.2 Data partitioning using decision tree method 

Building cooling load, which is sensitive to the outdoor and indoor conditions, is an 

essential variable in building energy management. It can be used as an indicator of 

different building operation patterns. As introduced in section 2.2, the decision tree 

method is adopted for data partitioning. In this study, the building cooling load is 



considered as the output variable and the time variables, such as the Year, Month, Day, 

Hour, Minute and Day type, are used as the input variables. The indoor variables, such 

as the occupant number, are not used as inputs because, firstly, those data are not 

available due to the lack of measurement instruments; secondly, they are not necessary 

considering that the time and day type can also describe how people use the spaces for 

educational buildings.   

The decision tree model constructed is shown in Fig. 2. The model selects the Month, 

Hour and Day type as splitting variables. Starting from Node 1, the model first picks the 

Hour as the splitting variable and the splitting criterion is {0, 1, 2, 3, 4, 5, 6, 7, 23} and 

{8 to 22}. The result matches our domain knowledge as it corresponds to the non-peak 

and peak hours. The lectures normally start at 8:30am and end at 9:30pm. Node 3 

divides the data based on the Day type and the partitioning is made based on {Monday 

to Saturday} and {Sunday}. It should be noted at many classes for part-time students 



and academic events are scheduled in this building on Saturdays and therefore, the 

cooling load on Saturdays is very similar to that on a typical weekday. Node 5 selects 

Month as the splitting variable and the two splitting sets are {1, 2, 3, 4, 12} and {5, 6, 7, 

8, 9, 10, 11}. The first set corresponds to the cooler and less humid seasons while the 

second refers to the hotter and more humid seasons in Hong Kong.  

The decision tree model developed provides evident clues on data partitioning. Rather 

than dividing the whole data into 4 data groups according to the terminal nodes (i.e., 

Nodes 2, 4, 6 and 7), the splitting criteria generated at Nodes 1, 3 and 5 are used 

together to partition the data in a more comprehensive manner. As a result, the entire 

data sets are partitioned into 8 groups, as shown in Table 1. Fig. 3 presents the 

distribution of building cooling load in each data partition. It is apparent that the 

building cooling load in each group presents different distributions, especially when it 

belongs to peak hours. The cooling loads during non-peak hours during Mondays to 



Saturdays and Sundays in the same cool or hot season are generally the same, e.g. 

comparing Group 1 and Group 3, Group 5 and Group 7 in Fig. 3. It is worth mentioning 

that data distributions in Groups 4, 5 and 7 are quite close, which states that the cooling 

load during peak hours on Sundays in cool seasons is similar to that during non-peak 

hours in hot seasons. Other data partitioning approaches (e.g., clustering analysis) may 

group those observations into one group. The decision tree method therefore provides 

more detailed partitioning results which would improve the sensitivity and reliability of 

the knowledge discovered. 

Table 1. Details on eight data groups 

Groups Month Day type Hour 

1 {1,2,3,4,12} {Monday to Saturday} {0,1,2,3,4,5,6,7,23} 

2 {1,2,3,4,12} {Monday to Saturday} {8 to 22} 

3 {1,2,3,4,12} {Sunday} {0,1,2,3,4,5,6,7,23} 



4 {1,2,3,4,12} {Sunday} {8 to 22} 

5 {5 to 11} {Monday to Saturday} {0,1,2,3,4,5,6,7,23} 

6 {5 to 11} {Monday to Saturday} {8 to 22} 

7 {5 to 11} {Sunday} {0,1,2,3,4,5,6,7,23} 

8 {5 to 11} {Sunday} {8 to 22} 

 

Fig. 2. Decision tree model for building cooling load 



 

Fig. 3. Boxplots of building cooling load in each data group 

 

3.3 Knowledge discovery using quantitative association rule mining 

As introduced in section 2.3, the QuantMiner algorithm is adopted to discover the 

associations in each data group separately. For the convenience of rule interpretation, 

both sides of the rule, i.e. the antecedent and the consequence, are constrained to have 

one variable only. The parameters for the genetic algorithm are set as follows: 250 as 



population size, 100 as iteration number, 50% as crossover rate and 40% as mutation 

rate. These parameters are set according to the suggestions in [16]. The support and 

confidence thresholds are set as 5% and 90% respectively. In general, the confidence 

threshold should be set no less than 80% to ensure the quality of association rules. The 

support values can be set according to the user’s actual need. A small support threshold 

leads to the discovery of less frequent associations. It can be used to discover atypical 

associations in building operations. However, a smaller support threshold will cause a 

dramatic increase in the number of association rules obtained, which makes the 

post-mining phase more time-consuming. Building professionals should also pay 

attention to the inherent support of a class when trying to derive association rules 

containing that class. If the inherent support of a class is small, the support threshold 

should be set even smaller so that association rules containing that class can be 

discovered. 



Taking Mondays to Saturdays in hot seasons (i.e., Group 5 and 6) as examples, 199 and 

161 quantitative association rules are obtained respectively. The majority of the rules 

obtained are in accordance with domain expertise and Table 2 presents 3 example rules. 

The first rule states that if the number of running chillers is 0, then the total condenser 

water flow will range from 0.0 to 1.0 l/s. The rule confidence is quite high but not 

100%. This is because the water flow sensor may have recorded some values slightly 

smaller than 0 or larger than 1 due to the measurement precision problem or the data 

transmission problem. The latter two rules specifying the idle condition of CT-2 and 

CH-2 also agree with domain expertise. It should be mentioned that such rules could be 

used as a knowledge database, which can be further applied to detect anomalies in new 

observations. Meanwhile, some rules are not in accordance with expectation. These 

rules can be directly applied for detecting anomalies, faults and deficiencies in building 



operations and thereby, identifying energy conservation opportunities. The details are 

discussed in the following section. 

Table 2. Example quantitative association rules in data groups 5 and 6 

No. Antecedent Consequent Support 

(%) 

Confidence 

(%) 

Lift Data 

group 

1 CH_No = 0  CDW_Flow in [0.0, 1.0] 87.9 98.8 1.2 5 

2 CT2_Status = Off CT2_MotorSpeed in [0.0, 0.6] 89.6 100 1.1 5 

3 CH2_status = Off CH2_CHW_Flow in [-0.1, 0.3] 73.4 99.5 1.4 6 

 

4. Applications 

4.1 Identification of energy conservation opportunities 

Chilled water and condensing water distribution system  

Two examples rules presented in Table 3 indicate that when one chiller is switched on, 



its chilled water and condensing water flow rates become nearly constant. By checking 

the actual motor speed of PCHWP and CDWP, it is found out that the motor frequency 

was maintained at 40Hz during operation, indicating that the energy saving potential of 

variable speed operation was not realized. The insights obtained helps to spot the energy 

conservations in actual operations, as control strategy should be developed to optimize 

the pressure set-point for pump speed control according to the actual cooling load and 

weather conditions. 

Table 3. Example quantitative associations in chilled water and condensing water 

flow rates 

No. Antecedent Consequent Support 

(%) 

Confidence 

(%) 

Lift Data 

group 

1 CH1_Status = On CH1_CHW_Flow in 

[47.1, 51.3]  

60.1 99.5 1.7 6 



2 CH2_Status = On CH2_CDW_Flow in 

[46.8, 51.9]  

26.1 99.7 3.8 6 

 

Chiller control strategy 

The rules in Table 4 describe the supplied chilled water temperature when one chiller is 

switched on. The intervals identified for the chilled water supply temperature are quite 

narrow. It turns out that the supplied chilled water temperature set-point was set fixed as 

7oC. Considering that the chilled water supply temperature has a huge impact on the 

chiller power consumption [17], it is suggested to develop a temperature reset scheme to 

regulate the chilled water supply temperature.  

Table 4. Example quantitative associations in chiller operation 

No. Antecedent Consequent Support 

(%) 

Confidence 

(%) 

Lift Data 

group 



1 CH1_Status = On CH1_CHW_ST in [6.8, 

7.3] 

60.0 99.4 1.7 6 

2 CH2_Status = On CH2_CHW_ST in [6.8, 

7.8]  

26.0 99.2 3.8 6 

 

Cooling tower control strategy 

The rules in Table 5 indicate that the cooling tower fan speed was maintained at around 

35Hz during operations, which indicates that the energy saving potential through 

variable speed control was not achieved. An optimal condenser inlet water temperature 

set-point reset scheme should be developed to provide fan speed set-points according to 

the ambient and working conditions with the aim of minimizing the overall energy use 

of chillers and cooling tower fans. 

Table 5. Example quantitative associations in cooling tower operation 



No. Antecedent Consequent Support 

(%) 

Confidence 

(%) 

Lift Data 

group 

1 CT1_Status = On CT1_MotorFrequency in 

[35.0, 35.6] 

84.7 99.5 1.2 6 

2 CT2_Status = On CT2_MotorFrequency in 

[35.2, 35.7]  

82.5 99.6 3.2 6 

 

4.2 Evaluation on HVAC operational performance 

The HVAC operational performance can be evaluated using the system coefficient of 

performance (COP), which equals to the ratio between the building cooling load and the 

power consumption of the chiller plant (i.e., including chillers, chilled water and 

condensing water pumps, cooling towers). The equal-width binning method is applied 

to discretize the system COP into three classes for performance evaluation, namely as 



Poor, Medium and Good. If none of the chillers are switched on, the system COP is 

represented as Idle. Fig. 4 presents the distribution of system COP. The red vertical 

dashed lines represent the cutting points for data discretization. The cutting points are 

selected as 2.3 and 3.5. Example quantitative associations for performance evaluation 

are shown in Table 6 and details are presented as follows. 

 

 

Fig. 4. Density plot of system COP 



Table 6. Quantitative associations for system performance evaluation 

No. Antecedent Consequent 

Support 

(%) 

Confidence 

(%) 

Lift 

Data 

group 

1 PLR in [0.1, 0.2] 

Performance = 

Poor 

21.8 89.5 2.2 5 

2 PLR in [0.1, 0.2] 

Performance = 

Poor 

12.1 89.1 3.0 6 

3 PLR in [0.9, 1.0] 

Performance = 

Good 

5.6 98.4 5.3 5 

4 PLR in [0.5, 0.7] 

Performance = 

Good 

31.2 94.8 1.5 6 

5 

Cooling Load in 

[459.0, 632.5] kW 

Performance = 

Good 

6.0 88.7 4.7 5 



6 

Cooling Load in 

[951.4, 1366.2] 

Performance = 

Good 

23.1 90.7 1.4 6 

7 CH_1 = Off 

Performance = 

Good 

52.5 81.1 1.3 6 

 

Identification of major influential factors to system performance 

The first two rules in Table 6 describe that when the PLR is between 0.1 and 0.2, the 

system performance is Poor. This is in accordance with domain expertise as low PLRs 

usually lead to poor energy efficiency in chiller operations. The third and fourth rules 

describe the PLR intervals identified in Groups 5 and 6 when the system performance is 

Good. As expected, these two PLRs are much higher than the intervals identified in the 

first two rules. It is noted that when the system performance is Good, the PLRs 

identified in Group 6 (i.e., between 0.5 and 0.7) is lower than those in Group 5 (i.e., 



between 0.9 and 1.0). It turns out that a small air-cooled chiller is used to fulfill the 

cooling load demand during non-peak hours (i.e., data in Group 5), while the other three 

water-cooled chillers are used during peak-hours (i.e., data in Group 6). These two rules 

are actually justifications for the claim that water-cooled chillers present higher energy 

efficiency than air-cooled chillers. Rules No. 5 and 6 depict the quantitative associations 

between cooling load and system performance. They shed insights into the cooling load 

intervals which can be fulfilled by the existing system with better energy efficiency. 

 

Identification of less energy-efficient components 

Rule No. 7 in Table 6 presents an interesting association between system components 

and system performance. It states that if CH-1 is switched off, then the system 

performance is Good. This rule initiates a hypothesis that CH-1 is less energy-efficient 



compared to the other 2 water-cooled chillers (note that CH-4 is not in operation in 

Group 6).  

 

Fig. 5. Density plot of system COP when CH-1 to 3 is in operation 

To further investigate on this hypothesis, Fig. 5 is drawn to compare the system COP 

when CH-1, CH-2 and CH-3 are in operation alone. It is evident that using CH-2 or 

CH-3 results in better system performance than using CH-1. As a more concrete proof, 

the two-sample T-test is performed. Given a confidence level of 95%, the P-values 

obtained show that the null hypothesis (i.e., there is no difference between two-sample 



means) fails to be rejected considering CH-2 and CH-3, while getting rejected between 

CH-1 and CH-2, CH-1 and CH-3. This further confirms that the operation of CH-1 

leads to less energy-efficient operations. 

 

5. Conclusion 

Massive amounts of building operational data are being collected and stored in modern 

buildings. How to effectively and efficiently transform big building data into useful 

insights and actionable measures for better building energy management is an urgent 

challenge to tackle.  

In this paper, we present the potential application of data mining (DM) in discovering 

useful knowledge from massive building operational data through a case study. The 

method is developed from the generic DM-based analytic framework proposed in our 

previous work. The decision tree method is applied to develop models on building 



cooling load and thereby, providing comprehensive guidelines on data partitioning. 

Once the data are partitioned into different groups, association rule mining is applied 

separately to derive associations. The quantitative association rule mining is selected as 

the main tool since building operational data contains both continuous and categorical 

variables. Association rule mining is an unsupervised DM technique, which requires no 

training data and little prior knowledge on building operations. It therefore provides the 

greatest flexibilities in real practice and has the ability to discover previously unknown 

knowledge.  

The research results show that the method proposed can extract valuable knowledge 

from building operational data with high efficiency and effectiveness. Typical operation 

patterns and control strategies of HVAC systems have been discovered while revealing 

opportunities for enhancing building energy efficiency. It should be mentioned that the 

data used in this study might not be large enough to be quoted as ‘big data’. The 



emphasis of this study is the analytic method, which can be scalable to more complex 

datasets. Further studies will be performed to exploit practical applications in building 

energy management and validate the mining performance when larger datasets are 

available. 
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