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This paper proposes a dynamic multi-level optimal design method for power trans-
former design optimization (TDO) problems. A response surface generated by second-
order polynomial regression analysis is updated dynamically by adding more design
points, which are selected by Shifted Hammersley Method (SHM) and calculated by
finite-element method (FEM). The updating stops when the accuracy requirement
is satisfied, and optimized solutions of the preliminary design are derived simulta-
neously. The optimal design level is modulated through changing the level of error
tolerance. Based on the response surface of the preliminary design, a refined optimal
design is added using multi-objective genetic algorithm (MOGA). The effectiveness
of the proposed optimal design method is validated through a classic three-phase
power TDO problem. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5006736

I. INTRODUCTION

Power transformers have been serving as the main electric equipment in alternating current
power systems since last century. They still play a vital role in modern High Voltage Direct Current
system as a connector between systems. With the continuous advance in power industry, transformer
design has received considerable attention.1–4 However, its optimization studies remain a major
challenge because of numerous design variables, complicated geometries and conflicting constrained
objectives.

Several optimization methods, which are divided into deterministic and non-deterministic meth-
ods, have been introduced into power transformer design studies to minimize the cost or to maximize
the rated power.5 Constraints used in transformer design optimization (TDO) studies are classified
into two types, the first of which includes international technical specifications on different aspects of
transformer properties, such as IEC 60076-1 on general property, IEC 60076-2 on temperature-rise,
IEC 60076-3 on insulation and IEC 60076-5 on stability.3 The other class of constraints stems from
the requirements of customers and manufacturing capabilities.

Due to the large number of transformer design variables and computational complexity of finite-
element analysis (FEA), transformer design relies heavily on analytical equations with empirical
coefficients. The major weakness of such method is the large error of analytical transformer model,
resulting from approximation of geometry and field with a uniform value, which plausibly underlies
incorrect solutions. To tackle this problem, finite-element method (FEM) is introduced as the last
procedure to validate the optimized solutions derived with analytical equations.6–9 Nevertheless, final
validation cannot guarantee the accuracy of selection operation in the intermediate process. This paper
proposes a dynamic multi-level optimal design method with embedded finite-element modeling in
order to improve the accuracy of the model gradually. Response surface10,11 is constructed with the
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results of FEA through second-order polynomial regression analysis and is used to generate samples
for the global estimation of this TDO problems with Shifted Hammersley Method (SHM), which
would invoke FEA to exclude points violating the constraints and to increase design points for a
more accurate model. In the following stage, multi-objective genetic algorithm (MOGA) is applied
to obtain more refined solutions.

The remainder of this paper is organized in the following manner. Section II introduces the
proposed multi-level design method in detail. Section III exemplifies the proposed method with a case
study of optimizing the manufacturing cost of a three-phase power transformer. Finally, section IV
presents the conclusion of this paper.

II. METHODOLOGY

In conventional transformer design, a fixed maximum magnetic flux density is of vital impor-
tance for several subsequent calculations. As the primary purpose of optimal design is to satisfy
the requirements of customers with minimum materials, it is natural that the designers would try
to push the materials to their limits. Design optimization using FEM is another attempt to simulate
the performance of a machine with determined dimensions under various conditions. Connection
of conventional design method and FEM is focused on the rated operating condition, which is used
to determine the number of winding turns. Models generated with solutions of FEM and analytic
models employed in conventional design are equivalent approaches of representing the transformers
under rated operating condition.

Conventional design approximates the entire magnetic field in the core with a uniform magnetic
flux density, as no-load losses density at a specific magnetic flux density and frequency can be
measured. In essence, the no-load losses can be formulated as follows

NLL =MC × NLLper (1)

where MC is the mass of core, NLL and NLLper are, respectively, the no-load losses and the specific
no-load losses per kilogram at the given magnetic flux density. Obviously, simplification of the
inhomogeneous magnetic field with a uniform value introduces large errors, probably leading to
incorrect solutions. In contrast, FEM can provide a relatively accurate estimation of the no-load losses
but with a huge computing workload. Response surface model, combined with FEM, is introduced
into transformer design to produce an approximation model, which has higher precision than the
no-load losses model used in conventional transformer design.

Accuracy of response surface mainly depends on the type of response surface model and the
number of design points. For transformer design with many design variables, second-order polynomial
regression model is one of the preferred models. For demonstration purpose, it is formulated with
two variables

y= α0 + α1x1 + α2x2 + α11x2
1 + α22x2

2 + α12x1x2 + ε (2)

For a given model, improving accuracy means increasing design points and calculation effort. In
addition, it is well recognized that the accuracy in some regions with a large number of design
points is higher than that in a region with less design points. Subsequently, accurate and appropriate
selection of supplementary design points improve the computational efficiency dramatically. A set
of initial design points is generated firstly and calculated by using FEA, solutions of which are
inputs of the regression analysis, which aims to generate a response surface model for the no-load
losses. However, the preliminary model may be coarse and refinement points are indispensable for
deriving an accurate model. In this paper, determination of refinement points is achieved by SHM,
which provides a global overview of the optimization problem including global and local extrema
through generating a large number of samples from the response surface and then sorting them based
on objectives and constraints. After SHM selects the optimal candidates, FEM is invoked to verify
the solutions of these candidates and to eliminate candidates outside the constraints. Moreover, left
candidates with their accurate solutions previously obtained through FEA are added into the set
of design points. Certain criteria require more points adjacent to these candidates to improve the
accuracy of model. This procedure will circulate until the maximum error of optimal solutions is less
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FIG. 1. Flowchart of the proposed design method.

than the predefined tolerance. The number of finite-element calculations also varies with the tolerance
level. At the end of this phase, the preliminary design provides a refined surface model based on
the extrema distribution and several optimal candidates, which is normally being treated as the final
solutions. Optimal solutions, moreover, can be set as the starting points for deterministic optimization
algorithms, such as non-linear programming by quadratic Lagrangian method and mixed-integer
sequential quadratic programming method, for optimizing the original problem, which may require
tremendous computing workload of FEA to obtain a qualified solution. In the second-level design,
this paper adopts MOGA combined with the response surface, as MOGA provides several accurate
solutions in different regions without heavy computational effort through a couple of iterations, i.e.
selecting elite samples and generating the next generation until finding the optima. Flowchart of the
proposed design method is depicted in Fig. 1.

III. RESULTS AND DISCUSSION

To validate the proposed method, a three-phase power transformer with a power rating of
30000kW is studied in this paper. Parameters and front view are shown in Table I and Fig. 2, respec-
tively. The transformer model neglects insulations between windings and core, structural parts and
cooling system. Four dimensional parameters, namely, the depth of transformer (D), the thickness
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TABLE I. Parameters of transformer.

Parameter Value

Rated power (kW) 30000
Internal coil voltage (kV) 13.8
External coil voltage (kV) 115
Connection of internal coil Star
Connection of external coil Delta
Frequency (Hz) 60

FIG. 2. Front view of transformer.

of core leg (Eu), the height of window (G), and the width of window (W), are chosen as the deign
variables. Object of the optimization problem is to minimize the manufacturing cost with constraints
on no-load losses and load-losses. This typical TDO problem is formulated as follows

f (X)=min (CMM) (3)

s.t. NLL <NLLmax

LL< LLmax

where CMM is the cost of transformer’s main materials; X is the set of design variables; LL are load
losses; NLLmax and LLmax are the no-load losses constraint (27000W) and the load losses constraint
(99500W), respectively.

In the phase of the design of experiments, twenty-five design points are generated through central
composite designs and calculated using FEA, which are used to calculate the initial response surface
model through regression analysis. Then five optimal candidates are selected in all the samples
generated from the response surface with SHM in each round. These five optimal candidates are
verified using FEA to determine whether constraints are violated and to calculate the error of the
approximation model. As the criterion of error is not satisfied, these optimal candidates with their
FEA solutions are added into the set of design points to refine the response surface model. This
procedure is cycled by five rounds before the error tolerance is reached. In the last two rounds, two
more design points in the optimal region identified by SHM are added as design points. A total of
ten design points, including optimal candidates and their adjacent points, are added into the set of
design points in five rounds. Fig. 3 (a) shows that the increase in the number of design points between
two rounds gradually slows down and the maximum error of no-load losses of optimal candidates is
reduced to less than 0.5% with 35 design points. Fewer design points are required for a larger error
tolerance, as shown in Fig. 3 (a). Five optimal candidates of the last round are shown in Table II,
and it can be observed from this table that the optimal candidates found by SHM are from different
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FIG. 3. (a) Maximum error of no-load losses of optimal candidates versus number of design points and (b) convergence curve
of MOGA.

TABLE II. Optimal candidates derived by SHM.

Parameter Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5 Candidate 5a

D / mm 472.06 500.86 415.66 479.26 508.06 426.46
Eu / mm 352.97 343.60 401.41 371.72 362.35 393.91
G / mm 424.19 412.85 453.55 415.96 404.62 447.79
W / mm 503.89 514.64 504.21 508.88 501.20 518.61
NLL / W 12261 12521 13126 13349 13477 13086
LL / W 98901 98270 98444 94299 91859 99100
CMM / $ 59867 60735 62753 62757 62784 63142

aCandidate 5 is the fifth optimal candidate of the second case.

regions. The solutions of this case are compared with solutions from another case with 50 initial
design points generated by the same design type. The first four optimal candidates of the second case
are the same as those of the first case, while the fifth optimal candidate of the first case is better than
the second case, as shown in the fifth and sixth columns in Table II. Moreover, these five optimal
candidates of case two have a maximum error of 1.2%. The computation effort of FEA is much
larger than other computational processes, encompassing calculating the response surface model,
generating and sorting samples form the response surface. The number of design points used in case
one is 35, whereas the number of design points of case two is 50. The proposed dynamic multi-level
design method, therefore, saves roughly 30% of the calculation effort and contributes to obtaining
more accurate solutions, which are verified with these two cases.

In the refined optimal design, MOGA is used to optimize this problem based on the response
surface model generated by the first case. With convergence stability percentage of 0.5%, different
population sizes have been tried to find the best configuration for this specific problem. It is found that
the population size of 90 samples per generation provides the best optimal solutions, the convergence
curve of which is shown in Fig. 3 (b). The comparison of solutions of SHM and MOGA is listed in

TABLE III. Comparison of solutions of SHM and MOGA.

Parameter SHM MOGA

D / mm 472.06 500.56
Eu / mm 352.97 332.58
G / mm 424.19 402.51
W / mm 503.89 502.6
NLL / W 12266 11815
LL / W 98901 99272
CMM / $ 59867 58426
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Table III, which indicates that the refined optimal design brings 2.4% manufacturing cost savings
when compared with the preliminary design.

IV. CONCLUSION

In this paper, a dynamic multi-level optimal design method for TDO problems is presented.
Based on an overall estimation of the problem, the response surface model is improved gradually
with embedded finite-element modeling according to the accuracy requirement. The refined optimal
design adopts this model and provides a better solution compared with the preliminary optimal design.
Effectiveness of the proposed method is validated with a typical TDO problem.
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