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This study numerically investigates the internal jetlike mixing upon the coalescence of
two initially stationary droplets of unequal sizes by employing the volume of fluid method
with an adaptive mesh refinement algorithm. The emergence of the internal jet is attributed
to the formation of a main vortex ring, as the jetlike structure shows a strong correlation with
the main vortex ring inside the merged droplet. By tracking the evolution of the main vortex
ring together with its circulation, we identified two mechanisms that are essential to the
internal-jet formation: the vortex-ring growth and the vortex-ring detachment. Recognizing
that the initiation of the vortex-ring-induced jet energetically relies on the merged interface
but the manifestation of the jet physically relies on the competition between the convection
and viscous dissipation of the vortex ring, we further developed and substantiated a vortex-
ring-based Reynolds number (ReJ = �VD/4πν) criterion, where �VD is the circulation of
the detached main vortex ring and ν is the liquid kinematic viscosity, to interpret the occur-
rence of the internal jet at various Ohnesorge numbers and size ratios. For the merged droplet
with apparent jet formation, the average mixing rate after jet formation increases monoton-
ically with ReJ , which therefore serves as an approximate measure of the jet strength. In
this respect, stronger internal jet is responsible for enhanced mixing of the merged droplet.

DOI: 10.1103/PhysRevFluids.2.113607

I. INTRODUCTION

Droplet coalescence is a frequent event in many natural and industrial processes involving
dispersed two-phase system of either gas–liquid or liquid–liquid [1–4]. A prominent example is
the dense spray of liquid fuel in the combustor of a diesel [5,6], gas turbine [7], or rocket engine
[8–10]. The large concentration of droplets in the spray along with the flow nonuniformity in the
combustor imply frequent droplet collisions. Among various outcomes of droplet collision, droplet
coalescence is of paramount importance because it affects the concentration and size distribution
of colliding droplets, and in turn the subsequent spray and combustion characteristics [11]. Droplet
coalescence is also an arguably important mechanism for explaining the size distribution of droplets
in rain clouds [12,13].

Early relevant studies were focused on quantifying the different regimes, namely coalescence,
bouncing, and separation, that could emerge for two colliding droplets. Two governing parameters for
the collision of two equal-size droplets were identified to be the Weber number, We, which measures
the relative importance of droplet inertia compared to the surface tension, and the impact parameter,
B, which measures the deviation of droplet trajectory from the head-on collision (B = 0) [14–20].
Other than We and B, the ambient gas pressure [21–23] and the size difference of the droplets
[14,17,24–26] were also found to significantly influence the outcome of droplet collision. Despite
of the complications at medium-to-large We, all these studies confirmed that the droplets would
always coalesce for sufficiently small We. To this end, We = 0 guarantees the eventual merging of
two droplets in any situation and has been a default setup for studying droplet coalescence.

Among previous droplet coalescence studies, a majority of the effort has been dedicated to the
theoretical, experimental, and numerical investigations [27–33] of the evolution of the neck or
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bridge between two merging droplets. Similar problems have been extensively studied by other
researchers such as the merging of cylinders in the Stokes flow regime modeled by Hopper [34,35],
the sintering of cylinders and spheres simulated by van de Vorst [36,37], and the droplet coalescence
on surfaces by Narhe et al. [38], Ristenpart et al. [39], Boreyko and Chen [40], Lee et al. [41], and
Liu et al. [42]. However, less attention was focused on the outcome of the merging process, for
example, the internal mixing within the coalesced droplet, which is crucial to applications involving
biological or chemical reactions [43,44]. Because the internal mixing after coalescence is minimal
for two identical droplets due to the intrinsic symmetry, it can be enhanced only by breaking the
symmetry. Blanchette [45] numerically investigated the internal mixing within the coalesced droplet
with varying surface tension and found that the surface tension variation results in faster mixing
than the geometric effect. Anilkumar et al. [46] experimentally observed a jetlike mixing after the
coalescence of two initially stationary water–glycerin solution droplets of unequal sizes. For the
highly viscous droplets, noticeable mixing was however not observed in their experiments, and
instead, the smaller droplet simply lodges onto the larger droplet after coalescence.

To understand the internal mixing associated with the jetlike structure, Nobari and Tryggvason
[47] employed the front-tracking method to simulate the coalescence of two stationary droplets. Their
results suggest that the penetration depth of the fluid from the small drop monotonically changes
with the size ratio in a very viscous drop where no internal jet forms, and that this monotonicity
however does not hold for small viscosity drops where internal jet could appear. Later, Liu et al.
[48] simulated the mixing of unequal-size droplets with emphasis on elucidating the important
role of the surface energy of the merged interface in forming the jetlike mixing. They found that
increasing the droplet viscosity suppresses the mixing and increasing the size disparity promotes the
mixing. Recently, Tang et al. [10] experimentally investigated the coalescence of two unequal-sized
droplets with nonzero Weber numbers and observed the nonmonotonic emergence of the jetlike
mixing with increasing We. Specifically, the jetlike mixing emerged at small We, in accordance
with previous observations for initially stationary droplet coalescence [46,47], but such a mixing
was absent at higher We as the increased droplet deformation absorbed the impact energy and
therefore suppressed the jet formation. As We further increases, the jetlike mixing reemerges while
it shows a “two-leg” configuration. The jetlike internal mixing was also reported in several other
numerical studies employing the volume of fluid (VOF) method [49] and the lattice Boltzmann
method [50–52]. Nevertheless, physical interpretation of the internal jet and its effect on mixing
have not been adequately addressed in these studies.

Similar internal-mixing phenomenon has also been observed in the coalescence of a droplet into a
liquid pool [53–55]. A mechanism based on the generation of vorticity by accelerated flows at curved
liquid-free surfaces was proposed to explain the formation of the vortex ring [53,55–57]. Specifically,
in a homogeneous fluid without body force (or with conservative body force), which is the fluid in
either the droplets or the ambient gas, the rate of change of vorticity, ω, associated with a fluid element
is given by the vorticity transport equation (also known as the Helmholtz vorticity equation) [58],

Dω

Dt
= ω · ∇u + ν∇2ω, (1)

where u is the velocity and ν is the kinematic viscosity. The first term on the right-hand side
of Eq. (1) represents the stretching and tilting effect of the vortex-line, which is balanced by the
change of vortex strength caused by the changes in the area and direction of the fluid element
surface (pp. 268–269 of Ref. [58]); the second term is the vorticity diffusion term, which by
nature only causes the redistribution of vorticity in the presence of vorticity gradient. Equation
(1) mathematically dictates that vorticity is only a transport quantity, meaning no vorticity can
be created inside a homogeneous fluid. This interpretation, although elucidated by Batchelor
[58] and Cresswell and Morton [53], has not been sufficiently recognized probably because of
its non-intuitive differential form. Similar conclusion can also be deduced from an integral form
of Eq. (1), known as the Kelvin’s circulation theorem [59,60] (or equivalently the Helmholtz’s
theorems [60]). Although the Kelvin’s circulation theorem was originally derived for inviscid flows,
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Batchelor [58] extended it to viscous flows by deriving the total change of the circulation (�)
around an arbitrary material contour in the form (Eq. (5.2.7) of Ref. [58]),

d�

dt
= −ν

∮
(∇ × ω)d l, (2)

where d l is a material line element along the integration contour. Equation (2) can be viewed as
the equivalent form of the Kelvin’s circulation theorem for viscous flows. It clearly indicates that
the vortex strength of any material volume does not change unless vorticity diffusion happens at
the boundary by means of viscosity. Since diffusion is a transport phenomenon which does not
introduce new quantity into the global system, vorticity must be generated at the boundaries where
the homogeneous condition breaks or special boundary condition is in force. For inertialess drop
coalescence with no initial vorticity and in the absence of rigid boundaries, the only source of
vorticity must be the liquid–gas interface [53]. As the liquid–gas interface can be approximated
by a free surface of a viscous fluid, the vanishing shear stress requires a nonzero jump in velocity
gradients and therefore generates a finite vorticity [53,55]. The vortex ring formation after
coalescence is a synergic consequence of the vorticity generation on the liquid-gas interface, the
vorticity transport (including accumulation and advection) to the droplet interior, and the vorticity
diffusion within the droplet. To the knowledge of the authors, no attempts have been made to
describe such a vorticity evolution for binary droplet coalescence.

In the present study, we aim to numerically investigate the coalescence of initially stationary
droplets of unequal sizes. The first focus of the study is the jetlike internal mixing upon the droplet
coalescence and its parametric dependence on liquid viscosity, surface tension and size differential.
The second is to analyze the evolution of concomitant vorticity and its interrelation with the internal
mixing. Regardless of the fact that droplet collision with increasing We may enhance the internal
mixing, only initially stationary droplets (i.e., with a zero Weber number) was considered in the study
based on the following considerations. First, the coalescence of initially stationary droplets can be
treated as a leading order approximation to that with small We. More importantly, the coalescence of
initially stationary droplets occurs at the contact point of two spherical droplets, which do not deform
prior to coalescence [61]. At nonzero We, the complicated phenomena of draining the intervening
gas film out of the gap between two colliding droplets [61] and the succeeding interface merging
at the length scales of the van der Waals force pose great challenges to numerical simulation. The
additional difficulty of dealing with droplet coalescence at nonzero Weber numbers will be avoided
in the present study although it merits future studies.

The structure of the paper is organized as follows: the description of the problem, the specifications
of numerical methods, and the analysis of grid independence are presented in Sec. II, followed by the
comparison with the available experimental results in the literature, in Sec. III. The phenomenological
description of the jetlike mixing for three representative liquids such as water, n-decane and n-
tetradecane are discussed in Sec. IV. An analysis of vorticity evolution is presented in Sec. V to
substantiate that the internal jet formation correlates with the vortex ring generated after droplet
coalescence. The essential mechanism for internal jet formation is further elucidated through the
quantitative analysis of the vorticity generation at the gas–liquid interface, and the subsequent
formation, growth, and detachment of the main vortex ring. In Sec. VI, a vortex-ring-based Reynolds
number, characterizing the strength of the detached main vortex ring relative to the viscosity, is
proposed as the criterion for the internal jet formation. Finally, the internal mixing is quantified in
Sec. VII by using a mixing index, and the resultant mixing rates are compared among different cases
to demonstrate the crucial impact of the internal jet on the mixing performance of the merged droplet.

II. NUMERICAL SPECIFICATIONS

We consider two initially stationary droplets, which are made to coalesce with each other at the
point of contact at time t = 0, as illustrated in Fig. 1. A cylindrical coordinate is established so that
the line connecting the mass centers of the two spherical droplets forms the axial (z-) direction.
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FIG. 1. Computational domain and adaptive mesh for the current droplet coalescence study. The symmetry
boundary condition is specified on the axis of symmetry and free outflow boundary conditions are specified on
the other three boundaries. The zoomed-in window shows the grid configuration of the interface at the initial
time of contact.

The diameters of the smaller and the larger droplets are DS and DL, respectively. The flows in both
gas and liquid droplets are viscous and incompressible. The density and viscosity are ρl and μl for
the liquid, and ρg and μg for the gas, respectively. The surface tension coefficient of the gas–liquid
surface is σ . The tangential and normal directions in a local coordinate system established on the
droplet interface are denoted by t̂ and n̂, respectively.

Under the conditions that concern the present study, the gas–liquid density ratio ρg/ρl is of
O(10−3) and gas–liquid viscosity ratio μg/μl is of O(10−2), so that they are assumed to have
insignificant influence on the problem, as substantiated in the previous studies. Consequently, only
two controlling non-dimensional parameters are considered, namely, the Ohnesorge number, which
is defined as Oh = μl/

√
ρlσDS and measures the relative importance of viscous stress and surface

tension, and the size ratio, defined as � = DL/DS . In the present study, the Ohnesorge numbers
are in the range of 8.3 × 10−3 ∼ 3.6 × 10−2 and the size ratios varies from 1.0 to 3.2, which are
similar to those considered in the experiments of Zhang et al. [62]. The characteristic length, time
and velocity, DS , tc =

√
ρlD

3
S/σ and vc = √

σ/ρlDS , are used to nondimensionalize the present
mathematical formulations. It is noted that tc is slightly larger than the natural oscillation time of
the smaller droplet, (π/4)

√
ρlD

3
S/σ . Based on these characteristic physical quantities, the Reynolds

number can be defined as Re = √
ρlσDS/μl , which is the reciprocal of Oh. Thus, Re is of the

order between O(101) and O(102), indicating that the droplet coalescence cases of the current study
belong to the inertial-dominant and the inertial-viscous regimes.

The present numerical simulation adopts the volume of fluid (VOF) method [63,64], which has
been implemented in the open source code, Gerris [65,66], and widely used in many multiphase
flow problems [33,54,67,68]. To briefly summarize the method, the continuity equation and the
incompressible Navier-Stokes equation expressed as

∂ρ/∂t + ∇ · (ρu) = 0, (3)

ρ(∂u/∂t + u · ∇u) = −∇p + ∇ · (2μD) + σκδsn, (4)
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FIG. 2. Grid independence study for the simulation. (a) Comparison of droplet deformation and internal
mixing pattern among different mesh levels, (4, 5, 6), (4, 6, 7), (4, 7, 8), and (4, 8, 9), where the three
numbers in parenthesis are the mesh levels for the gas zone, the fluid zone, and the interface zone, respectively;
(b) Comparison of the total kinetic energy, EK , normalized by the initial surface energy, ES0, for the different
meshes presented in (a).

are solved using the classic fractional-step projection method. Here, u is the velocity vector, ρ is the
density, μ is the dynamic viscosity, and D is the deformation tensor defined as Dij = (∂iuj + ∂jui)/2.
The last term on the right-hand side of Eq. (4) is the Laplace-pressure formula for the surface tension,
where κ is the curvature and n is the unit normal vector of any surface, with the representation of the
Dirac delta function δs distributing the force among the interface cells. The volume-of-fluid function
describing the fluid phase is solved by the advection scheme,

∂c/∂t + ∇ · (cu) = 0, (5)

where c is the volume fraction, with c = 1 denoting droplet phase, c = 0 the gas phase, and 0 < c < 1
the gas–liquid interface. Thus, the density and the viscosity of each fluid element are constructed as
ρ(c) = cρl + (1 − c)ρg and μ(c) = cμl + (1 − c)μg , respectively. For the present problem that is
intrinsic axisymmetric, the axisymmetric boundary condition (∂/∂r = 0) is enforced at the z axis.
At all the other boundaries, the flow is assumed to approach the condition in the far field, so the
outflow boundary condition (∂u/∂n = 0, p = 0) is specified.

The VOF method is characterized by the combination of the adaptive quad/octree spatial
discretization, the geometrical VOF interface reconstruction, the continuum-surface-force surface
tension formulation, and the height-function curvature estimation. In order to resolve the droplet
interface and the internal flow within the droplet, the computational domain is divided into three
zones, namely the gas, the droplet interior and the interface. The mesh for each zone can be adaptively
refined to a prescribed level, denoted by an integer N , at which the minimum cell size in the zone is
of O(2−N ) of the zone dimension. Accordingly, we can use (N1, N2, N3) to describe the refinement
levels in all the three zones. As an example, Fig. 1 shows an initial mesh at the refinement levels
(5, 6, 7), in which the number of grid points is 13 851, equivalent to about 50 000 grid points in a
uniform mesh system. The computational domain is an axisymmetric cylinder of 7DS in length and
3DS in radius. Further extension of the domain has negligible influence on the results.

The grid independence of the computational results was examined in Fig. 2. Figure 2(a) shows the
comparison of droplet deformation and internal mixing pattern for the coalescence of water droplets
with Oh = 8.28 × 10−3 and � = 2.0. Four different mesh refinement levels, (4, 5, 6), (4, 6, 7), (4,
7, 8), and (4, 8, 9), were employed, which correspond to 5 351, 12 878, 40 180, and 142 897 grid
points, respectively. The maximal grid points on equivalent uniform meshes are 86 016, 344 064,
1 376 256, 5 505 024, respectively. It is seen that all results in Fig. 2(a) are qualitatively similar to
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FIG. 3. Comparison of the droplet mixing patterns between experiment [46] and simulation. (a) Jet forming
for a mixture of silicone oil and bromobenzene (3.3 CP measured viscosity), We = 0.0, Oh = 0.012, � =
2.08, tc = 20.2 ms, (b) no jet for a high viscous silicone oil (99.0 CP measured viscosity), We = 0.0, Oh =
0.203, � = 1.75, tc = 57.5 ms.

each other, although the mesh (4, 5, 6) seems to render a slightly different internal jet pattern than
the rest three finer meshes. For quantitative justification, Fig. 2(b) further compares the evolution
of the total kinetic energy (EK ) of the droplet, normalized by its initial surface energy (ES0), for
the same four meshes. The results are consistent with Fig. 2(a) that the latter three meshes tend to
share an identical curve, which slightly deviates from the first mesh (4, 5, 6). The above discussions
suggest that the mesh (4, 6, 7) is sufficient for the current study. For a balance between accuracy
and computational cost, the refinement level (4, 6, 8) were used in all the following computations. A
typical simulation run up to T = 4.0 takes approximately five hours of real time on two Intel Xeon
E5-2630 processors with 12 cores.

The initial condition of the simulation setup is illustrated in the zoomed-in plot of Fig. 1. Because
the interface constructed by the VOF method intrinsically has a finite thickness, the initial merging
between the front surfaces of two drops inevitably causes a finite radius of the neck region as
shown in the figure. This initial neck can be slightly adjusted by changing the local grid resolution
around the initial contact point. To study the impact of the initial neck, three different initial radii,
0.035DS , 0.048DS , and 0.060DS , are simulated. Similar analysis to the grid independence study
were performed, and no notable difference was observed among the different cases. The results
are not presented here because they are almost identical to Fig. 2. Thus, the initial neck radius has
negligible effect on the long-term process of drop coalescence. In practice, the initial neck radius of
0.048DS was applied for all the following simulations.

III. EXPERIMENTAL VALIDATIONS

To validate the present numerical methods, the coalescence of two initially stationary droplets
made of a mixture of silicon oil and bromobenzene in the environment of water was first simulated and
compared with the experiment of Anilkumar et al. [46], as shown in Fig. 3(a). The corresponding
nondimensional parameters are Oh = 0.012, � = 2.08, ρg/ρl = 10−3, and μg/μl = 0.03. It is
seen that the simulation results are in good agreement with the experimental images in terms of the
evolution of droplet deformation and that of the jetlike internal mixing. Anilkumar et al.’s experiment
on the coalescence of two initially stationary droplets of silicone oil in water, corresponding to
Oh = 0.203, � = 1.75, ρg/ρl = 1.27 × 10−3, and μg/μl = 10−3, shows that the jetlike mixing is
absent because of the significantly increased droplet viscosity, as seen in Fig. 3(b). The simulation
results also reproduce the experimental observation in that the smaller droplet lodges on the larger
one to form a dome shape.

Figure 4 compares the present simulation with Thoroddsen et al.’s experiment [29] of water
droplet coalescence in atmospheric air with Oh = 2.5 × 10−3, � = 1.06, ρg/ρl = 1.23 × 10−3,
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FIG. 4. Comparison of the droplet coalescence speed between experiment [29] and simulation. The
controlling parameters are Oh = 2.5 × 10−3, � = 1.06. The red-dotted lines in the sub-images are droplet
interfaces obtained from the present simulation. Note that although � = 1.06 was reported in the original work,
� = 1.02 was measured from the experimental images and therefore adopted in the simulation.

and μg/μl = 1.83 × 10−2. The six subimages illustrate the experimental evolution of the droplet
interface, which is compared with the simulated interface in red dotted lines. It is seen that the
simulation results well predict the coalescence process. Quantitative comparison of the coalescence
speed is shown in the main plot of Fig. 4, where R is the radius of the expanding neck (or bridge)
between the two droplets and Ravg is the average radius of the two droplets. Again, the simulation
results are in good agreement with the experiment data. The slight deviation could be attributed to
the original experimental setup, where each droplet was either pendent or sessile in gravitational
environment, with their far ends being attached to a tube, so that the two droplets are not strictly
spherical. Before we proceed, it is noted that Fig. 4 displays a scaling dependence of R ∼ √

t , with
the scaling coefficient being approximately 1.1(σRavg/ρl)1/4. This is consistent with the scaling
law for droplet coalescence dominated by inertia, which was proposed by Eggers et al. [27] and
experimentally validated by Wu et al. [69] and Aarts et al. [30]. Thus, it justifies that the current
droplet coalescence study belongs to the inertial regime.

IV. PHENOMENOLOGICAL DESCRIPTION OF INTERNAL JETLIKE MIXING

A. Representative case study

As a representative case, the coalescence of n-decane droplets was first investigated for a fixed
Ohnesorge number of Oh = 1.56 × 10−2 and various size ratios. To show the long-time behavior of
the internal mixing, the simulation lasts until T = 4.0. The small gas–liquid density ratio, ρg/ρl =
1.68 × 10−3, and the small gas–liquid viscosity ratio, μg/μl = 1.96 × 10−2, suggest that the gas
inertia and viscosity are unlikely to cause any significant influence on the phenomena, as has been dis-
cussed in Sec. II. To facilitate our presentation, only three size ratios, namely, � = 1.8, 2.2, and 2.8
are shown in Fig. 5(a). The mixing process is illustrated in the right half of each simulation image
and the variation of local pressure, normalized by 3σ/DS , is shown in the left half image.

Phenomenologically, the entire process from the commencement of droplet coalescence to
T = 4.0 can be divided into four stages according to the characteristics of droplet deformation and
jet formation.

(1) Stage I (about T = 0.00 ∼ 0.20): upon the droplet coalescence at the contact point, an
interfacial ring cusp is formed in the vicinity of the point and tends to be smoothed out under the
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FIG. 5. Deformation and mixing upon the coalescence of initially stationary droplets of (a) n-decane
with tc = 0.50 ms, (b) water with tc = 0.33 ms, and (c) n-tetradecane with tc = 0.48 ms, and for different �

(� = 1.8, 2.2, 2.8). The left contour shows the static pressure, with the magnitude ranging from 0.0 of blue
to 2.0 of red. The right contour plots the tracer variable, with red and blue tracking the fluid initially from the
small and large droplets, respectively.

high capillary pressure. This causes a rapid, radially outward movement of the ring interface at the
beginning stage of droplet coalescence. In the meantime, most of the mass in the droplets do not
have noticeable movement along the axial direction. As a result, away from the vicinity of the ring
cusp, the droplets remain almost spherical and the local pressures do not vary significantly.

(2) Stage II (about T = 0.20 ∼ 0.40): the mass in the smaller droplet is driven into the larger one
under the capillary pressure difference of about 4σ (D−1

S − D−1
L ). A finger-like bulge with a round

head is consequently formed on the far side of the smaller droplet, as clearly seen at T = 0.40. The
radius of the round head of the bulge, denoted by DB , is smaller than that of the initial droplet, and
thereby results in larger capillary pressure (shown in red) in the bulge than that in the large droplet.

(3) Stage III (about T = 0.40 ∼ 0.80): the bulge merges into the droplet under the capillary
pressure difference of about 4σ (D−1

B − D−1
L ). The mass of the bulge obtains an axial momentum in

the vicinity of the axis as the result of the conversion of the surface energy of the bulge to its kinetic
energy. After the bulge completely merges into the droplet, the pressure inside the droplet becomes
almost uniform regardless of the slight local pressure variation due to the droplet oscillation.

(4) Stage IV (about T = 0.80 ∼ 4.00): the final stage is characterized by the long-time behavior
of the jetlike mixing, which is affected by the viscous dissipation of the internal flow motion and
the droplet oscillation. It is seen that all the cases show jetlike mixing patterns except the case of
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� = 1.8, in which the merged smaller droplet lodges on the larger one to form a dome shape during
the entire stage.

B. Influences of Oh and �

For a comparative study of the phenomena, the above simulations were repeated for water and
n-tetradecane, which provide experimentally realizable comparison with n-decane for studying the
influences of surface tension and viscosity. Specifically, the viscosity of water (8.9 × 10−4Pa s) at
room temperature is very close to that of n-decane (8.5 × 10−4Pa s), but the surface tension of
water (7.29 × 10−2N/m) is almost three times larger than that of n-decane (2.38 × 10−2N/m).
The surface tension of n-tetradecane (2.65 × 10−2N/m) is similar to that of n-decane, but its
viscosity (2.03 × 10−3Pa s) is substantially larger than that of n-decane. The simulation results
for the coalescence of water droplets at various size ratios and with Oh = 8.29 × 10−3, ρg/ρl =
1.22 × 10−3, and μg/μl = 1.80 × 10−2, are shown in Fig. 5(b). The results for the coalescence of
n-tetradecane droplets with Oh = 3.62 × 10−2, ρg/ρl = 1.61 × 10−3, and μg/μl = 7.94 × 10−3

are shown in Fig. 5(c). Again, the influence of gas inertia and viscosity can be neglected because of
the small gas–liquid density and viscosity ratios. It is noted that Oh of n-tetradecane droplet almost
doubles that of n-decane droplet, which in turn doubles that of water droplet. Several observations
can be made by comparing the results shown in Fig. 5, as follows.

First, owing to the smaller Oh and thereby decreased viscous dissipation of water droplets, the
mushroom-like jet emerges at � = 1.8, as shown in Fig. 5(b), but it is absent for either n-decane or
n-tetradecane droplets at the same size ratio, as shown in Figs. 5(a) and 5(c), respectively. It is also
noted that the jetlike mixing pattern is absent for n-tetradecane droplets at all the size ratios. These
results accord with and extend the earlier experimental observation of Anikumar et al. [46] that the
formation of “mushroomlike” jet is suppressed by increasing the droplet viscosity.

Second, for the cases with the emergence of the distinct jetlike mixing, water droplets display
enhanced and faster mixing compared with n-decane droplets, as shown in Fig. 5(b) compared with
Fig. 5(a) for � = 2.2. It is seen that the jet penetrates the whole droplet and hits the bottom surface
at T = 2.0 for the water droplet, but the jet penetration is about a half of the droplet size for the
n-decane droplet at the same time. In view of the characteristic time tc of the water droplet is smaller
than that of the n-decane droplet of the same size, the evolution of the jetlike mixing in the former
is even faster and more substantial.

Third, an interesting albeit incidental phenomenon was observed for the water droplets of � = 2.8,
as shown in Fig. 5(b). A thin neck forms on the bulge and pinches off the bulge to generate a satellite
droplet, which subsequently re-merges into the “father” droplet, as shown at T = 1.00. Although
the jetlike mixing pattern still emerges, it is not as prominent as the case without the pinch-off.
In the experimental study of the pinch-off phenomenon during the coalescence of unequal-size
droplets, Zhang et al. [62] found that there exists a critical �cr for the emergence of pinch-off
and that �cr increases monotonically with Oh. For Oh = 8.29 × 10−3, the predicted �cr is about
2.6, which slightly overshoots 2.3 observed in Zhang et al.’s experiments. The overshooting is
caused by that the increasingly attenuated liquid neck is not sufficiently resolved in the present
study. Physically, pinch-off occurs when two interfaces become sufficiently close to one another,
being of O(10) nm, so that the van der Waals force triggers the interface collapse. Quantitatively
predicting the pinch-off requires the numerical resolution of an extremely thin liquid neck, which
is computationally challenging and therefore bypassed in the present study by limiting out scope to
the size ratios below the critical ones determined by Zhang et al.’s experiment [62].

C. Regime nomogram of jetlike mixing

The above comparative study has suggested that Oh and � are crucial to the appearance of the
internal mixing. To further quantify the influences of Oh and � on the formation of the jetlike mixing
pattern, we extended the simulations to wider ranges of these two parameters. The resulting � − Oh
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FIG. 6. Regime nomogram of initially stationary droplet coalescence in the � − Oh parametric space. The
jetlike mixing is denoted by the square, the no-jet regime by the cross, and the transition by the circlet. The
red-dashed fitting line is given by the fourth-order polynomial, � = 1.3691 × 107 Oh4 − 4.6129 × 105 Oh3 +
6.4108 × 103 Oh2 + 25.0344 Oh + 1 . The dashed area corresponds to the ranges of � and Oh effecting droplet
pinch-off, experimentally given by Zhang et al. [62].

regime nomogram of the parametric study is shown in Fig. 6, where the open triangles denote the
cases with distinct jetlike mixing and the open squares those without jetlike mixing.

For a given Oh, the jetlike mixing occurs as the size ratio is increased above a critical value
indicated by the dashed line. Phenomenologically, the nondimensional capillary pressure difference,
4(1−�−1), between the small and large droplets, increases with � and could be a driving force for the
jet formation. Furthermore, Fig. 5 also shows that as increasing the size ratio the coalescence-induced
internal flow tends to be concentrated around the symmetry axis, which could serve as an additional
source promoting the jet formation. It can be also observed that the critical � for the emergence of
the internal jet increases with Oh, which again verifies the observations from Fig. 5 that larger Oh
tends to suppress the jet formation. At this point, considering the trend of the red-dashed curve in
Fig. 6, one might be curious if there exists a threshold Oh beyond which jet formation is completely
suppressed. Theoretically, this is highly possible since any jet is a convective phenomenon that
could be inhibited by sufficiently large viscosity. Realizing that such a threshold can be determined
numerically by simulating the case with near-infinity size ratio, which is computational challenging,
we instead simulate the limiting problem: an inertialess droplet merged into a liquid pool. The result
is marked by Ohjet in Fig. 6, which shows that the mushroomlike jet does not appear when Oh is
increased above 0.035. The details about this simulation are not provided here for brevity.

For a complete phenomenological description of the problem, Zhang et al.’s experimental data
on the emergence of droplet pinch-off are also plotted in Fig. 6 as a shadow regime. It is noted that
pinch-off does not occur for Oh > 0.025 in their experiment.

V. MAIN VORTEX RING AND ITS ROLE IN INTERNAL JETLIKE MIXING

A. Identification of main vortex ring synchronized with internal jetlike mixing

We have demonstrated the dependence of the emergence of the internal jet on Oh and �, however
the basic mechanism of the jet formation still requires further investigation. As has been discussed in
the Introduction, the generation of the jetlike mixing pattern should not be fundamentally different
from other similar jetting phenomena, for example a starting vortex jet [70–72] formed due to the
self-induced motion of a single vortex ring. This conjecture is partly substantiated in Fig. 7 by the

113607-10



VORTEX-RING-INDUCED INTERNAL MIXING UPON THE . . .

FIG. 7. Comparison between the tracer variable distribution (left) and vorticity contour (right) at T = 1.70
for the cases of (a) n-decane, (b) water, and (c) n-tetradecane with � = 2.2. The color bar applies to the vorticity
contours throughout the paper.

similar appearance of the jetlike structure and the vortex ring inside the merged droplet, characterized
by normalized vorticity, ω∗ = ωtc. From previous studies [70–72], the formation of a starting jet can
be boiled down to two essential problems: what is the source of vorticity forming the vortex ring?
and how does the vortex ring detach from its source to form the jet? Similarly, we can illustrate the
two important processes, namely, the generation of vorticity and the detachment of the main vortex
ring, for the distinct internal jet subsequent to the droplet coalescence.

To study the generation and evolution of the main vortex ring that is responsible for the formation
of the internal jet, one needs to first identify and track the region of the vortex. For the present
problem having axisymmetry, we employ a simple vorticity-contour approach and consider the
vorticity contour, ω = ωv , encircling the main vortex as the vortex boundary, where ωv is a small
threshold vorticity. The results for a representative case (n-decane droplets with � = 2.2) are
presented in Fig. 8, where the green contour on the left side of the droplet represents the identified
boundary of the main vortex. By comparing the green contour with the vorticity contour on the right
side of the droplet, we indeed verify the vorticity-contour approach to be effective in capturing the
main vortex among other vortices emerging at different stages of droplet coalescence.

The identification of the main vortex region also enables the estimation of the total vorticity
within the main vortex. The total vorticity is evaluated by calculating the circulation

�V =
∫

AV

ωdA

where AV is the cross-section area of the main vortex. It should be noted that the volumetric
integration over the volume, VV , of the main vortex,

∫
VV

ωdV , is not an appropriate quantity for
measuring the total vorticity. This is because Kelvin’s circulation theorem [60,73] dictates that �V

is a conserved quantity in an ideal axisymmetric flow, but the volumetric integration is dependent on
the radial distance of the vortex from the axis (Saffman [60], Eq. (1.5.22)). It is seen in Fig. 8 that �V

first increases and then decreases at a slower rate, implying the existence of two physical processes:
vorticity generation and vortex detachment, that will be discussed in detail in Secs. V B and V C.

The calculation of the total vorticity provides further justification for the correlation between the
main vortex ring and the internal jetlike mixing at different stages of droplet coalescence.

(1) Stage I: as the initial droplet coalescence occurs, it can be observed from Fig. 8(a) that
vorticity develops only in the vicinity of the initial coalescence point, where surface deformation
and its induced flow start. The rapid, outward expansion of the contacting region between the two
droplets causes dramatic changes in the droplet geometry and velocity, thereby contributing to a fast
rate of vorticity generation.

(2) Stage II: when the initial coalescence region has sufficiently expanded as shown in Fig. 8(b),
the initial conversion from surface energy to kinetic energy gradually reaches stagnant. As a result,
the velocity and the geometry of the droplet enter a slow-variation stage, causing a gradual vorticity
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FIG. 8. The main plot shows the evolution of the nondimensional circulation of the main vortex for n-decane
droplet coalescence with � = 2.2, and Oh = 1.56 × 10−2. The subfigures (a)–(e) are the tracer variable plot
(left) and vorticity contour (right) at the typical times (red circlets) on the vorticity evolution curve. In each
subfigure, the green contour on the left side of the droplet represents the boundary of the main vortex identified
through the vorticity-contour approach. The green cross marks the center of the main vortex corresponding to
the local maximum vorticity. For clarity of illustration, positive and negative vortices in the vorticity contour
are encircled by solid and dashed contour lines, respectively.

generation inside the main vortex. By the end of this stage, the remainder of the smaller droplet
becomes an axial fingerlike liquid bulge, forming a new neck which would lead to the next peak of
surface energy discharge.

(3) Stage III: the fluid bulge collapses into the large droplet under surface tension as shown in
Fig. 8(c). Similar to Stage I, a substantial amount of surface energy of the merged interface is rapidly
converted to the kinetic energy of the induced flow around the confined neck region of the small
fluid bulge, resulting in massive vorticity production in the main vortex.

(4) Stage IV: after the complete merge of the fluid bulge into the large droplet, the main vortex ring
starts to detach from the droplet surface and eventually forms the internal jet, as shown in Figs. 8(d)
and 8(e). During this detaching process, the circulation of the main vortex ring first declines rapidly
because of the diffusion of negative vorticity from the surface, and then drops gradually because of
viscous dissipation after the complete detachment of the vortex ring.

B. Formation and growth of main vortex ring in stages I and III

In this section, we focus on the process of vorticity generation associated with the main vortex. As
has been discussed in the Introduction, Batchelor [58] extended Helmholtz’s third theorem [60] or
Kelvin’s circulation theorem [59,60] to the viscous flows, and summarized that “vorticity cannot be
created or destroyed in the interior of a homogeneous fluid under normal conditions, and is produced
only at boundaries” (p. 266 of Ref. [58]). Therefore, the initial generation of vorticity associated with
the main vortex must happen at the gas–liquid interface. For the present problem, the significantly
smaller density and viscosity of gas compared with those of liquid enable us to approximate the
liquid-gas interface as a free surface with a vanishing shear stress [56,70,71] on it. In the reference
frame defined in Fig. 1, the shear stress has the form

σ = n̂ · ∇u · t̂ + t̂ · ∇u · n̂ = 0, (6)
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FIG. 9. (a) The tracer variable plot (left) and vorticity contour (right) at a representative instant of Stage I
[Fig. 6(a)] for n-decane droplet coalescence with � = 2.2, and Oh = 1.56 × 10−2. The green contour marks
the boundary of the main vortex. (b) The vorticity distribution along the gas–liquid interface near the main
vortex. The s∗ coordinate is along the surface of the droplet, as indicated by the black arrow in (a).

and hence

ω = n̂ · ∇u · t̂ − t̂ · ∇u · n̂ = −2 t̂ · ∇u · n̂ �= 0. (7)

According to Lundgren and Koumoutsakos [57], the interface vorticity in Eq. (7) could be further
decomposed into two parts by

ω = −2
∂u
∂s

· n̂ = −2
∂un

∂s
+ 2 κut , (8)

where κ = t̂ · ∂ n̂/∂s is the local curvature of the surface; un and ut are the velocity components
normal and tangential to the surface, respectively. Equation (8) means that the only source of vorticity
for the current problem is the interfacial flow and is affected by both the interface geometry and
the interfacial flow velocities (gradients). For steady flows where the free surface is stationary, un

becomes zero and the first term of Eq. (8) could be dropped out. For the present problem that is highly
unsteady and involves significant deformation of the interface, both terms of Eq. (8) individually
affects the vorticity generation of the main vortex at different stages. Furthermore, Eq. (8) can be
interpreted that vorticity generation at a free surface is inevitable in the presence of either surface
deformation or flow along curved surface. Due to the effect of viscosity, the vorticity generated at the
interface would be diffused into the bulk fluid. In a low viscosity fluid, the diffusion mainly happens
at a thin layer close to the interface, thus forming a surface-attached viscous shear layer or boundary
layer, outside of which the flow is primarily convective. In this sense, the viscous shear layer should
be considered more as an evidence of the diffusive vorticity transportation from the interface to the
bulk fluid of low viscosity, rather than a source of vorticity itself.

Figure 9 shows the distribution of vorticity at the gas–liquid interface where massive vorticity
is being generated initially inside the main vortex at Stage I. We can observe that a main peak of
positive vorticity is located between s2 and s3, which corresponds to the portion of the interface
overlapping with the boundary of the main vortex. This verifies that the growth of the total vorticity
inside the main vortex shown in Fig. 8 is indeed related to the non-zero vorticity generation at the
interface. Furthermore, the vorticity contributions from the two terms of Eq. (8) are also plotted in
Fig. 9. It is seen that the first term, −2∂un/∂s, almost equals the vorticity itself, and the second
term, 2 κut , is negligible. This implies that the initial vortex generation in Stage I is mainly caused
by the normal velocity gradient in the tangential direction of the outwardly moving surface, as the
movement of surface is normal to the surface and un decreases from s2 to s3. It is interesting to note
that vorticity generation is approximately symmetric with respect to the contacting plane of the two
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FIG. 10. (a) The tracer variable plot (left) and vorticity contour (right) for a representative instant of Stage
III [Fig. 6(c)] for n-decane droplet coalescence with � = 2.2 and Oh = 1.56 × 10−2. (b) The corresponding
vorticity distribution along the gas–liquid interface near the main vortex.

droplets during Stage I. Specifically, a counterrotating vortex is created on the large droplet side from
the surface between s1 and s2, with the −2∂un/∂s term again dominating the vorticity generation.
Although this “negative” vortex is only slightly weaker than the main vortex, it gradually decays in
later stages, whereas the main vortex will be further enhanced.

In Sec. V A, we have seen that Stage III corresponds to the primary vorticity generation phase for
the main vortex. To understand the underlying mechanism of vortex growth during this stage, Fig. 10
plots the vorticity distribution along the gas–liquid interface at the instant corresponding to Fig. 8(c).
Here, the curve between s1 and s2 represents the portion of the gas–fluid interface associated with
the main vortex. It can be observed that major vorticity generation occurs in the vicinity of the
connecting point between the bulge and the main droplet. The two vorticity components in Eq. (8)
are also plotted in Fig. 10, and their peaks are comparable to each other along the interface of
the main vortex. This indicates that both the interface deformation and the large curvature equally
contribute to the significant vorticity generation during this stage. It is also noted that, in the region
beyond the main vortex and toward the axis, the tangential velocity and curvature combined generate
negative vorticity, which exceeds the positive vorticity generated by interface deformation, causing
the emergence of a negative vortex inside the small bulge.

C. Detachment of main vortex ring in stage IV

The above analysis answers the question about where the vorticity inside the internal jet comes
from, but it does not explain how the concentrated vorticity becomes a self-induced vortex ring that
subsequently translates within the droplet to form an internal jet. In other words, the cumulation
of vorticity inside a vortex ring does not guarantee the formation of a jet. Taking the starting jet
problem as an example, the jet formation criterion requires that the nondimensional formation time
is larger than a certain value [71] (a typical number is 4), when the vortex ring is strong enough to
“rip-off” its own vorticity-feeding shear layer; otherwise, the vorticity would keep growing inside
the vortex ring without detachment and thereby no jet can be formed.

For the formation of the internal jet due to droplet coalescence, we hypothesize that a similar
mechanism exists such that the internal jet does not form until the main vortex ring detaches from the
surface of the droplet. Consequently, there must be an additional mechanism that “peels” the original
vortex ring off the surface. This problem resembles that of flow separation on a smooth body, where
vorticity inside the boundary layer detaches from the surface to become a free vortex in the wake.
It is well-known that flow separation happens where the adverse pressure gradient is strong enough
to generate vorticity opposite to the original shear layer. Analogically, we hypothesize that the
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FIG. 11. (a) The tracer variable plot (left) and vorticity contour (right) for a representative instant of Stage
IV [Fig. 6(d)] for n-decane droplet coalescence with � = 2.2 and Oh = 1.56 × 10−2. (b) The corresponding
vorticity distribution along the gas–liquid interface near the main vortex.

emergence of negative vorticity at the liquid-gas interface would be responsible for the detachment
of the main vortex ring.

To verify this hypothesis, we plot the vorticity distribution along the surface of the droplet at
the beginning of Stage IV, as shown in Fig. 11. It is confirmed that the main vortex starts to detach
from the central portion of the interface (s∗ > s2) where significant negative vorticity is generated.
Moreover, Fig. 11 also shows that the negative vorticity generation near the axis is largely attributed
to the first term of Eq. (8), −2∂un/∂s. We further recognize that this negative vorticity generation
actually corresponds to an outward retraction of the dented surface subsequent to the complete merge
of the droplet. In analogy to flow separation, s2 can be considered as a dynamic flow separation point,
which moves in the radial direction as the negative vortex region expands out, and cut off the main
vortex from the surface in a razorlike fashion. After the main vortex completely detaches from the
surface, it becomes a free vortex ring translating with its self-induced velocity to form an internal jet.

Here, the new information obtained in this section is emphasized. Ever since the phenomenon of
the jetlike mixing following droplet coalescence was reported by Anilkumar et al. [46], researchers
have been curious about its formation mechanism. Nobari and Tryggvason [47] calculated the
evolutions of the surface and kinetic energies, and attributed the formation of the internal jet to a
rapid release of surface energy during the injection of the small drop. This explanation is further
substantiated by Liu et al.’s recent work [48]. We noted that, while this “surface energy” theory
covers the fundamentals of the jet formation, it does not give the whole picture to the phenomenon
as sufficient details about the process are still lacking. Specifically, from the vortex dynamics
perspective, two conditions are necessary for a vortex ring to evolve into a jet: the accumulation of
vorticity and the separation from the vorticity source. Through the current analysis, we managed
to trace the origination of the main vortex ring back to the initial coalescence stage. Furthermore,
we found that the vortex ring grows substantially due to a combined effect of dramatical interface
deformation and large interface curvature during the entry of the small droplet, which coincides with
the period of rapid surface energy discharge found by Nobari and Tryggvason [47]. Finally, after
the entry of the small droplet a reverse motion of the interface induces a negative shear layer, which
facilitates the detachment of the main vortex ring from the liquid-gas and consequently initiates the
formation of the internal jet.

VI. VORTEX-RING-CRITERION FOR INTERNAL JET FORMATION

Previous sections have demonstrated that the emergence of the internal jet after droplet
coalescence is closely related to the generation and detachment of the main vortex. In this section,
we shall seek quantitative criterion of the internal jet based on the main vortex ring.
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FIG. 12. Evolution of the nondimensional circulation around the main vortex for different cases of droplet
coalescence. The subfigures (a)–(f) present the tracer variable plot (left) and vorticity contour (right) for
the instants when the main vortex completely detaches from the surface of the droplet. The circulations
corresponding to these instants are also marked on the evolution curves.

We start by comparing the evolution of the main vortex between cases with the internal jet (water
droplets with � = 1.8, 2.2 and n-decane droplets with � = 2.2) and those without the internal jet
(n-decane droplets with � = 1.8 and n-tetradecane droplets with � = 1.8, 2.2), as shown in Fig. 12.
The droplet configurations and vorticity contours at the instant when the vortex ring completely
detaches from the droplet surface are also presented in the figure, with their corresponding total
vorticities being marked on the circulation evolution curves, respectively. It is seen that, at the
instant of vortex detachment, the cases without jet formation have significantly lower total vorticity
compared with the cases with jet formation. Moreover, the lower circulation for the cases without jet
formation should be attributed to either shorter period or smaller rate of vorticity generation during
Stage III. It is noted that the less total vorticity generated during Stage III is related to the diminished
bulge structure created at the end of Stage II, which does not possess enough surface energy to be
converted during Stage III.

The above analysis qualitatively indicates that the internal jet appears only if the vortex ring is
strong enough by the end of the vortex detachment. Physically, an ideal free vortex ring would readily
translate downstream and form a jet under its self-induced flow, unless the viscosity significantly
dissipates the vortex ring. Consequently, the formation of the internal jet after the vortex detachment
is determined by the competition between the advective momentum associated with the vortex
ring and the momentum lost due to viscous diffusion. To characterize this competition, a Reynolds
number can be defined by

ReJ = UV rV

ν
, (9)

where UV and rV are the characteristic translational velocity and the radius of the free vortex ring,
respectively. Based on the dynamics of a vortex ring [60], UV can be expressed as

UV = �V

4πrV

. (10)

Combining Eqs. (9) and (10) gives

ReJ = �V D

4πν
= �∗

V D

4πOh
, (11)
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FIG. 13. Validation of the vortex criterion for the jet formation for different cases of droplet coalescence.
The slopes of the two dashed lines correspond to ReJ = 2.4 and ReJ = 3.5, marking the transition from the
no-jet regime to the mushroom-like jet regime. Here, all data points correspond to the cases of different � and
Oh plotted in Fig. 6.

where �V D (and its nondimensional form �∗
V D) represents the circulation of the main vortex ring

when it completely detaches from the droplet surface.
With �∗

V D calculated in a similar approach to Fig. 12 (circulations associated with the circlets),
Eq. (11) can be validated for different cases of droplet coalescence, as shown in the Oh − �∗

V D regime
nomogram in Fig. 13. The mushroomlike jet formation occurs with about ReJ > 3.5, no jet formation
with ReJ < 2.4, and in-between is a transition regime. The transition from the “no-jet” regime to
the “mushroom-like jet” regime with increasing ReJ is manifested by the five typical cases from 1
to 5, as shown in the subfigures of Fig. 13. Thus, the jet number ReJ serves as a phenomenological
criterion for jet formation subsequent to the coalescence of two initially stationary droplets. It is
noted that the data points presented in Fig. 13 were calculated from their corresponding simulation
cases in Fig. 6. While Fig. 6 introduces the phenomenological observation of the dependence of
the internal jet on the initial conditions (� and Oh), Fig. 13 provides the fundamental mechanism
explaining how the internal jet forms. Last, we emphasize that this jet-formation criterion does not
depend on any presumption or initial condition of the merging droplets, indicating a prospect of
extending this criterion to determining internal jet formation in more general situations, such as
droplet collision and other microfluidic interactions.

VII. CORRELATION BETWEEN VORTEX-INDUCED JET AND INTERNAL MIXING

As discussed in the Introduction, the present work was motivated to understand the influence of
the jetlike structure on internal mixing. It is noted that the word “mixing” is used to describe the
mass transfer between two droplets. In general, the mass transfer is twofold, namely, convective
and diffusive. In the current study, the mass diffusion is neglected for two reasons. One is that the
two droplets contain the same type of fluid, thus the concept of “mass diffusion” does not apply as
there is no species concentration gradient. Second, even if two miscible fluids are considered, the
Peclet number, which can be defined by Pe = √

σDS/ρl/Dm, where Dm is the mass diffusivity, is
estimated to be greater than O(102) for the current problem, meaning that the effect of convection
significantly overweighs the mass diffusion. Therefore, mixing in this study primarily reflect the
effect of mass convection.
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FIG. 14. Time evolution of the mixing index for n-decane (Oh = 1.56 × 10−2), water (Oh = 8.29 × 10−3),
and n-tetradecane (Oh = 3.62 × 10−2) droplets of various size ratios. ReJ for each case is presented in the
parentheses to relate the performance of mixing to the formation of internal jet.

The comparative study in Sec. IV has qualitatively demonstrated that mixing between the two
droplets is intimately related to the mushroomlike jet. Specifically, the occurrence of the jet seems to
cause large stretching and roll-up of the interfaces of two droplets, thereby increasing the contacting
surface and contributing to enhanced mixing performance. To further quantify this observation on
the internal mixing within the merged droplet, a mixing index M independent of Oh and � can be
defined as follows [10,74]:

M = 1 −
∫
V

|C − C∞|H (f − 1)dV∫
V

|C0 − C∞|H (f − 1)dV
, (12)

where the VOF function f = 0 in the gas and f = 1 in the droplets; the Heaviside step function
H (f − 1) limits the integration domain to be within the droplets. C, C0, and C∞ are the distribution
functions of the time-dependent “concentration” of the small droplet liquid in the merged mass, in
the unmixed droplets, and in the fully mixed mass, respectively, and are defined by

C = |2φ − 1|C0, C0 =
{

0, φ = 0
1, φ > 0

}
, C∞ = 1/(1 + �3), (13)

where φ is the spatially and temporally varying dye function, which is defined as 1 in the small
droplet and 0 in the large droplet. Therefore, M varies between 0 and 1 with larger value indicating
better mixing.

The time evolution of the calculated M for n-decane, water, and n-tetradecane and for various �

are shown in Fig. 14. The slope of the curves quantifies the rate of mixing at different times. Several
observations can be made about the mixing processes.

First, for all the cases, the mixing rate seems to be independent of Oh or � at Stages I-III (up
to around T = 0.8), when the small droplet has not completely merged into the larger one. This is
because mixing in the early stages are mostly caused by the geometrical changes of the two-droplet
configuration. These changes are associated with the coalescence of interfaces around the initial
contacting point (Stage I), the expansion of the contacting surface (Stage II), and the collapse of
the liquid bulge (Stage III), which to a considerable extent are similar processes among cases with
different Oh or �.

Second, the increase of M during Stage IV substantially varies with Oh and �, suggesting the
important role of the jetlike structure that does not present until this stage. The values of ReJ for
different cases are presented in the parentheses to indicate the correlation between jet formation
and internal mixing. It is seen that, for small ReJ cases where no internal jet is formed, the average
mixing rate is approximately zero in Stage IV and is almost independent of ReJ . Together with
the above-discussed mixing independency during Stages I–III, it seems that mixing is intrinsically
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self-similar throughout the merging process if no internal jet presents. This, in turn, provides a direct
evidence that the vortex-induced jet has a significant impact on the internal mixing of the merged
droplet.

Third, for those cases where mushroomlike jet forms, ReJ measures the relative strength of the
vortex ring associated with the internal jet. Therefore, larger ReJ corresponds to a stronger jet, and
in turn indicates larger convective momentum or lower viscous dissipation or both; enhanced mixing
rate is consequently expected. This can be readily verified by the n-decane cases shown in Fig. 14(a),
where the average mixing rate seems to monotonically increase with ReJ . Furthermore, comparing
the n-decane cases with the water cases shown in Fig. 14(b), we can also confirm that the water
cases in general has larger mixing rates than the n-decane cases, as the water cases have larger ReJ .

Fourth, it is noted that the monotonic dependence of the mixing rate on ReJ seems to not hold
exactly for the water cases. Specifically, the � = 2.2 case has much larger mixing rate than the
� = 2.6 case, although ReJ for the two cases are nearly the same. This can be attributed to the
tendency of droplet pinch-off for the water case with � = 2.6, where the surface energy responsible
for the interface oscillations at the later stage of internal mixing is significantly reduced. Moreover,
for the cases with droplet pinch-off, the long-term mixing performance is also affected by the surface
oscillations after the jet has penetrated through the merged droplet and hit the gas–liquid interface
on the opposite side.

Finally, for the cases with internal jet but without droplet pinch-off, the average mixing rate also
monotonically increases with � or decreases with Oh, which is consistent with our observation from
Fig. 5 that the jetlike mixing becomes more prominent with increasing � or decreasing Oh. It should
be mentioned that the penetration depth of the fluid from the small drop was analyzed by Nobari
and Tryggvason [47] to provide an indicator for the mixing effect, which is reasonable considering
that the penetration depth is closely related to the strength of the internal jet. Thus, their results
also show a similar monotonicity of the penetration depth with � for small Oh cases where internal
jet exists. However, they did not quantify the mixing preformation for the internal jets, which have
penetrated through the large drop and hit the surface of the other side. In this sense, the mixing index
M of the current study is an improved approach in quantifying the mixing performance of droplet
coalescence.

VIII. CONCLUDING REMARKS

In this paper, the coalescence of two initially stationary droplets of unequal sizes was investigated
numerically using an improved VOF method and adaptive mesh refinement algorithm, with emphasis
on two key problems: the formation of the internal jet and its effect on mixing between the two
droplets.

Phenomenologically, the jetlike mixing was perceived based on three representative fluids, water,
n-decane, and n-tetradecane. It was found that both decreasing the fluid viscosity and increasing the
size ratio would facilitate the emergence of the jetlike mixing. This observation was further justified
by a regime nomogram describing the occurrence of the jetlike mixing with varying size ratio and
Ohnesorge number.

The fundamental mechanism responsible for forming the internal jet was understood by first
identifying the correlation between the jetlike structure and the main vortex ring inside the merged
droplet. Based on the evolution of the main vortex ring, we identified three stages crucial to the
jet formation, namely, vortex-ring formation, vortex-ring growth, and vortex-ring detachment. The
initial vortex generation upon droplet coalescence, albeit being small in magnitude, is mainly
caused by the normal velocity gradient in the tangential direction of the outwardly merging surface
around the coalescence point. The rapid collapse of the small bulge into the large droplet, which
results in dramatic interface deformation and local large-curvature interface, causes massive vorticity
generation and therefore vortex-ring growth. The outward retraction of the dented surface promotes
the generation of negative vorticity that detaches the main vortex ring from the surface to form a
self-induced jet.
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Furthermore, an analysis concerning the circulation of the main vortex ring was performed by
comparing cases with and without the internal jet. The result points to a positive correlation between
the occurrence of the internal jet and the circulation of the main vortex ring after its complete
detachment. Recognizing that the formation of the internal jet is the outcome of a competition
between the convective momentum carried with the vortex ring and the viscous dissipation, we
defined a special Reynolds number, ReJ , as the criterion for jet formation. It was verified through
various droplet coalescence cases that ReJ > 3.5 approximately gives the mushroom-like jet and
ReJ < 2.4 predicts no jet formation, with in-between marking the transition regime.

A mixing index was defined to quantify the effect of the internal jet on mixing. For the cases
without internal jet formation, the average mixing rate has a minor dependence on � or Oh,
reflecting an intrinsic self-similarity associated with the configuration evolution of the two-droplet
system during their coalescence. For the cases with internal jet formation, the average mixing rates
are however significantly enhanced and the mixing index tends to monotonically increase with
increasing � or decreasing Oh.

Because ReJ physically characterizes the relative strength of the detached vortex ring, which
controls the strength of the forming jet, we compared ReJ among cases of different � or Oh to seek
a direct correlation between the vortex-induced jet and internal mixing. It was confirmed that the
average mixing rate of the vortex-ring detachment stage grows monotonically with ReJ for large
ReJ cases with jet formation. It should be noted that the above observations and conclusions only
hold for the cases without droplet pinch-off or the tendency of pinch-off, because pinch-off will
dramatically reduce the surface energy driving the interface oscillation, which affects the mixing in
the jet-formation stage.
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