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An improved k-ω-φ-α turbulence model applied to near-wall, 

separated and impinging jet flows and heat transfer 

Abstract: A turbulence model based on elliptic blending concept, referred to as 

improved  k  model compared against the original  k  model 

developed previously, is developed and verified. This model consists of four governing 

equations. Among them the k  and   equations are based on the Wilcox’s k  model 

with some modifications and improvements according to the original  k  

model, and the   and   equations are extracted from the original  k  model 

directly without any change. The improved  k  model is applied to near-wall, 

separated and impinging jet flows and convective heat transfer, i.e. the 2D fully 

developed channel flow, the 2D backward-facing step flow, the 2D impinging jet flow, 

and the convective heat transfer in the 2D fully developed channel flow and the 2D 

impinging jet flow. The computational results are compared with available DNS and 

experimental data and also to those computed using the original  k  model and 

the popular Menter’s kSST  model. It is shown that the improved  k  

model has better numerical stability, higher computational efficiency and more concise 

form than the original  k  model. In addition, compared with the original 

 k  model, the improved  k  model can yield similar velocity profiles 

in the fully developed channel flow and step flow and friction and pressure coefficients 

in the step flow and very close temperature profiles in the fully developed channel flow. 

Moreover, it shows significant improvements on the predictions for the fluid flow and 

heat transfer in the impinging jet flow. As a whole, the improved  k  model 

predicts better results than both of the original  k  model and the kSST  

model.  



Keywords: turbulence model; elliptic blending; near-wall flow; separated flow; 

impinging jet flow; convective heat transfer. 

Nomenclature 

Greek letters 

  Elliptic variable 

 , , * , 0  Turbulence model coefficients 

  Half width of the channel 

 , h  Dissipation rate and homogeneous dissipation rate 

 , h  Specific dissipation rate and homogeneous specific dissipation rate 

  Von Karman constant 

 ,   Molecular dynamic and kinematic viscosity 

t , t  Turbulent dynamic and kinematic viscosity 

ijΩ  Vorticity rate tensor 

  Wall-normal turbulent anisotropy, kv /2  

  Density of fluid 

d , 0d , 1d  Turbulence model constants 

k ,  ,  ,   Turbulent Prandtl numbers 

, w  Shear stress and wall shear stress 

  Mean temperature of the fluid 

w  Wall temperature 

in  Fluid temperature at inlet 

  The normalized temperature  

  Turbulence model constant  



Latin letters 

B   Width of the inlet of the jet 

fC  Skin-friction coefficient 

pC  Pressure coefficient 

pc   Specific heat of the fluid 

1C , *
1C , 2C , *

2C 3C , 4C , 5C C , TC , C , 1C , 2C Turbulence model parameters 

DC  Cross-diffusion term 

kD , t
kD  Turbulent diffusion of k  

E   The ‘ E ’ term 

f  Elliptic relaxation function 

kf , f  Damping functions 

f  Additional function 

bF  Blending function 

kG  Production of turbulent kinetic energy 

H  Step height 

I  Turbulent intensity 

k   Turbulent kinetic energy or thermal conductivity of the fluid 

L  Turbulence length scale 

n  Turbulence model constant 

Nu  Nusselt number 

p  Pressure or turbulence model constant 

Pr  Molecular Prandtl number  

tPr  turbulent Prandtl number 

q Heat flux 

HRe  Reynolds number based on H  



tRe  Turbulent Reynolds number 

Re  Friction velocity based Reynolds number 

S  Magnitude of strain rate 

ijS  Strain rate tensor 

t  Physical time 

T  Turbulence time scale 

limT  Upper bound of the turbulence time scale 

iu  Instantaneous velocity vector 

u , v , w  Velocities along x, y and z directions 

bU  Mean velocity of the bulk flow 

u  Normalized velocity by friction velocity 

u  Friction velocity,  /wu   

0V  Mean velocity on the inlet of the jet 

2v  Velocity variance scale 

x  Coordinate in the stream-wise direction 

y  Wall distance or coordinate in the wall-normal direction 

y  Non-dimensional wall distance 

1. Introduction 

Accurately predicting turbulent information is of importance from practical and 

theoretical points of view because turbulent flows are commonly encountered in 

engineering applications. It is well known that the Direct Numerical Simulation (DNS) 

can solve directly the Navier-Stokes (N-S) equations, which are able to describe the 

details of turbulent motions, without any simplification. However, its huge computing 

capacity prevents it from being applied in real engineering problems. Alternatively, the 

Reynolds-Averaged N-S equations (corresponding to RANS methods) and the filtered 



N-S equations (corresponding to Large Eddy Simulation method, LES) are primarily 

utilized in practices. Although LES shows more powerful ability than RANS for 

turbulence simulation, especially for unsteady turbulent flows, its application range is 

limited just for problems without wall effects or wall bounded flow with low Reynolds 

number and limited domain because of the shortcoming of LES laying in the high 

resolution requirements in wall boundary layers. In recent years, the hybrid RANS-LES 

approaches become increasingly popular: to name but a few, the Detached Eddy 

Simulation (DES) method was developed and improved by Spalart et al. [2], the Zonal 

Large Eddy Simulation (ZLES) method was developed by Quemere et al. [3], and the 

Scale-Adaptive Simulation (SAS) method was firstly developed by Menter and Egorov 

[4]. The hybrid RANS-LES approaches utilise the RANS method to model the 

turbulence near the wall, and restore to the LES ability in the regions far away from the 

wall or in the regions with massive separations. The major benefit of the hybrid RANS-

LES methods is that they offer a nice compromise between the computational costs and 

the accuracy of the calculated results. Not only for the purpose of using the RANS 

methods to simulate the complex turbulent flows, but also for the development of the 

hybrid RANS-LES method, the refined modelling of wall effects in the framework of 

RANS is continually significant.  

The interest in the fv 2  model, which belongs to one of  the RANS framework 

turbulence models, has increased since the fv 2  model was firstly introduced in 1991 

by Durbin [5]. The fv 2  model chooses a proper velocity scale, 2v , instead of k , 

thus being able to predict the eddy viscosity in the near wall region more correctly 

without any damping function.  



A notable number of researches have been carried out to improve the accuracy 

and robustness of the fv 2  model over the past 25 years, leading to several versions of 

fv 2 model. On the whole, the developments of the fv 2  model can be divided into 

two categories: one stems from the k  system, another stems from the k  system. 

The evolution of the fv 2  model based on the k  system had been reviewed by 

Billard and Laurence [6] in detail. They drew a conclusion that it is difficult to give 

considerations to both stability and accuracy. Then, they developed a new model 

(denoted as kv /BL 2  model) which not only keeps the robustness of some fv 2  

models, but also improves the model predictions for some particular turbulent behaviour. 

This model uses the wall-normal anisotropy, kv /2 , and another parameter resulting 

from an elliptic equation,  , to blend the homogeneous and near-wall limiting 

expressions of f . The advantage is that the stiffness coming from the boundary 

condition of f , encountered in several versions of the fv 2  model, can be effectively 

eliminated. Moreover, a functional coefficient *
2C  was constructed to increase the 

turbulent dissipation in the defect layer, thus tackling the problem of over-estimation of 

the turbulent viscosity occurring in most of the k  models with constant value of 2C . 

Additionally, the ‘ E ’ term, which was originally proposed in the   equation to account 

for the viscous wall effects by Jones and Launder [7] but was abandoned later by 

Thielen et al. [8] because of the numerical difficulties, was reintroduced to retard 

turbulence growth in the buffer layer. This term was ingeniously moved to the k  

equation so that it can be solved implicitly, thus no numerical difficulty still exists. The 

kv /BL 2  model has been utilized successfully in a few of 2D and 3D flows and has 

been proved to strike good balance between stability and accuracy [6, 9]. 



 The fv 2 models stemming from the k  system have a major drawback 

associated with the wall boundary condition of  , especially the unreasonable initial 

value of   [1]. From a practical point of view, it was generally suggested to begin the 

calculation using one of the k  models until a convergent solution is achieved, then 

switch to the fv 2 model [10]. This means the problem may be solved twice in order 

to obtain a converged fv 2  solution and excessively computational capacity may be 

required. Another category of the fv 2 model, which is based on the k  system, can 

tackle this problem to some degree. The first k  based fv 2 model we found in 

literatures was developed by Jones in 2003 [11]. This model stems from a fv 2  model 

based on the k  system by using the transformation of   n
n vk




1
2* . Taha [12] 

developed a fvk  2  model based on the Wilcox’s standard k  model [13] and 

the fv 2  model of Lien and Kalitzin [14] and validated it through applying to the fully 

developed channel flow and the asymmetric plane diffuser flow. Later, this model was 

successfully used to simulate the unsteady flows around bluff bodies by Nazari et al. [15] 

and to evaluate the convective heat transfer around two side by side square cylinders by 

Mirzaei and Sohankar [16]. Khalaji et al. [17] developed a new fvk  2 model 

based on the latest version of Wilcox’s k  model [18] (denoted as Wilcox’s k  

model hereafter) and the fv 2  model of Lien and Kalitzin [14]. This model was used 

for simulations of the 2D impinging jet flow on flat surface [17] and concave surface 

[19], and acceptable results were obtained. Recently, the authors developed a 

 k  model (referred to as the original  k  model later) based on the 

Wilcox’s k  model and the kv /BL 2  model. In this model, the k  and   equations 



retain the formulations of the Wilcox’s k  model in the near wall region and take the 

formulations transformed from the kv /BL 2  model elsewhere. The   and   equations 

are extracted from the kv /BL 2  model directly. This model was applied to the 2D fully 

developed channel flow and 2D separation flows. The results showed that this model 

can yield flow predictions as accurate as the kv /BL 2  model, and better numerical 

stability as well [1]. 

Up to now, comparing to the fv 2  models based on the k  system, the k  

system based fv 2  models are really underdeveloped and their applications are not 

popular. More importantly, we find that our original  k  model has a drawback 

that it is difficult to achieve convergent solution in the case with very low turbulent 

intensity. Additionally, it can not predict fluid flow and heat transfer in the impinging 

jet well. Moreover, some terms in the original  k  model are not so important 

and they can be dropped out to improve computational efficiency of the model. 

Therefore, in present paper, an improved  k  turbulence model is developed. 

Then this model is validated using the near-wall, separated and impinging jet flows and 

convective heat transfer, and the numerical stability and the computational efficiency 

are also investigated.  

The present paper is organised as follows. The development of the model is 

described in Section 2 in detail. The numerical procedure is introduced in Section 3. In 

Section 4, the performance of the model in the 2D fully developed channel flow, the 2D 

backward-facing step flow, the 2D impinging jet flow, and the convective heat transfer 

is investigated. The numerical stability and the computational efficiency of the model 

are also studied. Some conclusions are drawn in Section 5. 



2. Development of the model 

The improved  k  turbulence model can be considered as an improved version 

of the original  k  model. For the sake of convenient reference, the original 

 k  model is listed briefly in following. 
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where the ‘E’ term reads  
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the cross-diffusion term reads 
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and another diffusion term in the   equation is 
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For the sake of brevity, the definitions of other terms are not listed here and they can be 

found in [1]. 



2.1  Simplification of the k and ω equations 

In the k equation of the original  k  model (Equation (1)), there is an ‘ E ’ term, 

which was originally used by Jones and Launder [7] to model the 3P  term appearing in 

the exact   transport equation. This term plays an role in the buffer layer of the 

attached boundary layer. However, this term is known to be numerically stiff due to the 

second order derivatives. Manceau and Hanjalic [20] replaced this term using a variable 

1C  coefficient. However, there are no clear physical justifications even though it is 

easier to be computed. Billard and Laurence [6, 21] reintroduced the ‘ E ’ term into the 

kv /BL 2  model, but they moved this term from the   equation to the k  equation. The 

major benefit is that this term having the form ‘ k ’ in the k  equation allows 

implicit discretization, thus improving numerical stability. However, as demonstrated 

by Yang et al. [1], when the turbulent equations are transformed to the k  system, 

this benefit has been lost because this term will be handled explicitly in the k  equation 

again. Though this term does not induce any problem in the original  k  model 

for simple 2D flows, it is hard to say this term will not none the less induce numerical 

difficulty for complex 3D flows. What’s more, as shown in Section 4.4, the ‘E’ term has 

significantly undesirable influence on the impinging jet flow and delays the secondary 

maxima of the wall friction force and the Nusselt number too much. Consequently, in 

the improved  k  model, the ‘ E ’ term is removed. Fortunately, we find that, 

with remedy by re-adjusting other terms in the k  system, the re-movement of this 

term does not reduce the accuracy of the improved  k  model in the buffer 

layer of the channel flow (see Section 4.1).  

 In the ω equation of the original  k  model, there is a ‘ kD ’ term 

(Equation (7)), which comes from the procedure of transforming the k  system to the 

k  system. The major reason of keeping this term in the original  k  model  

is to avoid adjusting too many parameters. Though this term does not increase any 



complexity of the model, it increases the computational consume definitely. Actually, 

this term is very small comparing to other terms in the ω equation. This feature can be 

illustrated in Fig. 1, in which the non-dimensional ‘ kD ’ term is compared with the 

cross-diffusion term ‘ DC ’ for channel flow at 1000Re   (both terms are computed using 

the original  k  model and normalized by 2
0 / hk , where k0 is the mean 

turbulent kinetic energy at inlet section and h is the half width of the channel). It can be  

seen that the ratio of the maximum absolute values of the ‘ kD ’ term to the ‘ DC ’ term is 

only about 1%. Consequently, in present model, this term is reasonably neglected under 

the remedy of re-adjusting some parameters, just as the baseline and SST k  model 

of Menter [22].  

In the k and ω equations (Equation (1) and (2)) of the original  k  

model , some of the model parameters are computed using a blending function Fb as  

21 )1(  bb FF  ,                                                          (8) 

where   represents the five new model parameters ( '* , k ,  ,   and  ),  1  and 2  

represent corresponding parameters in the transformed k model (used in the region 

far away from the wall)  and the Wilcox’s k  model (used in the near wall region), 

respectively. Actually, this treatment is not essential for advanced turbulence models. 

For example, the Wilcox’s k  model uses unified model parameters in all flow 

regions and achieves great success yet. In the improved  k  model, the thinking 

of ‘blending function’ is not used in the k  and   equations and unified model 

parameters are adopted.  

After dropping out the ‘E’ term in the k equation (Equation (1)) and the ‘ kD ’ 

term in the   equation (Equation(2)), and adopting unified model parameters in all flow 

regions, the k  and   equations become to have more concise form and they are similar 

to those in the Wilcox’s k  model. Considering the model parameters in the 



Wilcox’s k  model has been optimized, most of them are adopted in the improved 

 k  model. From this point of view, also for the sake of convenient description, 

the k  and   equations in the improved  k  model can be considered as 

improved analogues deriving from the Wilcox’s k  model with some modifications 

and improvements according to the original  k  model. The modifications and 

improvements will be described below in detail. For reference, the k  and   equations 

of the Wilcox’s k  model are given as 
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where  f0 . The function f  is used to resolve the plane-jet/round-jet anomaly 

occurring in the Wilcox’s k  model. It should be noted that, in the improved 

 k  model, it is found that the plane-jet/round-jet anomaly does not remain 

(for the sake of brevity, the detailed results are not shown in present paper), so that the 

f  function is not needed and 1f  is adopted for all problems.  

 

2.2  Modification of the molecular diffusion 

It can be seen that in the diffusion term of the original  k  model (the last terms 

on the right hand side of Equations (1-3)), the molecular diffusion coefficient is 2/ . 

This expression is derived from the kv /BL 2  model [21], in which the homogenous 

dissipation rate (defined as kh  5.0 ) is solved instead of  . For consistency, the 

dissipation rate in all equations ( k ,   and   equations) is replaced by the homogenous 



dissipation rate. Jakirlic and Hanjalic [23] predicted that the unique modification is that 

the molecular diffusion effect in all corresponding terms should be halved after 

neglecting higher order terms, namely, the molecular diffusion coefficient in all 

equations should be divided by two.  

 Jakirlic and Hanjalic [23] also showed that a consistent use of h  and the 

components of the stress dissipation rate tensor can provide several benefits, such as 

satisfaction of wall limits without any wall topography parameter, reducing the 

necessity for empirical inputs and enabling better term by term reproduction of DNS 

data. The same advantages can be taken in the k  model by solving )/( *khh    

instead of  [24]. After transforming h equation to the h equation by using 

)/( *khh   , it is easy to show that, after neglecting some unimportant higher order 

terms, the resulting h  equation has the same form as Equation (9) with unique 

variation of the molecular diffusion to be 2/ . Therefore, in present model, the 

molecular diffusion coefficient in the k  and   equations (Equations (9) and (10)) 

becomes as 2/ . 

 For simplicity, we use notations ‘  ’ and ‘ ’ to represent h  and h  respectively 

in the following, unless special declaration is provided.    

2.3  Modification of the coefficient β0 

The same modification of the coefficient 0  as in the original  k  model is 

taken. It reads 

                                 **
20 )1(    C ,                                                                             (11) 

where 
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and   jjtk
t
k xxkD   . 



This modification is important because it enables 0   to take a smaller value 

where the ratio   kDt
k

*  is significant (for example, in the defect layer of the channel 

flow), further resulting in increase of  , thus decreasing the k  and t  (  /kt  ) and 

improving the velocity predictions.  

2.4  Modification of the coefficient γ 

Another modification is made on the coefficient  , which affects the shear layer 

spreading rate significantly. From the procedure of transforming the   equation to the 

  equation, it is easy to find that 11   C . On the other hand, Wilcox showed that in 

log-layer the relation of  *2*
0 //    should be held in the k  model [13]. 

In the log-layer, 2
*

2  CC  , so that Equation (11) becomes 1/ 2
*

0   C . Consequently, 

the following relation can be derived 

                                     
 *2

21 /    CC .                                                             (13) 

If Equation (13) (i.e. a constant value of 1C ) is used in the improved 

 k  model, we find the same phenomenon observed by Durbin [25] in the 

2vk   model that a value being suitable for wall-bounded flow is not suitable for free 

shear flow. From a pragmatic view, a function based on the distance from the closest 

wall boundary and the turbulent length scale was suggested by Durbin [25]  as 

81 )]2/([1

25.0
3.1

LdC
C

L
 .                                                (14) 

Similarly, in the improved  k  model, a functional coefficient *
1C  is 

constructed based on Equations (13) and (14) as 
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This equation gives *2
2

*
1 /    CC  in the attached boundary layers and reverts to 

5
*2

2
*
1 /   CCC   far away from wall boundary. 

Then the formula of   is  

1*
1   C .                                                                                (16) 

2.5 Consideration of the cross-diffusion term 

The cross-diffusion term establishes a relationship between the k  and the k  

models and plays an important role in k  models [13].  

 To improve the performance of k  models, several researchers have 

attempted to add cross-diffusion term directly into the   equation. However, there are 

several different motivated treatments for this term and all of them have achieved some 

degree of success. Among them, some researchers considered that the cross-diffusion 

term should be only activated when it is positive and this term should be suppressed 

close to solid boundaries for wall-bounded flow [13, 18, 26]. A typical form as listed in 

Equation (10) is 
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However, others considered that the cross-diffusion term is important even 

though it is negative. They also regarded that the inclusion of the viscous cross-

diffusion term is essential for wall-bounded flow in order to maintain the near-wall 

balance of the   equation [27, 28]. Consequently, the cross-diffusion term takes the 

form as  
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 In the famous kSST  model [22], a ‘blending function’, F1 is introduced into 

the cross-diffusion term. The ‘blending function’ causes the kSST  model 



preserving the desirable features of the k  model over a large portion of the 

boundary layer, but ensuring the free-stream independence of the k  model 

elsewhere. This thinking is also used by Hallsten and Annti [29]. The cross-diffusion 

term they used is  
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In the original  k  model, the cross-diffusion term (Equation (6)) is 

divided into two parts. In the near wall region, the same treatment as the Wilcox’s k  

model is adopted, namely, the cross-diffusion term is contributed only when it is 

positive. In other regions, the cross-diffusion term holds the same formulation 

transformed from the kv /BL 2  model directly (regardless of positive or negative 

values). This treatment in the original  k  model does not induce serious 

problem for flows with moderate and high turbulent intensity. However, our 

experiences showed that in the cases with very low turbulent intensity, this term may 

induce numerical difficulty (see Section 4.5).  

In the improved  k  model, the cross-diffusion term keeps the same 

form of the Wilcox’s k  model, i.e. Equation (17(a)). The major reason is that this 

treatment not only have advantageous to stability of the model (see Section 4.5), but 

also can yield good predictions in the outer range of the boundary layer. It should be 

noted that the coefficient d  is retuned to reach good performance of the model.                  

2.6  Definitions of the turbulent scales 

The definitions of the turbulent scales (length and time) used in turbulence models 

based on elliptic relaxation and elliptic blending are generally one of the Equations (18a) 

and (18b)  
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where  k*  has been used. It can be seen that all turbulent scales are limited by 

Kolmogorov scales to represent low-Reynolds-number effects in near wall region.  

Although the ways of switching into Kolmogorov scale are different between these two 

definitions (a function ‘max’ is used in Equation (18a) while a quadratic mean is used in 

Equation (18b)),  the results obtained from them are similarly good.  

To prevent over-prediction of turbulence near the stagnation point, an upper 

bound for the turbulent time scale is proposed by Durbin [30] as  

                                         
SC

T




3
lim  ,                                                           (19) 

where  is an empirical constant which is less than one and should be calibrated 

according to the dimension (2D, axisymmetric or 3D) of the flow. 

 In present model, the turbulent scales are determined by using Equation (18a). 

Just as the kv /BL 2  model, the limiter for the turbulent time scale is only utilised in 

the formulation of the turbulent viscosity (not in the   equation). Namely, Equation (3) 

has not any change and the turbulent viscosity is 

),min( limTTkCt   .                                                    (20) 



2.7  Damping functions 

Commonly, ‘damping functions’ are needed to be introduced into the k  and k  

models to correct the low-Reynolds-number (LRN) effects. For example, in the LRN 

Wilcox’s k  model[13,18], there are three ‘damping functions’ which are 

individually used to damp the turbulent viscosity, the dissipation rate term in the k  

equation and the production term in the   equation, in the LRN region. The ‘damping 

functions’ are 
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with )/(Re kt  .  

In the present model, the turbulent viscosity has been damped naturally when it 

is calculated by Equation (20) so that the ‘damping function’ f  for the turbulent 

viscosity is not needed. Actually, this characteristic is maintained for the series of 

fv 2  models. However, the ‘damping function’ kf  is needed. As illustrated in the 

original  k  model [1], damping the dissipation rate term in the k  equation can 

increase k  in the near wall region thus predicting more accurate k  profile. The 

‘damping function’ f , which is related to f  in the LRN k  model, can not be used 

directly just as Equation (21) because f  is not included in present  model. However, an 

analogy function can be constructed. The ‘damping functions’ utilized finally in the 

present model are 

     44
0 8/Re18/Re27.0/ ttkf   ,                                                (22) 

   61.2/Re161.2/Re0.2 ttf  .                                                     (23) 

Consequently, the second term on the right-hand side of Equation (9) and the first term 

on the right-hand side of Equation (10) become as  kfk
*  and kG

k
f

 , respectively. 



2.8 Limitation of the production of k 

As previously mentioned in Section 2.6, introducing the upper bound of the turbulent 

time scale into the definition of the turbulent viscosity can prevent over-prediction of 

turbulence near the stagnation point. Beyond that, the over-prediction of the turbulence 

near the stagnation point can be alleviated by limiting the production of k. One of the 

effective methods is the correction of Kato and Launder [31],  in which the production 

of k is computed by 

 SG tk  ,                                                       (24) 

rather than the conventional formula of 

2SG tk  .                                                         (25) 

However, considering the purpose of introducing Equation (24) is to limit the 

production of k in the region near the stagnation point, and that Equation (25) comes 

from the modelling process of the k equation and it seems to have better physical 

meaning than Equation (24) for general flow, a blending formulation of kG , in which 

the blending function F1 as the same used in the kSST  model, can be constructed. 

Namely, Equation (24) is only used in the near wall region and Equation (25) is used 

elsewhere. The final form of kG  reads 

  SFFSG tk 11 1  .                                                  (26)  

 In present model, production of k is calculated using Equation (26). It should be 

noted that this modification has nearly no effect on the channel flow and the step flow, 

but it is a little inspiring that the results computed by Equation (26) is slightly better 

than Equation (24) and Equation (25) in the impinging jet flow (see Section 4.3). 



2.9 Other considerations of the model 

The final form of the improved  k  model consists of Equations (9) and (10) 

with some modifications, together with Equations (3) and (4). There are a lot of model 

constants to be determined. Most of them are extracted directly from the Wilcox’s k  

model, the original  k  model  and the kv /BL 2  model, while others (as little 

as possible) should be modified or re-calibrated. ‘Trial-and-error’ efforts are made 

throughout this research. Appropriate values are assigned to ensure good (sometimes 

balanced) model performance to be kept for different flows.  

The constant 2C  is modified to be consistent with the 0 . Using the same 

values of 0708.00   and 09.0*   in the Wilcox’s k  model, together with the 

consideration of 2
*

2  CC   and 1/ 2
*

0   C  in the log-layer, 787.12 C  can be 

obtained. 

In present model, there are only six constants left (i.e. Cμ, Cε4, Cη, σd, Cε5 and ζ) 

need to be re-calibrated. Considering the fact that the importance of each parameter is 

different for specific flow, we used three kinds of typical flow to determine the 

parameter values (as shown in Table 1). Specifically, at first, the 2D fully developed 

channel flow (consider overall the velocity, turbulent kinetic energy and the turbulent 

viscosity) was used to determine Cμ, Cε4, Cη and σd. Then the 2D free jet flow (refer to 

the spreading rate) was used to determine Cε5. Finally, the 2D impinging jet flow (refer 

to the Nu at the stagnation point) was used to determine ζ.  

For sake of clarity, the complete equations and constants of the improved 

 k  model are recalled in Appendix A.  



2.10  Energy equation 

For incompressible flow, the governing equation of the energy can be simplified to the 

mean temperature equation. After using the Boussinesq approximation, the unknown 

eddy diffusivity of heat can be modelled by defining a turbulent Prandtl number, tPr . 

The governing equation of the mean temperature ( ) can be expressed as 
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where kc pPr  represents the molecular Prandtl number. 

 The turbulent Prandtl number tPr  depends on several factors, e.g., the molecular 

Prandtl number ( Pr ) of the fluid, the viscosity of the fluid, and the Reynolds number of 

the flow [32]. There are substantial DNS and experimental data on the tPr . Based on the 

shape of the temperature in the log-layer of the boundary layer, the tPr  can be assumed 

to be constant. However, there are no universal values of tPr , even in the simple wall 

shear flows. For example, for air flow with the molecular Prandtl number 71.0Pr  , the 

tPr  ranges between 0.73 and 0.92 [32].  

 The DNS data for fully developed channel flow indicate 7.0Pr t  at the centre of 

the channel with a non-monotonic increase to 1.2 at the wall. According to this, Kays 

and Crawford [33] proposed a formula for the tPr  as 

      ttt

t  165.5exp10441.0228.05882.0

1
Pr 2 

 .                  (28) 

This formula yields a value of 1.7 at the wall and decreases asymptotically to a value of 

0.85 far from the wall. 

Although the Kays and Crawford formula (Equation (28)) provides a better 

shape for the tPr  in boundary layer, it does not always yield better heat transfer 

predictions. For example, Durbin [34] simulated the flow and heat transfer in a 2D 

channel and in boundary layers adopting the Kays and Crawford formula and a constant 



value of 0.9 together with the 2vk    turbulence model. The results indicated that the 

constant tPr  value yields a better agreement with experiments. Behnia et al. [35] used 

the 2vk    model to compute the heat transfer in an axisymmetric turbulent jet 

impinging on a flat plate adopting the Kays and Crawford formula and the widely used 

constant values of 0.73, 0.85 and 0.92 in literatures. Park and Sung [36] used the 

 fk   model developed by themselves to simulate the same problem adopting the 

Kays and Crawford formula and the constant values of 0.8 and 0.9. Their results 

indicate a common phenomenon that the local Nusselt number is not very sensitive to 

the tPr . Compared with available experimental data, it can be found that some values of 

tPr  yield better results in the stagnation region, while others yield better predictions 

elsewhere. Therefore, it is difficult to say which value of tPr  is better. For the improved 

 k  model, the effect of tPr  on the heat transfer will be tested in this study. 

For sake of clarity, the mean temperature equation used in present study and the  

Kays and Crawford formula are recalled in Appendix B. 

3 Solution procedure 

It has been shown that the original  k  model can yield a little better result in 

the 2D fully developed channel flow and comparable result in the separated flow than 

the kv /BL 2  model. Moreover, the original  k  model has better numerical 

stability and less sensibility to initial conditions [1]. Consequently, the original 

 k  model is used to comparatively display the ability and the superiority of the 

improved  k  model. For the purpose of reference, the popular kSST  

model [22] is also considered. 



3.1 Numerical method 

The improved  k  model and the original  k  model are both 

implemented in the FLUENT CFD code using the User-Defined Function (UDF) 

functionality. The kSST  model is an inner-coded turbulence model in FLUENT 

and so it can be used directly.  

The pressure-based segregated algorithm is used to solve the governing 

equations. The convection terms in the momentum and turbulence equations are all 

discretized by the second order upwind scheme. The least squares cell-based method is 

adopted to evaluate the gradients and derivatives. The velocity-pressure coupling 

process is dealt with by a combination of the SIMPLEC algorithm and the Coupled 

algorithm. Namely, at the early stage of iteration, the SIMPLEC algorithm, which is 

more stable, is used. After an appropriate flow field (not converged) being constructed, 

the iteration is switched to use the Coupled algorithm, which can promote the solution 

convergence. Because of the nonlinearity of the equation set being solved, the under-

relaxation of variables is necessary to control the change of variables produced during 

each iteration. In general, the under-relaxation factors are problem and model dependent. 

In this study, the default under-relaxation factors are adopted for the pressure and 

velocities. For variables in the turbulence model, under-relaxation factors are set to be 

different values dependent on the complexity of the flow, for example, 0.8 for the fully 

developed channel flow and the backward-facing step flow, and smaller value for the 

impinging jet flow. 

 It should be noted that, for incompressible flow with constant thermal properties, 

the mean temperature equation (Equation (27)) is uncoupled with the fluid flow so that 

it can be solved independently. For each case in this study, the mean temperature 

equation is turned off firstly, then the isothermal fluid flow is solved and a fully 



converged solution is obtained, finally the mean temperature equation is turned on and 

the iteration continues until the mean temperature has been convergent.  

3.2 Boundary conditions on solid wall 

The no-slip condition is used on solid walls, namely, 0iu , 0k , 0 , 0 . For   

in the kSST  model, )(6 2
11yw    is used with 1y  representing the distance from 

the wall to the centre of the first cell adjacent to the wall. For   both in the improved 

 k  model and the original  k  model, because the molecular diffusion 

has been halved, )(3 2
10 yw    is used [1]. In all cases, the condition of 1y  is 

always ensured at the first grid point adjacent to the wall.  

 The thermal condition on solid wall may be specified to be adiabatic, with 

constant temperature or with constant heat flux, to consist with the related DNS and 

experimental results. 

3.3 Initial conditions 

The initial conditions not only have influence on the convergence speed, but also affect 

the convergence ability of the turbulence model. Although the initial conditions are 

generally empirical, some practical approaches can be suggested. As noted by Yang et 

al. [1], the value of zero for the initial flow velocity and a relatively larger initial value 

of   are suggested to ensure the solution to be more stable. Additionally, initial values 

of 5.0 and 0.1  are appropriate and recommended for general problems. For the 

kSST  model, the default values in the FLUENT code are adopted. 

4 Results and discussion 

The abilities of the improved  k  model for predicting the fluid flow and the 

heat transfer are evaluated and compared with the original  k  model and the 



Menter’s kSST  model for three typical test cases: the 2D fully developed turbulent 

channel flow, the 2D backward-facing step flow and the 2D impinging jet flow. It 

should be noted that the LRN correction (similar to Equation (21)), which usually has 

strong influence on the behaviour of the turbulence model, is included in the kSST  

model because similar correction is used both in the improved  k  model and 

the original  k  model. 

4.1  Fully developed turbulent channel flow  

Because there are many published available DNS data in literatures, the fully developed 

turbulent channel flow has been a widely used case for scrutinising the near-wall 

behaviours of turbulence models. In this study, we select four cases with different 

friction Reynolds number, Re  (550, 1000, 2000 and 5200), as the same used in our 

previous paper [1], to validate the performance of the improved  k  model for 

fluid flow. The adopted DNS data, provided by Lee and Moser [37], are available online 

at http://turbulence.ices.utexas.edu. The results computed using the original  k  

model and the kSST  model are also included for comparison, although they have 

been compared in detail by Yang et al. [1]. 

 The normalized mean streamwise velocity ( uuu / ) profiles are compared in 

Figure 2. It can be seen that the velocity profiles computed form the improved 

 k  model and the original  k  model are very similar and both of 

them yield predictions in excellent agreement with the DNS data. Apparently, the 

kSST  model under-predicts the velocity both in the buffer layer and the defect 

layer in all cases. Scrutinizing the buffer layer ( 305  y ), it can be found that the 

velocities computed using the improved  k  model and the original 

 k  model are almost indistinguishable for all Re  cases. This indicates that re-



movement of the ‘E’ term does not reduce the accuracy of the improved  k  

model in buffer layer of the channel flow. The reason may be that the absence of the ‘ E ’ 

term can be remedied by re-adjusting other terms in the k  system. 

The comparisons of the normalized turbulent kinetic energy ( 2/ ukk  ) profiles 

are shown in Figure 3.  It is obvious that the kSST  model under-predicts the k  in 

all cases. At lower Re  case (e.g. 550Re  ), the improved  k  model over-

predicts the peak value of k , while the peak value of k  from the original 

 k  model is comparable with the DNS result. At higher Re  case (e.g. 

5200Re  ), both of the improved  k  model and the original  k  

model under-predict the peak value of k . 

The normalized Reynolds shear stress ( 2/'''' uvuvu 


) profiles are shown in 

Figure 4. Apparently, in all Re  cases, all turbulence models yield good Reynolds shear 

stress profiles compared to the DNS data. The Reynolds shear stress profiles decrease 

linearly towards the centre of the channel and are almost independent on turbulence 

models. This is not surprised because the total shear stress of the flow is controlled 

intrinsically by fluid dynamics, rather than turbulence models. From the fluid dynamic 

theory, it can be derived that the total shear stress decreases linearly from w  (shear 

stress at the wall ) to zero (at the centre of the channel) [38], namely 
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In the region far away from the wall, the viscous shear stress ( dyud / ) is negligible, 

so that Equation (29) can be simplified to be  
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This means the Reynolds shear stress ( ''vu ) decreases linearly with respect to y , the 

distance from the wall.  



Based on the Boussinesq hypothesis, which is employed by all turbulence 

models in this study, in channel flow the relationship between the Reynolds shear stress 

to the mean velocity gradient is 

dy

ud
vu t  ''                                                             (31) 

Because Reynolds shear stress is independent on turbulence model (Figure 4), Equation 

(31) indicates that the better turbulent viscosity profile is predicted by the turbulence 

model, the better velocity gradient will be yielded, and further the better velocity profile 

can be obtained, and vice versa. Figure 5 shows the normalized turbulent viscosity 

(  /t ) profiles. The kSST  model over-predicts dramatically the turbulent 

viscosity in the central region of the channel, thus under-predicting the velocity profile 

(refer to Figure 2). Both of the improved  k  model and the original 

 k  model yield more reasonable turbulent viscosity profiles. The most 

important feature is they reduce the turbulent viscosity in the central region of the 

channel, thus leading to improvement of the velocity profile. Glancing at Figure 5, one 

can find that the turbulent viscosity profiles yielded by the improved  k  model 

and the original  k  model are similar in the near wall region, but are different 

in the central region of the channel. An interesting phenomenon is that the velocity 

profiles predicted by these two turbulence models have only slight difference despite 

the turbulent viscosity profiles are obviously different. It is not surprised because the 

velocity is an integral quantity. It is easy to understand from Equation (31) that the 

turbulent viscosity near the wall (but outer of the viscous sub-layer) has significant 

effect on the velocity profile. In this region, the Reynolds shear stress is large, so that 

small difference of turbulent viscosity will lead to large variation of velocity gradient, 

thus resulting in significantly different velocity profiles. On the contrary, in the central 



region of the channel, because the Reynolds shear stress is small, the change of velocity 

gradient is not so large even though the difference of the turbulent viscosity is distinct.  

From Figure 2 and Figure 5, the difference both in the velocity and the turbulent 

viscosity profiles computed using the improved  k  model and the original 

 k  model can be distinctly observed in the log-layer and the defect layer. The 

reason is that different turbulence models usually have different performances. The 

terms included in the equations of turbulence model, the selection of the model 

parameters,  the definition of the turbulent viscosity, and so on, will affect the model 

performance. Based on the fact that the selection of some of the model parameters are 

entirely experiential, it is difficult to find a set of parameters which are superior to 

others for all kinds of flow. In practice, one can only try to ensure good (sometimes 

balanced) model performance to be kept for different flows as far as possible. For 

instance, from Figure 2 and Figure 5, it can be observed that for low Re  cases 

( 1000,550Re  ),  the results from the original  k  model are better. On the 

other hand, for high Re  case ( 5200Re  ), the results from the improved  k  

model are better. However, it should be emphasized that the difference is not significant. 

We can decrease the d  and 4C  synchronously to improve the results at low Re  

cases, but the results at high Re  cases will become poor. Therefore, the final decision 

of the parameters is to insure reasonable results (the error is within a reasonable range) 

for all Re  cases. 

4.2  2D backward-facing step flow 

The backward-facing step flow (abbreviated as step flow later), which has simple 

geometry but abundant flow phenomena, such as flow separation, recirculation, 

reattachment and flow re-development, is a test case being selected most frequently for 

turbulence model validation. The experiment of Jovic and Drive [39] is most frequently 



used in benchmarking the performance of turbulence models for separated flow [1, 18, 

25, 27]. In their experiment, the expansion ratio of the test section is 1.2. The Reynolds 

number, HRe , based on the step height, H, and mean bulk velocity of the inlet channel, 

Ub, is 5000. A companion DNS research was performed by Le et al. [40] with a slightly 

different HRe  of  5100 and good agreements were achieved. 

The size of the computational domain, the boundary conditions and the 

computational meshes adopted can be found in Yang et al. [1]. For the convenience of 

discussion, the sketch of the geometry and the relevant boundary conditions of the step 

flow model are shown in Figure 6.  

The skin friction coefficient fC  (defined as )/(2 2
bwf UC  ) along the bottom 

wall is usually used to justify the ability of turbulence model for this type flow. Figure 7 

shows the comparisons of the computed fC  using different turbulence models against 

the experimental measurements of Jovic and Drive [39]. It can be found that, as the 

whole, the improved  k  model and the original  k  model can yield 

better fC . They can yield larger negative fC  in the recirculation region and larger 

positive fC  in the re-development region than the kSST  model.  Another quantity 

frequently used to verify the ability of the turbulence model is the location of the 

reattachment point. The improved  k  model, the original  k  model 

and the kSST  model give H49.6 , H56.6 and H0.7 , respectively. Compared with 

the experimental result of H0.6  and DNS result of H23.6 , the improved  k  

model predicts the best. 

Figure 8 shows the pressure coefficient ( )/()(2 2
brefp UppC  ) distribution 

along the bottom wall. It can be seen that all turbulence models yield good results. The 

result predicted by the improved  k  model is better in the region from the 

concave corner to the reattachment point.  



Figure 9 shows the non-dimensional streamwise velocity ( bUu / ) profiles 

computed using three turbulence models and extracted from the correspondingly 

experimental results of Jovic and Drive [39] at locations of  H12.3 , H4 , H6 , H10 , 

H15 and H19 . Generally speaking, all three turbulence models can yield good results 

in the near wall region compared to the experiment. The difference between the results 

computed from the improved  k  model and the original  k  model is 

very slight. It should be noted that the kSST  model predicts smaller velocity in the 

central region of the channel than other two models. This phenomenon accords with the 

fact that the kSST  model under-predicts the velocity in the central region of the 

channel flow (refer to Figure 2 in Section 4.1). 

4.3  2D turbulent impinging jet flow 

Turbulent impinging jet is a widely studied flow configuration because its fundamental 

and industrial importance. Turbulent impinging jet flow has several complex features 

(such as free shear, stagnation and high streamline curvature) which have been proved 

to be somewhat difficult to be predicted by turbulence models. Therefore, this flow is 

frequently chosen to be a validation case for new turbulence model. The impinging jet 

flow which has been paid more attention to covers plane impinging jet flow (2D) and 

circular impinging jet flow (axisymmetric or 3D). In this study, only the plane 

impinging jet is considered. Many experimental researches have been performed to 

measure the wall pressure, wall shear stress, velocity profiles and heat transfer 

coefficient [41-45]. This flow has also been investigated numerically by several 

researchers using RANS turbulence models [46, 47], LES [48, 49] and hybrid RANS-

LES model [50], respectively. It has been shown that this flow is particularly 

challenging for RANS models [46], while the LES and the RANS-LES model can yield 

much better flow prediction than the RANS models. 



 The experimental results of the case with H/B = 4 and Re = 20000 (based on the 

width of the slot, B, and the mean velocity at inlet, V0) measured by Ashforth-Frost et al. 

[42] and Zhe and Modi [43] are chosen to check the performance of the turbulence 

models. As a supplement, the experimental data of the case with H/B = 4 and Re = 

18000 of Dogruoz et al. [45] are used for the comparison of the friction coefficient. The 

numerical model (geometry and boundary conditions) is accorded with the experimental 

setups of Ashforth-Frost et al. [42] and Zhe and Modi [43], and the numerical model 

used by Dutta et al. [46]. The geometry and the physical quantities are symmetric about 

the centreline of the jet inlet (slot), so that only one half of the geometry is considered. 

The computational domain consists of a rectangular box as shown in Figure 10. The 

height (H) and the length (L) of the domain are H = 4B and L = 50B, respectively. It 

should be noted here that in the experiments of Ashforth-Frost et al. [42] and Zhe and 

Modi [43] and in the computational model of Kubacki et al. [50], the jet is semi-

confined. However, it was found that, comparing to using full-confinement wall, using 

semi-confinement wall has only slight effects on the jet behaviour in the region near the 

stagnation point. Therefore, similar to Dutta et al. [46], a full-confinement wall is used 

in our simulation. The boundary conditions are also shown in Figure 10. The symmetry 

boundary condition is used at the centreline of the slot. On all walls, no-slip boundary 

condition is employed (refer to Section 3.2 for details). At the outlet, the pressure outlet 

condition (with constant static pressure) is adopted. At the inlet, the velocity profile, 

turbulent kinetic energy (k) and specific dissipation rate (ω) are specified as the same as 

Kubacki et al. [50], namely, 0u ,  14
0 )/2(1 BxVv  , 2

0 )(5.1 IVk  , )015.0/(2/1 Bk . 

The turbulent intensity at inlet is %0.1I . In the improved  k  model and the 

original  k  model, the values of    and   at inlet are also needed. However, 

there is no enough information for them in literatures. Considering the velocity is 

almost flat at inlet, that is to say the boundary layer is very thin, so that 1  is a 



reasonable selection. Based on the experimental conditions of Ashforth-Frost et al. [42] 

and Zhe and Modi [43], it could be believed that the turbulence at inlet is almost fully 

developed. Therefore, in present simulation, 4.0  is used (  ranging from 0 to 2/3 in 

2D fully developed turbulent flow). The computational cells are non-uniformly 

distributed. They are refined in the region close to walls and in the shear layers of the jet. 

To ensure mesh independent solutions being obtained, a grid sensitive study is 

performed. The total number of computational cells finally used is 140,000. 

 The pressure distribution on the impingement wall is compared in Figure 11, in 

which the pressure has been normalized by the maximum pressure (denoted as maxp , 

occurring at the stagnation point) in each case. It can be seen that in whole region the 

distributions of the pressure computed from all turbulence models are almost 

indistinguishable and they agree well with the experimental result of Ashforth-Frost et 

al. [42]. 

 Figure 12 shows a comparison of the skin friction coefficient fC  (defined as 

)/(2 2
0VC wf  ) along the impingement wall. The experimental results measured by 

Dogruoz et al. [45] and Zhe and Modi [43] are both chosen for comparison. It is 

apparent that the results from Dogruoz et al. [45] and Zhe and Modi [43] are different 

significantly. It should be emphasized that fC  has strong dependence on the 

measurement technique.  Dogruoz et al. [45] used two techniques, the Stanton gauge 

and the oil film, to measure the fC  in the same flow condition but much different 

results were yielded. It was proved that the oil film result is more accurate so that in 

Figure 12 the oil film result form Dogruoz et al. [45]  is used. The authors believed that 

the large deviation between the experimental results of Dogruoz et al. [45] and Zhe and 

Modi [43] is resulting from the difference of the measurement technique, rather than 

different Re.  



 It can be seen that, in the region near the stagnation point ( 2/ Bx ), all three 

turbulence models predict identical fC  and they agree well with the measurements of  

Dogruoz et al. [45]. In the region of 8/2  Bx , the results computed by the three 

turbulence models deviate from each other. Though the dip and the secondary maxima 

of the fC  are predicted by all three models, those computed by the original  k  

model and the kSST  model are delayed markedly. On the contrary, the improved 

 k  model predicts the dip and the secondary maxima slightly earlier and 

whose result is the best one. At large distance ( 8/ Bx ), the results yielded by all three 

models are close again. 

 The effect of the computing method for the production of k on fC  are also 

examined. The fC  computed by the improved  k  model using Equation (24), 

(25) or (26) for the production of k is compared with experimental results in  Figure 13. 

It is observed that in the region near the stagnation point and in the zone of fully 

developed wall jet, the computing method for the production of k have no effect on fC . 

However, in the region of transition form laminar to turbulent, the effect is significant. 

Specifically, the result using Equation (24) is most close to the experimental result, 

while the one using Equation (25) is deviated greatly. The result using Equation (26) is 

in the middle. 

 Figure 14 shows comparisons of the mean streamwise velocity profiles 

(normalized by 0V ) predicted by all three turbulence models with the available 

experimental data of Ashforth-Frost et al. [42] and Zhe and Modi [43]) at different 

vertical planes. It can be observed that from the 1/ Bx  plane to the 3/ Bx  plane  

(Figure 14(a)-14(c)), the velocity profiles in the region near the impingement wall 

( 3/ By ) predicted by all three turbulence models are almost identical and they agree 

fairly well with the measurements of Ashforth-Frost et al. [42] and Zhe and Modi [43]. 

This characteristic can explain well why these three models can predict identical fC  in 



the region near the stagnation point (see Figure 12). At the 5/ Bx  plane (Figure 14(d)), 

the original  k  model and the kSST  model predict identical velocity 

profiles in the region near impingement plate yet. The improved  k  model 

predicts larger velocity gradient near the impingement wall, further leading to larger 

friction force. This phenomenon just explains why the improved  k  model 

yields larger fC  than the original  k  model and the kSST  model at the 

5/ Bx  plane (see Figure 12). 

4.4  Heat transfer 

The convective heat transfer has tight relationship with the fluid flow, further the 

performances of the turbulence models. Two flow configurations, namely the 2D fully-

developed channel flow and the 2D impinging jet flow, are used to verify the 

performance of the improved  k  model for the convective heat transfer. Also, 

the results computed by the original  k  model and the kSST  model are 

included for comparison. 

For the 2D fully-developed channel flow, two cases with friction Reynolds 

number of 395Re   and 1020Re   are considered. The simulation of the fluid flow is 

the same as Section 4.1. In the convective heat transfer calculation, a uniform heat flux 

boundary condition is imposed on the channel wall. The molecular Prandtl number is 

set to be 71.0Pr  . The DNS data adopted for comparison can be obtained from the 

computation of Abe et al. [51].  

Figure 15 shows the comparisons of the normalized temperature  

( hucpw /)(   ) profiles computed using different turbulence models. The Kays 

and Crawford formula is utilised in all computations. It can be found that in the viscous 

sub-layer the turbulence models have no influence on the temperature. The kSST  

model under-predicts the temperature in the buffer layer and the defect layer 



significantly for both Re  cases. The improved  k  model and the original 

 k  model predict similar temperature profiles and they both agree well with 

the DNS data. 

 The effect of the turbulent Prandtl number, tPr , on the heat transfer behaviour of 

the improved  k  model is also studied. Three widely used constant tPr  values 

of 0.73, 0.85, 0.92 [35], and the Kays and Crawford formula (Equation (28)) are tested. 

Figure 16 shows the predictions of the normalized temperature profiles. It can be seen 

that in the viscous sub-layer, the temperature profile is insensitive to the tPr . However, 

outside of the viscous sub-layer, the temperature profile becomes dramatically sensitive 

to the tPr . When 73.0Pr t  and 85.0Pr t , the temperature is under-predicted for both 

Re  cases. 92.0Pr t  gives better results, even though the temperature profiles in the 

buffer layer and the log-layer are slightly under-predicted. The temperature profile 

computed using the Kays and Crawford formula at 1020Re   has good agreement with 

the DNS data. At 395Re  , the Kays and Crawford formula over-predicts slightly the 

temperature profile yet. On the whole, the constant value of 0.92 and the Kays and 

Crawford formula yield better results than other tPr  values. 

For the 2D impinging jet, the fluid flow computation is the same as in Section 

4.3. The boundary conditions for the heat transfer calculation are also shown in Figure 

10. At the inlet, a constant temperature ( K300in ) boundary condition is specified. 

At the confinement wall, the adiabatic condition is adopted. At the impingement wall, 

there are two available choices, i.e. a constant temperature condition and a constant heat 

flux condition. Dutta et al. [46] studied the effect of the thermal boundary condition on 

the Nu distribution on the impingement wall and found that the constant temperature 

condition was able to predict better result comparing to the experimental data of 

Ashforth-Frost et al. [42]. The constant temperature boundary condition was also 

performed in the computations on the same configuration by Kubacki et al. [50]. 



However, this treatment is lake of physics because in the experiments of Ashforth-Frost 

et al. [42] it is clearly pointed out that a constant heat flux boundary condition was 

applied. Therefore, in this study the constant heat flux boundary condition is used. The 

working fluid is air, and the molecular Prandtl number is 71.0Pr  . 

Figure 17 shows the comparison of the Nu (defined as   inwallkqBNu   / ) 

distribution on the impingement wall measured by Ashforth-Frost et al. [42] and those 

predicted by different turbulence models with the Kays and Crawford formula 

(Equation (28)). It can be seen that, on the whole impingement wall, the Nu distribution 

predicted by the improved  k  model agrees fairly well with the experimental 

result, but those predicted by the original  k  model and the kSST  model 

are not good. Moreover, at the stagnation point, the Nu predicted by both of the 

improved  k  model and the original  k  model agree excellently with 

the experimental measurements. However, the kSST  model under-predicts it. All 

turbulence models are able to predict the dip and the secondary peak of Nu, which are 

connected with the transition form laminar to turbulent, though the peak values are 

significantly different. The original  k  model and the kSST  model delay 

the dip of Nu so much. An interesting phenomenon is that, in the region far away from 

the stagnation point (about 10/ Bx ), all three turbulence models yield similar Nu.  

Scrutinising some terms in the original  k  model, we find that one of 

the reasons, which lead to transition delayed, is the ‘E’ term. Figure 18 shows the 

comparison of the Nu distribution using the original  k  model with and 

without the ‘E’ term. It is apparent that when the ‘E’ term is removed, the Nu 

distribution is improved significantly. This demonstrated that including the ‘E’ term is 

detrimental, so that in the improved  k  model this term is dropped out. 

The effect of the computing method for the production of k on Nu are also 

examined. Figure 19 shows the comparison of the Nu computed by the improved 



 k  model using Equation (24), (25) and (26) for the production of k . It can be 

seen that in the regions near the stagnation point and in the fully developed wall jet, the 

computing method for the production of k have slight effect on Nu. However, in the 

transition region, the effect is significant. Specifically, the result using Equation (26) is 

between those using Equation (24) and Equation (25). It should be emphasized that 

Equation (24) yields the best fC , but yields the worst Nu meanwhile. Taking into 

consideration that the measurement of fC  is more difficult than the measurement of Nu, 

that is the result of Nu is more reliable than that of fC , the result of Nu should be used 

to estimate the performance of the methods. Among them, Equation (26) can yield a 

better result of Nu and strike a balance for fC , so that we decide to use Equation (26) in 

the improved  k  model. 

To investigate the effect of the turbulent Prandtl number, tPr , on the Nusselt 

number (Nu), three constant tPr  values of 0.73, 0.85, 0.92, together with the Kays and 

Crawford formula are tested using the improved  k  model. The results shown 

in Figure 20 indicate that the Nu is not much sensitive to tPr  in the region of 3/ Bx , 

even though the three constant tPr  over-predict slightly the Nu at the stagnation point. 

On the whole, it is difficult to say which value of tPr  can yield the best result because 

the result from the Kays and Crawford formula is better in the region near the stagnation 

point, but the result from 73.0Pr t is better in the region downstream the transition. 

Taking into account their performances in the channel flow, in which the performance 

of 73.0Pr t is the worst, the performance of the Kays and Crawford formula is better. 

4.5  Stability of the model 

A relatively serious problem for the original  k  model is that it is difficult to 

obtain convergent solution in problems with very low turbulent intensity. As an 



example,  the impinging jet flow with very low turbulent intensity is considered. For 

inlet boundary conditions, except the turbulent intensity, which is set to be 0.1% just as 

in the simulation of Jaramillo et al. [52], other quantities are the same as those in 

Section 4.3. Keeping other coefficients to be unchanged, the under-relaxation factors for 

turbulence quantities (same factors are used for all turbulence quantities) are able to be 

adjusted. It is well known that the larger under-relaxation factor is permitted by the 

model, better stability the model has. It is found that, for the original  k  

model, even when the under-relaxation factor decrease to be 0.005,  convergent solution 

can not be obtained yet. On the other hand, for the improved  k  model, 

convergent solution can be obtained even when the under-relaxation factor is large to be 

0.6.  

The stability of the model can also be investigated using the same method in the 

study of Yang et al. [1]. A disturbance is introduced to a converged solution, and the 

effect of the disturbance on the subsequent solution behaviour is evaluated. For the sake 

of simplicity, only the impinging jet flow is considered. The computational meshes, the 

boundary conditions, the discrete schemes for governing equations and the under 

relaxation factors for pressure, momentum and other scalars are the same for all 

simulations using different turbulence models. In each case, the disturbance is only 

introduced to the turbulent kinetic energy ( k ) by changing it from the converged value 

to ink2 , ink3 , ink4 , ( ink  represents the area-weighted average value of k  at inlet) in 

whole computational domain, and then the computation is continued. It is found that, 

for the improved  k  model, the solution is able to converge until k  becomes 

ink30 (larger disturbance is not tested further), but for the original  k  model the 

solution diverges when k  becomes ink4 . This means that the improved  k  

model can bear much larger disturbance and has better stability. 



Low stability of the original  k  model results partly from the cross-

diffusion term, DC . The Wilcox’s k  model and the Menter’s kSST  model have 

enjoyed more successes among  the  k  models. One of the reasons is that these two 

models suppress successfully the cross-diffusion term close to solid boundaries for wall 

bounded flows[13]. However, in the original  k  model, the cross-diffusion 

term can not be completely suppressed. This feature can be illustrated in Figure 1. 

Obviously, in the viscous sub-layer, large negative value of cross-diffusion term exists. 

For flow with low turbulent intensity (k and ω are both small), this problem will be 

more serious. Refer to Equation (6), k occurs in the denominator of the definition of DC , 

thus smaller k resulting in larger negative value of  DC  in the viscous sub-layer. 

Consequently, it is not surprised that the numerical difficulty may be encountered when 

the original  k  model is used for flows with very low turbulent intensity. The 

improved  k  model uses the same cross-diffusion term as the Wilcox’s k  

and the problem of stability coming from the cross-diffusion term can be successfully 

eliminated. 

4.6  Computational efficiency of the model 

The impinging jet flow is used to examine the computational efficiency of the improved 

 k  model. Three cases with different number of computational cells are 

carried out. Based on same computer hardware and software, the time consume for 100 

iterations in each case is recorded. The results are listed in Table 2. The results coming 

from the original  k  model based on same conditions are included for 

comparison. It can be seen that the improved  k  model always saves time in 

all cases. It is not surprised because the improved  k  model drops out the ‘E’ 

term and the ‘Dk’ term, which include the second order derivatives of velocity and 

turbulent kinetic energy respectively and need to consume more computational time. 



 On the other hand, the maximum relaxation factors for turbulent quantities 

permitted by the improved  k  model are commonly larger than those 

permitted by the original  k  model because the former has better stability. 

Based on the fact that larger relaxation factor leading to convergence more quickly, the 

improved  k  model can save time further.   

Conclusions 

An improved  k  turbulence model is developed based on the elliptic blending 

concept and its capabilities are tested on the channel flow, the step flow and the  

impinging jet flow. Its performance on the convective heat transfer in the channel flow 

and the impinging jet flow is also investigated. The calculated results are validated 

using available DNS and experimental data, and the present model is also compared 

with the original  k  model and the kSST  model. The results lead to the 

following conclusions: 

(1) Comparing to the original  k  model, the improved  k  model has 

better numerical stability, higher computational efficiency and more concise form. 

(2) Comparing to the original  k  model, the improved  k  model 

yields similar velocity and temperature profiles in the channel flow and close 

predictions for the fluid flow in the step flow. Both of them predict better results 

than the kSST  model. 

(3) The improved  k  model shows improved predictions for the fluid flow and 

heat transfer in the impinging jet flow compared with the original  k  

model and the kSST  model. 

(4)  Both of the turbulence model and the turbulent Prandtl number have significant 

effects on the convective heat transfer. The improved  k  model 

combined with the Kays and Crawford formula can yield better results. 
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Appendix A: Formulation of the improved k–ω–φ–α  model 

The equations of the improved  k  model are briefly summarised below. 
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where ijijSSS 2 , )(
2

1
,, ijjiij uuS  , jkijΩΩΩ 2 , )(

2

1
,, ijjiij uuΩ  ,  f0 , 1f  and 

y is the distance to the nearest wall. 

The model constants extracted (or computed) directly from the Wilcox’s k  

model, the kv /BL 2  model and the original  k  model are listed in Table A.1 

and those re-calibrated are listed in Table A.2. 

Appendix B: The mean temperature equation used in present study 

The mean temperature equation is 
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Table captions 

Table 1. The importance of the model parameters for different flow. 

Table 2. The time consume for 100 iterations. 

Table A.1. Model constants extracted (or computed) directly from the Wilcox’s k  

model, the kv /BL 2  model and the original  k  model. 

Table A.2. Model constants re-calibrated in the improved  k  model. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure captions 

Figure 1. Comparison of the non-dimensional ‘ kD ’ term and the cross-diffusion term  

‘ DC ’ for channel flow at 1000Re  . 

Figure 2. Comparisons of normalized mean streamwise velocity profiles. (a)  550Re  ; 

(b) 1000Re  ; (c)  2000Re  ; (d) 5200Re  . 

Figure 3.  Comparisons of normalized turbulent kinetic energy profiles. (a)  550Re  ; 

(b) 1000Re  ; (c)  2000Re  ; (d) 5200Re  . 

Figure 4.  Comparisons of normalized Reynolds stress. (a)  550Re  ; (b) 1000Re  ; (c)  

2000Re  ; (d) 5200Re  . 

Figure 5. Comparisons of normalized turbulent viscosity profiles. (a)  550Re  ; (b) 

1000Re  ; (c)  2000Re  ; (d) 5200Re  . 

Figure 6. Sketch of the geometry and boundary conditions of the step flow. 

Figure 7. Skin friction coefficients on the bottom wall of the step flow. 

Figure 8. Comparisons of pressure coefficient on the bottom wall of the step flow. 

Figure 9. Velocity profiles at different locations of the step flow. 

Figure 10. Sketch of the geometry and boundary conditions for the impinging jet flow. 

Figure 11. Comparison of the pressure distribution on the impingement wall. 

Figure 12. Comparison of the skin friction coefficient along the impingement wall. 

Figure 13. Effect of  the formula for the production of k on the skin friction coefficient. 

Figure 14. Comparisons of the mean streamwise velocity profiles at different vertical 

planes. (a)  1/ Bx ; (b) 2/ Bx ; (c)  3/ Bx ; (d) 5/ Bx . 

Figure 15. Comparisons of the dimensionless mean temperature profiles computed by 

different turbulence models. (a)  395Re  ; (b) 1020Re  . 



Figure 16. Predictions of the dimensionless mean temperature profiles by the improved 

 k  model with different tPr . (a)  395Re  ; (b) 1020Re  . 

Figure 17. Comparison of the Nusselt number distribution on the impingement wall. 

Figure 18. Comparison of the Nusselt number computed using the original  k  

model with and without the ‘E’ term. 

Figure 19. Effect of  the formula for the production of k on the Nusselt number 

distribution. 

Figure 20. The effect of the turbulent Prandtl number on the Nusselt number. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. 

Flow type Cμ Cε4 Cη σd Cε5 ζ 

2D channel flow √ √ √ √   

2D free jet flow √ √ √ √ √  

2D impinging jet flow √ √ √ √ √ √ 

 

Table 2. 

 
The number of Cells 

140000 280000 640000 

Improved  k 47s 87s 732s 

Original  k  51s 98s 833s 

 

 

Table A.1.  

β* σk σω κ p σφ Cε2 C1 C2 CT CL 

0.09 0.6 0.5 0.41 4.0 1.0 1.787 1.7 0.9 6.0 0.164 

 

Table A.2. 

Cμ Cε4 Cη σd Cε5 ζ 

0.21 1.2 79 0.5 0.17 1.0
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Figure 5. 
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